Understanding Object Oriented
Programming in Python

Steven Wingett, Babraham Bioinformatics

version 2020-08

Babrm
Bioinformatics

Licence

This presentation is © 2020, Steven Wingett & Simon Andrews.

This presentation is distributed under the creative commons Attribution-Non-Commercial-Share Alike 2.0 licence.
This means that you are free:
* to copy, distribute, display, and perform the work

* to make derivative works

Under the following conditions:
e Attribution. You must give the original author credit.
* Non-Commercial. You may not use this work for commercial purposes.

* Share Alike. If you alter, transform, or build upon this work, you may distribute the resulting work only under a licence identical to this one.

Please note that:
* For any reuse or distribution, you must make clear to others the licence terms of this work.
* Any of these conditions can be waived if you get permission from the copyright holder.

* Nothing in this license impairs or restricts the author's moral rights.

Full details of this licence can be found at

http://creativecommons.org/licenses/by-nc-sa/2.0/uk/legalcode

Babraham
Bioinformatics

http://creativecommons.org/licenses/by-nc-sa/2.0/uk/legalcode

Introduction

* So far dealt with Python as a procedural language — a series of
instructions (like a food recipe)

* Easy to loose track of everything for big projects

* Object-oriented programming (OOP) designed to make it easier to
writing more complex projects

e It is better suited to the human brain

Babrm
Bioinformatics

Introduction (2)

Vehicles
Object are analogous to real-
word objects (e.g. vehicles) -
. . Engine- Human-
Objects have properties (e.g.
number of wheels, max speed) powered powered

Related objects are grouped ‘
into classes (i.e. vehicles) Bikes
And grouped into sub-classes

(e.g. cars, trucks and bikes)

Defining classes

* Let’s define a dog class (this is not a dog, but the concept of a dog)

* (Maybe surprisingly, classes are objects as well!)

class Dog:

pass

* Type Dog () intothe interpreter:
< _ main_ .dog object at 0x0341D7B0>

. main is the name of the module to which the dog class belongs (main is the Python interpreter)

* Next is the name of the class followed by an internal memory address (written in hexadecimal)

* Classes by convention begin with capital letters

Instantiation

* To make an instance of the dog class, simply call the class as you
would a function:

snoopy = Dog ()
* This is known as instantiation

* This instance of the dog class is named snoopy. Similar to before,
you may view its memory location:

>>> Dog
< main .dog object at 0x0410D7F0>

Instance attributes

* Instances of a class may have methods (such as already seen with
built-in objects) and store information in what is known as fields

* Collectively, methods and fields are known as attributes
* Both of these may be accessed using the dot notation:
snoopy.colour = 'White'

 All other instances of the dog class will not have a colour field; only
snoopy will be changed by this statement

* Although this is a simple and quick way to edit the snoopy instance,
there are better ways to do this

Access methods

e Access method returns field values of an instance
* Use def to define a method (similar to a function)

e self refersto the current instance of a class

class Dog:
def get colour(self):

return self.colour

>>> snoopy.get colour ()
'White'

* Why not simply use snoopy.colour? Well, with our method above, we can change the
internal class code without causing problems.

Access methods (2)

* Access methods do not simply have to return a value:

Class: dog Code interacting with dog

class Dog: snoopy = Dog ()
def get colour(self):
return self.colour snoopy.mood = "Happy"

print ((snoopy.animate()))

def animate (self): snoopy.mood = "Angry"
if self.mood == 'Happy': print ((snoopy.animate()))
return ('Wag Tail') >>>
elif self.mood == 'Angry': Wag Tail
return('Bite') Bite
else:

return('Bark')

Predicate methods

class Dog:

e Return eithera True or False

stomach full percentage = 20

def is hungry(self):

° By Convention, begin W|th dan 1f (self.stomach full percentage < 30):
iS prefiX return True
(or sometimes has) else:

return False

snoopy = Dog ()
print (snoopy.is hungry())

Babrm
Bioinformatics

Predicate methods (2)

* Important method is the ability to compare and sort instances
* By convention, definean 1t method to do this

* This method returns True or False (sois a predicate method)

Babrm
Bioinformatics

Predicate methods (3)

Class: dog
class Dog:
def get age(self):

return self.age

def 1t (self, other):
1f type(self) != type(other):
ralse Exception (
'Tncompatible argument to

str (other))

return self.get age() < other.get age()

Code interacting with dog
snoopy = Dog ()

snoopy.age = 9

scooby = Dog ()

scooby.age = 6
print (snoopy. 1t (scooby))

>>>

False

Initialisation methods

* Useful to set (or initialise) variables at time of class Dog:
creation def init (self, data):

* Special initialisation method: init self.age = data

* This is the usual way to assign values to all def get age(self):

fields in the class (even if they are assigned to return self.age
None)
e By convention,the init method snoopy = Dog (10)

should be at the top of the code in a class print (snoopy.get age())

* Inthe example, we pass self (first) and datato S5
the init method 10

String methods

Methods that define how a class should be displayed class bog:
def 1init (self, data):

self.name = data

* str returned after calling print

* repr returned by the interpreter def _ str_ (self):

return 'Dog:' + self.name
. Ir}example, human-friendly name returned instead def repr (self):
OT: return self.name
< main .dog object at 0x0405Do6oB0O>
>>> dogl
Snoopy

>>> print (dogl)
Dog:Snoopy

Babrm
Bioinformatics

Modification methods

Methods that modify class fields:

Code Output
class Dog: >>>
def init (self): sad
self.mood = "Sad"
Happy

def get mood(self):

return self.mood

def set mood(self, data):

self.mood = data

dogl = Dog ()

print (dogl.get mood())
dogl.set mood ("Happy")
print (dogl.get mood())

Class attributes

* Up until now we have looked at attributes that work at the level of
each instance of a class

* In contrast, there attributes which operate at the level of the whole
class

* Class fields are declared at the top-level and begin with a capital
letter

* Class methods have the special indicator @classmethod on the line
immediately above

* Let’s see an example

Exercises

e Exercise 1.1 & 1.2

Babrm
Bioinformatics

Class attributes (2)

Code
class Sheep:
Counter = 0+ Class field
@classmethod
def AddOne (self) :« Class
self.Counter += 1 method

def init (self):
self.AddOne ()

self.id = self.Counter

def get id(self):

return self.id

dolly = Sheep|()
flossy = Sheep()
print (dolly.get 1id())
print (flossy.get 1d())

Output

>>>

Static methods

 Methods that can be called directly
from a class, without the need for
creating an instance of that class

* Special indicator @staticmethod
placed on the line immediately above
the definition

e Useful when we need to make use of
a class’s functionality but that class is
not needed at any other point in the
code

class Utilities:
@staticmethod
def miles to km(miles):

return(miles * 1.60934)

Journey = 10
journey km = Utilities.miles to km(journey)

print (journey km)

>>>

16.0934

Exercises

 Exercise 1.3

Babrm
Bioinformatics

Inheritance

* Inheritance central to OOP

properties of parent class

(now referred to as the H
superclass) uman-

e Subclass can be modified to powered

have different properties ‘

from parent class i.e.

similar, but different Bikes
* Enables coders to produce é

objects with reduced

codebase Subclass: Cars Subclass: Trucks
* Reduces code duplication o Vim o] amiy /T T [o
.) LA R D —

Changes only need to be - \ . A

made in one place

Inheritance (2)

Class Code

class Dog:
def init (self):

self.mood = "Sad"

def get mood(self):

return self.mood

def set mood(self, data):

self.mood = data

“Main body” code

dogl = Dog ()
print (dogl.get mood())

Output

>>>

Sad

Inheritance (3)

Superclass Code

class Dog:
def init (self):

self.mood = "Sad"

def get mood(self):

return self.mood

def set mood(self, data):

self.mood = data

Subclass Code

class Rottweiler (Dog) :

pass

“Main body” code

rottweilerl = Rottweiler ()

print (rottweilerl.get mood())

Output

>>>

Sad

Inheritance and super() (2)

* What was the point of that? The Rottweiler class does exactly the
same as the dog class

* Well, once we have created a subclass, we can build on it. See the
following example

Babrm
Bioinformatics

Inheritance and super() (3)

Superclass
class Rectangle:
def init (self, length, width):
self.length = length
self.width = width

def area(self):

return self.length * self.width

def perimeter (self):

return 2 * self.length + 2 * self.width

Babrm
Bioinformatics

Subclass

class Square (Rectangle) :

def init (self, length):

super (). 1init (length, length)

In geometry, a square is a special type of rectangle
Here, a Square is a subclass of Rectangle

Unlike the rectangle, we only need to define the
square’s length on instantiation

The keyword super refers to the superclass

When initialising a square, we pass length twice to the
initialisation method of the rectangle class

We have therefore overriddenthe init
method of rectangle

We can override any superclass method be redefining
it in the subclass

Exercises

 Exercise 2

Babrm
Bioinformatics

Exercises

e Exercise 3,4 and 5*

Babrm
Bioinformatics

How do you get to Carnegie Hall? Practice,
practice, practice.

Happy coding!
The Babraham Bioinformatics Team

Babraham ;)
Bioinformatics

