
Understanding Object Oriented
Programming in Python

Steven Wingett, Babraham Bioinformatics

version 2020-08

Licence
This presentation is © 2020, Steven Wingett & Simon Andrews.

This presentation is distributed under the creative commons Attribution-Non-Commercial-Share Alike 2.0 licence.

This means that you are free:

• to copy, distribute, display, and perform the work

• to make derivative works

Under the following conditions:

• Attribution. You must give the original author credit.

• Non-Commercial. You may not use this work for commercial purposes.

• Share Alike. If you alter, transform, or build upon this work, you may distribute the resulting work only under a licence identical to this one.

Please note that:

• For any reuse or distribution, you must make clear to others the licence terms of this work.

• Any of these conditions can be waived if you get permission from the copyright holder.

• Nothing in this license impairs or restricts the author's moral rights.

Full details of this licence can be found at

http://creativecommons.org/licenses/by-nc-sa/2.0/uk/legalcode

http://creativecommons.org/licenses/by-nc-sa/2.0/uk/legalcode

Introduction

• So far dealt with Python as a procedural language – a series of
instructions (like a food recipe)
• Easy to loose track of everything for big projects
• Object-oriented programming (OOP) designed to make it easier to

writing more complex projects
• It is better suited to the human brain

Introduction (2)

• Object are analogous to real-
word objects (e.g. vehicles)
• Objects have properties (e.g.

number of wheels, max speed)
• Related objects are grouped

into classes (i.e. vehicles)
• And grouped into sub-classes

(e.g. cars, trucks and bikes)

Vehicles

Engine-
powered

Human-
powered

Bikes

Cars Trucks

Defining classes
• Let’s define a dog class (this is not a dog, but the concept of a dog)

• (Maybe surprisingly, classes are objects as well!)

class Dog:
pass

• Type Dog() into the interpreter:
<__main__.dog object at 0x0341D7B0>

• __main__ is the name of the module to which the dog class belongs (main is the Python interpreter)

• Next is the name of the class followed by an internal memory address (written in hexadecimal)

• Classes by convention begin with capital letters

Instantiation

• To make an instance of the dog class, simply call the class as you
would a function:

snoopy = Dog()

• This is known as instantiation

• This instance of the dog class is named snoopy. Similar to before,
you may view its memory location:

>>> Dog
<__main__.dog object at 0x0410D7F0>

Instance attributes

• Instances of a class may have methods (such as already seen with
built-in objects) and store information in what is known as fields
• Collectively, methods and fields are known as attributes
• Both of these may be accessed using the dot notation:
snoopy.colour = 'White'
• All other instances of the dog class will not have a colour field; only

snoopy will be changed by this statement
• Although this is a simple and quick way to edit the snoopy instance,

there are better ways to do this

Access methods

• Access method returns field values of an instance
• Use def to define a method (similar to a function)
• self refers to the current instance of a class

class Dog:

def get_colour(self):
return self.colour

>>> snoopy.get_colour()
'White'

• Why not simply use snoopy.colour? Well, with our method above, we can change the
internal class code without causing problems.

Access methods (2)

Class: dog
class Dog:

def get_colour(self):
return self.colour

def animate(self):
if self.mood == 'Happy':

return('Wag Tail')
elif self.mood == 'Angry':

return('Bite')

else:
return('Bark')

Code interacting with dog
snoopy = Dog()

snoopy.mood = "Happy"

print((snoopy.animate()))

snoopy.mood = "Angry"
print((snoopy.animate()))

>>>
Wag Tail

Bite

• Access methods do not simply have to return a value:

Predicate methods

• Return either a True or False

• By convention, begin with an
is_ prefix
(or sometimes has_)

class Dog:

stomach_full_percentage = 20

def is_hungry(self):

if(self.stomach_full_percentage < 30):

return True

else:

return False

snoopy = Dog()

print(snoopy.is_hungry())

Predicate methods (2)

• Important method is the ability to compare and sort instances

• By convention, define an __lt__ method to do this

• This method returns True or False (so is a predicate method)

Predicate methods (3)

Class: dog
class Dog:

def get_age(self):

return self.age

def __lt__(self, other):

if type(self) != type(other):

raise Exception(

'Incompatible argument to __lt__:' +

str(other))

return self.get_age() < other.get_age()

Code interacting with dog
snoopy = Dog()

snoopy.age = 9

scooby = Dog()

scooby.age = 6

print(snoopy.__lt__(scooby))

>>>

False

Initialisation methods

• Useful to set (or initialise) variables at time of
creation

• Special initialisation method: __init__

• This is the usual way to assign values to all
fields in the class (even if they are assigned to
None)

• By convention, the __init__ method
should be at the top of the code in a class

• In the example, we pass self (first) and data to
the __init__ method

class Dog:
def __init__(self, data):

self.age = data

def get_age(self):
return self.age

snoopy = Dog(10)
print(snoopy.get_age())

>>>
10

String methods

• Methods that define how a class should be displayed

• __str__ returned after calling print

• __repr__ returned by the interpreter

• In example, human-friendly name returned instead
of:
<__main__.dog object at 0x0405D6B0>

class Dog:
def __init__(self, data):

self.name = data

def __str__(self):
return 'Dog:' + self.name

def __repr__(self):
return self.name

>>> dog1
Snoopy
>>> print(dog1)
Dog:Snoopy

Modification methods

Code
class Dog:

def __init__(self):
self.mood = "Sad"

def get_mood(self):
return self.mood

def set_mood(self, data):

self.mood = data

dog1 = Dog()

print(dog1.get_mood())
dog1.set_mood("Happy")

print(dog1.get_mood())

Output
>>>

Sad

Happy

Methods that modify class fields:

Class attributes

• Up until now we have looked at attributes that work at the level of
each instance of a class
• In contrast, there attributes which operate at the level of the whole

class
• Class fields are declared at the top-level and begin with a capital

letter
• Class methods have the special indicator @classmethod on the line

immediately above
• Let’s see an example

Exercises

• Exercise 1.1 & 1.2

Class attributes (2)
Code
class Sheep:

Counter = 0

@classmethod

def AddOne(self):
self.Counter += 1

def __init__(self):

self.AddOne()

self.id = self.Counter

def get_id(self):
return self.id

dolly = Sheep()
flossy = Sheep()

print(dolly.get_id())
print(flossy.get_id())

Output
>>>

1
2

Class field

Class
method

Static methods

• Methods that can be called directly
from a class, without the need for
creating an instance of that class

• Special indicator @staticmethod
placed on the line immediately above
the definition

• Useful when we need to make use of
a class’s functionality but that class is
not needed at any other point in the
code

class Utilities:

@staticmethod

def miles_to_km(miles):

return(miles * 1.60934)

journey = 10

journey_km = Utilities.miles_to_km(journey)

print(journey_km)

>>>

16.0934

Exercises

• Exercise 1.3

Inheritance
• Inheritance central to OOP
• Subclass “inherits”

properties of parent class
(now referred to as the
superclass)

• Subclass can be modified to
have different properties
from parent class i.e.
similar, but different

• Enables coders to produce
objects with reduced
codebase

• Reduces code duplication
• Changes only need to be

made in one place

Superclass: Vehicles

Class: Engine-
powered

Human-
powered

Bikes

Subclass: Cars Subclass: Trucks

Inheritance (2)

Class Code

class Dog:

def __init__(self):

self.mood = "Sad"

def get_mood(self):

return self.mood

def set_mood(self, data):

self.mood = data

“Main body” code

dog1 = Dog()

print(dog1.get_mood())

Output

>>>

Sad

Inheritance (3)

Superclass Code

class Dog:

def __init__(self):

self.mood = "Sad"

def get_mood(self):

return self.mood

def set_mood(self, data):

self.mood = data

“Main body” code

rottweiler1 = Rottweiler()

print(rottweiler1.get_mood())

Output

>>>

Sad

Subclass Code

class Rottweiler(Dog):

pass

Inheritance and super() (2)

• What was the point of that? The Rottweiler class does exactly the
same as the dog class

• Well, once we have created a subclass, we can build on it. See the
following example

Inheritance and super() (3)

Superclass
class Rectangle:

def __init__(self, length, width):
self.length = length
self.width = width

def area(self):
return self.length * self.width

def perimeter(self):
return 2 * self.length + 2 * self.width

Subclass
class Square(Rectangle):

def __init__(self, length):
super().__init__(length, length)

• In geometry, a square is a special type of rectangle
• Here, a Square is a subclass of Rectangle
• Unlike the rectangle, we only need to define the

square’s length on instantiation
• The keyword super refers to the superclass
• When initialising a square, we pass length twice to the

initialisation method of the rectangle class
• We have therefore overridden the __init__

method of rectangle
• We can override any superclass method be redefining

it in the subclass

Exercises

• Exercise 2

Exercises

• Exercise 3, 4 and 5*

How do you get to Carnegie Hall? Practice,
practice, practice.

Happy coding!
The Babraham Bioinformatics Team

