

Understanding Object
Oriented Programming

in Python
Exercises

 Understanding Object Oriented Programming in Python Exercises

2

version 2020-08

Python Exercises

Licence
This manual is © 2020, Steven Wingett & Simon Andrews.

This manual is distributed under the creative commons Attribution-Non-Commercial-Share Alike 2.0
licence. This means that you are free:

• to copy, distribute, display, and perform the work

• to make derivative works

Under the following conditions:

• Attribution. You must give the original author credit.

• Non-Commercial. You may not use this work for commercial purposes.

• Share Alike. If you alter, transform, or build upon this work, you may distribute the resulting
work only under a licence identical to this one.

Please note that:

• For any reuse or distribution, you must make clear to others the licence terms of this work.
• Any of these conditions can be waived if you get permission from the copyright holder.
• Nothing in this license impairs or restricts the author's moral rights.

Full details of this licence can be found at
http://creativecommons.org/licenses/by-nc-sa/2.0/uk/legalcode

 Understanding Object Oriented Programming in Python Exercises

4

Exercise 1

1.1
i) Define a simple class called Individual.
ii) Add an initialisation method which initialises the self.character_name instance

attribute.
iii) Add an access method to the class that returns self.character_name. Call this method

get_character_name().
iv) Create an instance of the character class and assign it to the variable individual1. This

class instance should be assigned the character_name ‘Buster’ on initialisation.
v) Create another instance, which should be assigned to the variable individual2. Set the

name to ‘Tobias’.
vi) Print the character name of individual1 and individual2 to the screen using the

appropriate method.
vii) Save this to a script called oop1.py.

1.2
Let’s build on our individual class a little more to make it more interesting.

i) On initialisation, set the instance attribute self.happy to True. This should be done by
default (i.e. no parameter needs to be passed on instantiation in order to do this.)

ii) Create a predicate method is_happy to return the status of self.happy.
iii) Create a modification method named switch_mood()that changes self.happy from True

to False (and vice versa).
iv) Create a method called speak() that returns “Hello, I am [self.name]” or ‘Go away!’, depending

on whether self.happy is set to True or False respectively.
v) Create individual3 with character name initialised to ‘Lucille’
vi) Write some code to try out these methods/attributes of Buster and Tobias.
vii) Save all this code to a script called oop2.py.

1.3
i) Add a class attribute called self.Counter that records the number of Individual

instances created. This should be incremented by a class method called AddOne(). This
way we can keep track of the total number of individuals. The current count total should
be assigned to the instance variable self.id on instantiation. (Hint: we did this for the
counting sheep example in the manual.)

ii) Create __str__ and __repr__ methods to give a human-readable representation of each
instance of individual. It should return: individual: [self.id
self.character_name]

iii) Write additional code to verify the class is working as expected.
iv) Save your updated code to a file named oop3.py.

 Understanding Object Oriented Programming in Python Exercises

5

Exercise 2
We are now going to build on our class Individual some more and we are going to create a
population of individuals using the data sheet Star_Wars_Data.txt (the data were extracted from
the R dply package). In this list you will see the categories: Name, Height, Mass, Homeworld, Species.

i) Our individual class already has an attribute to store names. But let’s now create
self.height, self.mass and self.homeworld attributes. These need to be set on
instantiation of the individual object.

ii) Create access methods to return the values for the attributes added in the previous step
iii) In the species column we see there are droids (robots) and living species (e.g. organisms).

These will have slightly different properties, so create sub-classes of Individual called
Droid and Biological.

iv) Add a species attribute to the Biological class. This needs to be specified on
instantiation of a Biological. Also, add an access method to return the species value.

v) Write code to verify this is working as expected.
vi) Save the script as star_wars1.py.

Exercise 3

i) Read in the data file Star_Wars_Data.txt and create either droid or biological
class instances using the data in the sheet. These newly created objects should be stored
in a list named population.

ii) Write some code to check this has worked
iii) Save the script as star_wars2.py.

Exercise 4
i) Override the speak method in the class droid to return “Beep Beep Beep”.
ii) Write code to check this is working.
iii) Save the script as star_wars3.py.

Exercise 5*
i) Add a get_bmi() method to the biological class, which returns the Body Mass Index

of a biological. (Body Mass Index is a simple calculation using a person's height and
weight. The formula is BMI = mass / height2 (with mass in kilograms and height in metres).

ii) Iterate over the population list, identifying instances of the biological class (the
function isinstance() may help you with this) and record their body mass index values.

iii) Identify the biological with the highest body mass index
iv) Save the script as star_wars4.py.

