Advanced R
(with Tidyverse)

Simon Andrews
v2019-10-3
Course Content

• Using the tidyverse packages
 – Data Import
 – Filtering, selecting and sorting
 – Restructuring data
 – Grouping and Summarising
 – Extending and Merging

• Custom functions
Tidyverse
https://www.tidyverse.org/

• Collection of R packages
 – Aims to fix many of core R's structural problems
 – Common design and data philosophy
 – Designed to work together, but integrate seamlessly with other parts of R
Tidyverse Packages

- Tibble - data storage
- ReadR - reading data from files
- TidyR - Model data correctly
- DplyR - Manipulate and filter data
- Ggplot2 - Draw figures and graphs
Tidyverse Philosophies

• All data stored in a tibble (like a data frame)

• Make all functions perform a single, simple operation
 – Function names should be descriptive - normally a verb
 – All functions take a tibble as their first argument, allowing 'pipes' to be constructed
 – All (well most) functions return a tibble

• Use functional programming (not OO)
 – Don't modify existing data - create a modified copy
Using Tidyverse
Installation and calling

• `install.packages("tidyverse")`
• `library(tidyverse)`

```
-- Attaching packages -------- tidyverse 1.2.1 --
ggplot2 3.1.0  purrr 0.2.5
 tibble 2.0.1  dplyr 0.7.8
tidyrr 0.8.2  stringr 1.3.1
readr 1.3.1  forcats 0.3.0
```
Reading Files with readr

- Provides functions which mirror R's `read.table`
 - `read_csv(file.csv)`
 - `read_tsv(file.tsv)`
 - `read_delim(file.txt)`
 - `read_fwf(file.txt, col_positions=c(1,3,6))`
Reading files with readr

• Output is always a tibble

• No name translation

• Guesses appropriate formats
 – Says what formats were guessed (can get it wrong though!)
 – No string to factor conversion
Reading files with readr

```r
> read_tsv("trumpton.txt") -> trumpton
Parsed with column specification:
  cols(
    LastName = col_character(),
    FirstName = col_character(),
    Age = col_double(),
    Weight = col_double(),
    Height = col_double()
  )
>
> trumpton
# A tibble: 7 x 5
  LastName FirstName  Age Weight Height
  <chr>    <chr>   <dbl> <dbl>  <dbl>
1 Hugh     Chris    26     90    175
2 Pew      Adam    32    102    183
3 Barney   Daniel  18     88    168
4 McGrew   Chris    48     97    155
5 Cuthbert Carl    28     91    188
6 Dibble   Liam    35     94    145
7 Grub     Doug    31     89    164
```

Reading files with `readr`
Fixing guessed columns

> read_csv("Child_Variants.csv") -> child_tbl

Parsed with column specification:

```r
cols(
  CHR = col_double(),
  POS = col_double(),
  dbSNP = col_character(),
  REF = col_character(),
  ALT = col_character(),
  QUAL = col_double(),
  GENE = col_character(),
  ENST = col_character(),
  MutantReads = col_double(),
  COVERAGE = col_double(),
  MutantReadPercent = col_double()
)
```

Warning: 477 parsing failures.

```r
  row col expected actual     file
25346 CHR a double     MT 'Child_Variants.csv'
25347 CHR a double     MT 'Child_Variants.csv'
25348 CHR a double     MT 'Child_Variants.csv'
25349 CHR a double     MT 'Child_Variants.csv'
25350 CHR a double     MT 'Child_Variants.csv'
...
```

See problems(...) for more details.

- Types are guessed on first 1000 lines
- Warnings for later mismatches
- Values converted to NA
Fixing guessed columns

```r
> read_csv(
    "Child_Variants.csv",
    guess_max = 10000000)
) -> child_tbl

Parsed with column specification:

```r
cols(
 CHR = col_character(),
 POS = col_double(),
 dbSNP = col_character(),
 REF = col_character(),
 ALT = col_character(),
 QUAL = col_double(),
 GENE = col_character(),
 ENST = col_character(),
 MutantReads = col_double(),
 COVERAGE = col_double(),
 MutantReadPercent = col_double()
)
```
Fixing guessed columns

```r
> read_csv(
 "Child_Variants.csv",
 col_types=cols(CHR=col_character())
) -> child_tbl
```

# A tibble: 25,822 x 11

<table>
<thead>
<tr>
<th>CHR</th>
<th>POS</th>
<th>dbsNP</th>
<th>REF</th>
<th>ALT</th>
<th>QUAL</th>
<th>GENE</th>
<th>ENST</th>
<th>MutantReads</th>
<th>COVERAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>&lt;chr&gt;</td>
<td>&lt;dbl&gt;</td>
<td>&lt;chr&gt;</td>
<td>&lt;chr&gt;</td>
<td>&lt;chr&gt;</td>
<td>&lt;dbl&gt;</td>
<td>&lt;chr&gt;</td>
<td>&lt;chr&gt;</td>
<td>&lt;dbl&gt;</td>
<td>&lt;dbl&gt;</td>
</tr>
<tr>
<td>1</td>
<td>69270</td>
<td>.</td>
<td>A</td>
<td>G</td>
<td>16</td>
<td>OR4F5</td>
<td>ENST~</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>69511</td>
<td>rs75~</td>
<td>A</td>
<td>G</td>
<td>200</td>
<td>OR4F5</td>
<td>ENST~</td>
<td>24</td>
<td>27</td>
</tr>
<tr>
<td>3</td>
<td>69761</td>
<td>.</td>
<td>A</td>
<td>T</td>
<td>200</td>
<td>OR4F5</td>
<td>ENST~</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>4</td>
<td>69897</td>
<td>rs75~</td>
<td>T</td>
<td>C</td>
<td>59</td>
<td>OR4F5</td>
<td>ENST~</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>877831</td>
<td>rs66~</td>
<td>T</td>
<td>C</td>
<td>200</td>
<td>SAMD~</td>
<td>ENST~</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>6</td>
<td>881627</td>
<td>rs22~</td>
<td>G</td>
<td>A</td>
<td>200</td>
<td>NOC2L</td>
<td>ENST~</td>
<td>52</td>
<td>56</td>
</tr>
<tr>
<td>7</td>
<td>887801</td>
<td>rs38~</td>
<td>A</td>
<td>G</td>
<td>200</td>
<td>NOC2L</td>
<td>ENST~</td>
<td>47</td>
<td>48</td>
</tr>
<tr>
<td>8</td>
<td>888639</td>
<td>rs37~</td>
<td>T</td>
<td>C</td>
<td>200</td>
<td>NOC2L</td>
<td>ENST~</td>
<td>23</td>
<td>24</td>
</tr>
<tr>
<td>9</td>
<td>888659</td>
<td>rs37~</td>
<td>T</td>
<td>C</td>
<td>200</td>
<td>NOC2L</td>
<td>ENST~</td>
<td>17</td>
<td>21</td>
</tr>
<tr>
<td>10</td>
<td>889158</td>
<td>rs13~</td>
<td>G</td>
<td>C</td>
<td>200</td>
<td>NOC2L</td>
<td>ENST~</td>
<td>25</td>
<td>28</td>
</tr>
</tbody>
</table>

# ... with 25,812 more rows, and 1 more variable: MutantReadPercent <dbl>
Exercise 1
Reading Data into Tibbles
Filtering, Selecting, Sorting etc.
Subsetting and Filtering

- **slice**: select rows by position
- **select**: select columns by name/position
- **arrange**: sort rows
- **distinct**: deduplication
- **filter**: functional selection of rows
# A tibble: 7 x 5

   LastName FirstName Age Weight Height
     <chr>    <chr> <dbl>  <dbl>  <dbl>
1     Hugh    Chris   26     90    175
2      Pew    Adam    32    102    183
3   Barney  Daniel   18     88    168
4  McGrew    Chris   48     97    155
5  Cuthbert   Carl   28     91    188
6    Dibble  Liam    35     94    145
7      Grub  Doug    31     89    164
Using `slice` or `select`

- `slice(data, rows)`
- `select(data, cols)`

```r
slice(trumpton, 1, 4, 7)
```

```r
A tibble: 3 x 5
LastName FirstName Age Weight Height
#1 Hugh Chris 26 90 175
#2 McGrew Chris 48 97 155
#3 Grub Doug 31 89 164
```

```r
select(LastName, Age, Height)
```

```r
A tibble: 7 x 3
LastName Age Height
#1 Hugh 26 175
#2 Pew 32 183
#3 Barney 18 168
#4 McGrew 48 155
#5 Cuthbert 28 188
#6 Dibble 35 145
#7 Grub 31 164
```
Using `slice` and `select`

```r
slice(select(trumpton, LastName, Age, Height), 1, 4, 7)
```

# A tibble: 3 x 3

<table>
<thead>
<tr>
<th>LastName</th>
<th>Age</th>
<th>Height</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hugh</td>
<td>26</td>
<td>175</td>
</tr>
<tr>
<td>McGrew</td>
<td>48</td>
<td>155</td>
</tr>
<tr>
<td>Grub</td>
<td>31</td>
<td>164</td>
</tr>
</tbody>
</table>
The %>% operator (pipe)

• All* tidyverse functions take a tibble as the first argument and return a modified tibble

• Often need to 'chain' several functions together.

• The %>% operator takes the argument on its left and makes it the first argument to the function on its right
  – Correct logical flow to the code
  – Easier to read and interpret
  – Cleaner (fewer intermediate variables, less typing)

*Well nearly all, anyway.
The `%>%` operator (pipe)

data %>% head()

head(data)

tibble(a=1:10, b=21:30) %>% nrow()
Using `slice` and `select`

```r
trumpton %>% select(LastName, Age) %>% slice(1, 4, 7)
```

# A tibble: 3 x 3

<table>
<thead>
<tr>
<th></th>
<th>LastName</th>
<th>Age</th>
<th>Height</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Hugh</td>
<td>26</td>
<td>175</td>
</tr>
<tr>
<td>2</td>
<td>McGrew</td>
<td>48</td>
<td>155</td>
</tr>
<tr>
<td>3</td>
<td>Grub</td>
<td>31</td>
<td>164</td>
</tr>
</tbody>
</table>
Using **slice** and **select**

```r
trumpton %>%
 select(LastName, Age) %>%
 slice(1,4,7)
```

```r
A tibble: 3 x 3
LastName Age Height
<chr> <dbl> <dbl>
1 Hugh 26.0 175
2 McGrew 48.0 155
3 Grub 31.0 164
```
Defining Selected Columns

• Common rules used throughout tidyverse.

• Single definitions (name, position or function)
  Positive  weight, height, length, 1, 2, 3, last_col()
  Negative  -chromosome, -start, -end, -1, -2, -3

• Range selections
  3:5   -(3:5)   height:length   -(height:length)

• Functional selections (positive or negative)
  starts_with()   -starts_with()
  ends_with()     -ends_with()
  contains()      -contains()
  matches()       -matches
Using `select` helpers

colnames(child.variants)  ->  CHR  POS  dbSNP  REF  ALT  QUAL  GENE  ENST  MutantReads  COVERAGE  MutantReadPercent
child.variants %>%
  select(REF, COVERAGE)  ->  REF  COVERAGE
  select(-CHR, -ENST)  ->  POS  dbSNP  REF  ALT  QUAL  GENE  MutantReads  COVERAGE  MutantReadPercent
  select(5: last_col())  ->  ALT  QUAL  GENE  ENST  MutantReads  COVERAGE  MutantReadPercent
  select(POS: GENE)  ->  POS  dbSNP  REF  ALT  QUAL  GENE
  select(-(POS: GENE))  ->  CHR  ENST  MutantReads  COVERAGE  MutantReadPercent
  select(starts_with("Mut"))  ->  MutantReads  MutantReadPercent
  select(-ends_with("t", ignore.case = TRUE))  ->  CHR  POS  dbSNP  REF  QUAL  GENE  MutantReads  COVERAGE
  select(contains("Read"))  ->  MutantReads  MutantReadPercent
arrange (sorting) 
distinct (deduplication)

```r
trumpont %>%
distinct(FirstName, .keep_all = TRUE) %>%
arrange(Height)
```

# A tibble: 6 x 5
## LastName  FirstName Age  Weight  Height
## <chr>      <chr>  <dbl>   <dbl>   <dbl>
1 Dibble     Liam    35     94      145
2 Grub       Doug    31     89      164
3 Barney     Daniel  18     88      168
4 Hugh       Chris   26     90      175
5 Pew        Adam    32     102     183
6 Cuthbert   Carl    28     91      188

You need `.keep_all=TRUE` if you want to see more than the district column. “keep_all” has a dot before it
```
arrange (sorting)
distinct (deduplication)
```
Functional row selection using `filter`

```
trumpton %>% filter(Height > 170)
```

# A tibble: 3 x 5
## LastName  FirstName  Age  Weight  Height
##<chr>      <chr>      <dbl>  <dbl>    <dbl>
## 1 Hugh     Chris      26    90      175
## 2 Pew      Adam       32   102      183
## 3 Cuthbert Carl      28    91      188
Exercise 2
Filtering and selecting
More clever filtering
Multi-condition filter

trumpton %>%
  filter(Height > 170) %>%
  filter(Age > 30)

# A tibble: 1 x 5
  LastName FirstName Age Weight Height
  <chr>     <chr>  <dbl>  <dbl>  <dbl>
1 Pew       Adam   32     102    183
Multi-condition filter

trumpton %>%
  filter(Height > 170, Age > 30)

# A tibble: 1 x 5
  LastName FirstName Age  Weight Height
     <chr>    <chr> <dbl>   <dbl>  <dbl>
1   Pew       Adam   32      102    183

, = logical AND
& = logical AND
| = logical OR
! = logical NOT
Multi-condition filter

trumpton %>%
  filter(Height > 170 | Age > 30)

# A tibble: 6 x 5
  LastName FirstName Age  Weight Height
  <chr>     <chr>  <dbl>   <dbl>  <dbl>
1 Hugh      Chris   26     90      175
2 Pew       Adam    32    102      183
3 McGrew    Chris   48     97      155
4 Cuthbert  Carl    28     91      188
5 Dibble    Liam    35     94      145
6 Grub      Doug    31     89      164

,  = logical AND
&  = logical AND
|  = logical OR
!  = logical NOT
Using filter with %in%

```
> hits
[1] "FGFR1" "RASAL1" "GLB1L2" "DNAH1" "PTH1R"

child.variants %>%
 distinct(GENE, .keep_all = TRUE) %>%
 filter(GENE %in% hits)
```

---

<table>
<thead>
<tr>
<th>CHR</th>
<th>POS</th>
<th>dbsNP</th>
<th>REF</th>
<th>ALT</th>
<th>QUAL</th>
<th>GENE</th>
<th>ENST</th>
<th>MutantReads</th>
<th>COVERAGE</th>
<th>MutantReadPerce~</th>
</tr>
</thead>
<tbody>
<tr>
<td>chr</td>
<td>&lt;dbl&gt;</td>
<td>&lt;chr&gt;</td>
<td>&lt;chr&gt;</td>
<td>&lt;chr&gt;</td>
<td>&lt;chr&gt;</td>
<td>&lt;chr&gt;</td>
<td>&lt;chr&gt;</td>
<td>&lt;dbl&gt;</td>
<td>&lt;dbl&gt;</td>
<td></td>
</tr>
<tr>
<td></td>
<td>&lt;dbl&gt;</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>11</td>
<td>1134226278</td>
<td>rs3802928</td>
<td>C</td>
<td>T</td>
<td>200</td>
<td>GLB1L2</td>
<td>ENST000003898~</td>
<td>13</td>
<td>43</td>
</tr>
<tr>
<td>2</td>
<td>12</td>
<td>113539822</td>
<td>rs1674101</td>
<td>A</td>
<td>G</td>
<td>200</td>
<td>RASAL1</td>
<td>ENST000005465~</td>
<td>19</td>
<td>22</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>46944274</td>
<td>rs1138518</td>
<td>T</td>
<td>C</td>
<td>200</td>
<td>PTH1R</td>
<td>ENST000004495~</td>
<td>32</td>
<td>75</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>52430526</td>
<td>rs12163565</td>
<td>G</td>
<td>A</td>
<td>200</td>
<td>DNAH1</td>
<td>ENST000004203~</td>
<td>38</td>
<td>50</td>
</tr>
<tr>
<td>5</td>
<td>8</td>
<td>38271182 .</td>
<td></td>
<td>TG</td>
<td>T</td>
<td>200</td>
<td>FGFR1</td>
<td>ENST000004259~</td>
<td>9</td>
<td>31</td>
</tr>
</tbody>
</table>

---

Babraham Bioinformatics
Using `filter` with `str_detect`

```r
child.variants %>%
 distinct(GENE, .keep_all = TRUE) %>%
 filter(str_detect(GENE,"ZFP"))
```

# A tibble: 9 x 11
## 1 16  68598007 rs1177648 A     G       200 ZFP90 ENST00000398253          43      100               43
## 2 16  88552370 rs3751673 A     G        53 ZFPM1 ENST00000319555           4       23               17
## 3 18  5292030 rs620652  A     G       200 ZFP161 ENST00000357006          28       71               39
## 4 19  57065189 rs145011  T     C       200 ZFP28 ENST00000301318          59      137               43
## 5 20  50768672  .         GT    G       200 ZFP64 ENST00000216923          36       41               87
## 6 5   180276402 rs168726  C     T       200 ZFP62 ENST00000502412          74      83                89
## 7 8   106814656 rs2920048 G     C       200 ZFP62 ENST000000407775          33       79               41
## 8 8   144332012 rs6558339  T     C       200 ZFP41 ENST00000330701          32       37               86
## 9 9   115818949 rs2282076 A     T       200 ZFP37 ENST00000374227          18       43               41
Using `filter` with `is_` functions

```r
> data.with.na
A tibble: 8 x 2
 sample value
 <chr> <dbl>
1 A 9.98
2 A 8.58
3 A 10.4
4 A 11.4
5 B 9.75
6 B 11.2
7 B NA
8 B NA

data.with.na %>%
 filter(!is.na(value))

A tibble: 6 x 2
 sample value
 <chr> <dbl>
1 A 9.98
2 A 8.58
3 A 10.4
4 A 11.4
5 B 9.75
6 B 11.2
```

- `is_numeric`
- `is_character`
- `is_finite`
- `is_infinite`
- `is_null`
- `is_empty`
Transforming data in a filter

```
trumpton %>%
 filter(log(Height) > 5)
```

<table>
<thead>
<tr>
<th></th>
<th>LastName</th>
<th>FirstName</th>
<th>Age</th>
<th>Weight</th>
<th>Height</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Hugh</td>
<td>Chris</td>
<td>26</td>
<td>90</td>
<td>175</td>
</tr>
<tr>
<td>2</td>
<td>Pew</td>
<td>Adam</td>
<td>32</td>
<td>102</td>
<td>183</td>
</tr>
<tr>
<td>3</td>
<td>Barney</td>
<td>Daniel</td>
<td>18</td>
<td>88</td>
<td>168</td>
</tr>
<tr>
<td>4</td>
<td>McGrew</td>
<td>Chris</td>
<td>48</td>
<td>97</td>
<td>155</td>
</tr>
<tr>
<td>5</td>
<td>Cuthbert</td>
<td>Carl</td>
<td>28</td>
<td>91</td>
<td>188</td>
</tr>
<tr>
<td>6</td>
<td>Grub</td>
<td>Doug</td>
<td>31</td>
<td>89</td>
<td>164</td>
</tr>
</tbody>
</table>

log, abs, sqrt, nchar, substr, etc.
Exercise 3
More clever filtering
Restructuring Data
'Tidy' Data Format

• Tibbles give you a 2D data structure where each column must be of a fixed data type

• Often data can be put into this sort of structure in more than one way

• Is there a right / wrong way to structure your data?

• Tidyverse has an opinion!
Long vs Wide Data Modelling

• Consider a simple experiment:

  • Two genes tested (ABC1 and DEF1)
  • Two conditions (WT and KO)
  • Three replicates for each condition
Wide Format

<table>
<thead>
<tr>
<th>Gene</th>
<th>WT_1</th>
<th>WT_2</th>
<th>WT_3</th>
<th>KO_1</th>
<th>KO_2</th>
<th>KO_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABC1</td>
<td>8.86</td>
<td>4.18</td>
<td>8.90</td>
<td>4.00</td>
<td>14.52</td>
<td>13.39</td>
</tr>
<tr>
<td>DEF1</td>
<td>29.60</td>
<td>41.22</td>
<td>36.15</td>
<td>11.18</td>
<td>16.68</td>
<td>1.64</td>
</tr>
</tbody>
</table>

- Compact
- Easy to read
- Shows linkage for genes
- No explicit genotype or replicate
- Values spread out over multiple rows and columns
- Not extensible to more metadata
## Long Format

- More verbose (repeated values)
- Explicit genotype and replicate
- All values in a single column
- Extensible to more metadata

<table>
<thead>
<tr>
<th>Gene</th>
<th>Genotype</th>
<th>Replicate</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABC1</td>
<td>WT</td>
<td>1</td>
<td>8.86</td>
</tr>
<tr>
<td>ABC1</td>
<td>WT</td>
<td>2</td>
<td>4.18</td>
</tr>
<tr>
<td>ABC1</td>
<td>WT</td>
<td>3</td>
<td>8.90</td>
</tr>
<tr>
<td>ABC1</td>
<td>KO</td>
<td>1</td>
<td>4.00</td>
</tr>
<tr>
<td>ABC1</td>
<td>KO</td>
<td>2</td>
<td>14.52</td>
</tr>
<tr>
<td>ABC1</td>
<td>KO</td>
<td>3</td>
<td>13.39</td>
</tr>
<tr>
<td>DEF1</td>
<td>WT</td>
<td>1</td>
<td>29.60</td>
</tr>
<tr>
<td>DEF1</td>
<td>WT</td>
<td>2</td>
<td>41.22</td>
</tr>
<tr>
<td>DEF1</td>
<td>WT</td>
<td>3</td>
<td>36.15</td>
</tr>
<tr>
<td>DEF1</td>
<td>KO</td>
<td>1</td>
<td>11.18</td>
</tr>
<tr>
<td>DEF1</td>
<td>KO</td>
<td>2</td>
<td>16.68</td>
</tr>
<tr>
<td>DEF1</td>
<td>KO</td>
<td>3</td>
<td>1.64</td>
</tr>
</tbody>
</table>
Converting to "Tidy" format

# A tibble: 3 x 8
  Gene   Chr  Start  End Sample1_WT Sample2_WT Sample3_KO Sample4_KO
  <chr> <dbl>   <dbl> <dbl>       <dbl>       <dbl>       <dbl>      <dbl>
1 Gnai3  2  163898 167465     9.39        10.9       33.5       81.9
2 Pbsn  5 4888573 4891351    91.7         59.6       45.3       82.3
3 Cdc45 7 1250084 1262669    69.2         36.1       54.4       38.1

- Put all measures into a single column
- Add a 'sample' and 'genotype' column
- Duplicate the gene information as required
  - Or separate it into a different table
Converting to "Tidy" format

# A tibble: 3 x 8
     Gene Chr Start  End  WT_1  WT_2  KO_1  KO_2
   <chr> <dbl>  <dbl>  <dbl> <dbl> <dbl> <dbl> <dbl>
1 Gnai3    2 163898 167465   9.39 10.9  33.5  81.9
2 Pbsn     5 4888573 4891351  91.7  59.6  45.3  82.3
3 Cdc45    7 1250084 1262669  69.2  36.1  54.4  38.1

non.normalised %>%
gather(sample, value, -Gene,-Chr,-Start,-End) %>%
separate(sample,into=c("genotype","replicate"),convert = TRUE,sep="_")
Converting to "Tidy" format

```r
A tibble: 12 x 7
 Gene Chr Start End genotype replicate value
 <chr> <dbl> <dbl> <dbl> <chr> <int> <dbl>
1 Gnai3 2 163898 167465 WT 1 9.39
2 Pbsn 5 4888573 4891351 WT 1 91.7
3 Cdc45 7 1250084 1262669 WT 1 69.2
4 Gnai3 2 163898 167465 WT 2 10.9
5 Pbsn 5 4888573 4891351 WT 2 59.6
6 Cdc45 7 1250084 1262669 WT 2 36.1
7 Gnai3 2 163898 167465 KO 1 33.5
8 Pbsn 5 4888573 4891351 KO 1 45.3
9 Cdc45 7 1250084 1262669 KO 1 54.4
10 Gnai3 2 163898 167465 KO 2 81.9
11 Pbsn 5 4888573 4891351 KO 2 82.3
12 Cdc45 7 1250084 1262669 KO 2 38.1
```
Tidying operations

• **gather**
  – Takes multiple columns of the same type and puts them into a pair of key-value columns

• **separate**
  – Splits a delimited column into multiple columns

• **spread**
  – Takes a key-value column pair and spreads them out to multiple columns of the same type

• **unite**
  – Combines multiple columns into one
Converting to "Tidy" format

# A tibble: 3 x 8
  Gene    Chr  Start   End  WT_1  WT_2  KO_1  KO_2
  <chr>  <dbl>   <dbl>  <dbl> <dbl> <dbl> <dbl> <dbl>
1 Gnai3    2  163898  167465  9.39  10.9  33.5  81.9
2 Pbsn     5  4888573 4891351 91.7   59.6  45.3  82.3
3 Cdc45    7  1250084 1262669 69.2   36.1  54.4  38.1

non.normalised %>%
  gather(sample, value, -Gene,-Chr,-Start,-End) %>%
  separate(sample,into=c("genotype","replicate"),convert = TRUE,sep="_")

convert=TRUE makes separate re-detect the type of the column, so replicate becomes a numeric value
Converting to "Tidy" format

- Can use `select` to split duplicated information into separate tibbles

```r
A tibble: 12 x 4
Gene genotype replicate value
<chr> <chr> <int> <dbl>
1 Gnai3 WT 1 9.39
2 Pbsn WT 1 91.7
3 Cdc45 WT 1 69.2
4 Gnai3 WT 2 10.9
5 Pbsn WT 2 59.6
6 Cdc45 WT 2 36.1
7 Gnai3 KO 1 33.5
8 Pbsn KO 1 45.3
9 Cdc45 KO 1 54.4
10 Gnai3 KO 2 81.9
11 Pbsn KO 2 82.3
12 Cdc45 KO 2 38.1
```

```r
A tibble: 3 x 4
Gene Chr Start End
<chr> <chr> <dbl> <dbl>
1 Gnai3 2 163898 167465
2 Pbsn 5 4888573 4891351
3 Cdc45 7 1250084 1262669
```

- These can be recombined later on as needed.
Exercise 4
Restructuring data into ‘tidy’ format
Mutating, Grouping and Summarising
Mutating, Grouping and Summarising

• **mutate** create a new variable from existing variables

• **group_by** sets groups for summarisation

• **ungroup** removes grouping information

• **summarise** collapse grouped variables

• **count** count grouped variables
Creating columns with `mutate`

```
trumpton %>% mutate(bmi = Weight/(Height/100)^2)
```

# A tibble: 7 x 6

<table>
<thead>
<tr>
<th>LastName</th>
<th>FirstName</th>
<th>Age</th>
<th>Weight</th>
<th>Height</th>
<th>bmi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hugh</td>
<td>Chris</td>
<td>26</td>
<td>90</td>
<td>175</td>
<td>29.4</td>
</tr>
<tr>
<td>Pew</td>
<td>Adam</td>
<td>32</td>
<td>102</td>
<td>183</td>
<td>30.5</td>
</tr>
<tr>
<td>Barney</td>
<td>Daniel</td>
<td>18</td>
<td>88</td>
<td>168</td>
<td>31.2</td>
</tr>
<tr>
<td>McGrew</td>
<td>Chris</td>
<td>48</td>
<td>97</td>
<td>155</td>
<td>40.4</td>
</tr>
<tr>
<td>Cuthbert</td>
<td>Carl</td>
<td>28</td>
<td>91</td>
<td>188</td>
<td>25.7</td>
</tr>
<tr>
<td>Dibble</td>
<td>Liam</td>
<td>35</td>
<td>94</td>
<td>145</td>
<td>44.7</td>
</tr>
<tr>
<td>Grub</td>
<td>Doug</td>
<td>31</td>
<td>89</td>
<td>164</td>
<td>33.1</td>
</tr>
</tbody>
</table>
Tricks with `mutate` – Creating categories

```r
trumpton %>%
 mutate(Category = ifelse(Height > 180, "Tall", "Short"))
```

```r
A tibble: 7 x 6
 LastName FirstName Age Weight Height Category
 <chr> <chr> <dbl> <dbl> <dbl> <chr>
1 Hugh Chris 26 90 175 Short
2 Pew Adam 32 102 183 Tall
3 Barney Daniel 18 88 168 Short
4 McGrew Chris 48 97 155 Short
5 Cuthbert Carl 28 91 188 Tall
6 Dibble Liam 35 94 145 Short
7 Grub Doug 31 89 164 Short
```
Tricks with `mutate` – replacing values

data.with.na %>%
  mutate(value = replace(value, value > 10, 10))

```r
> data.with.na %>%
A tibble: 8 x 2
sample value
sample value <chr> <dbl>
<chr> <dbl>
1 A 9.98
2 A 8.58
3 A 10.4
4 A 11.4
5 B 9.75
6 B 10.0
7 B NA
8 B NA
```

data.with.na %>%
  mutate(value = replace_na(value, 0))

```r
> data.with.na %>%
A tibble: 8 x 2
sample value
sample value <chr> <dbl>
<chr> <dbl>
1 A 9.98
2 A 8.58
3 A 10.0
4 A 11.4
5 B 9.75
6 B 10.0
7 B 0.0
8 B 0.0
```
Grouping and Summarising Workflow

1. Load a tibble with repeated values in one or more columns

2. Use `group_by` to select all of the categorical columns you want to combine to define your groups

3. Run `summarise` saying how you want to combine the quantitative values

4. Run `ungroup` to remove any remaining group information
Grouping and Summarising Workflow

1. Load a tibble with repeated values in one or more columns

2. Use `group_by` to select all of the categorical columns you want to combine to define your groups

3. Run `summarise` saying how you want to combine the quantitative values

4. Run `ungroup` to remove any remaining group information
Grouping and Summarising

```r
> group.data

A tibble: 8 x 5
 Sample Genotype Sex Height Length
 <dbl> <chr> <chr> <dbl> <dbl>
1 1 WT M 15 200
2 2 WT F 13 185
3 3 WT F 14 221
4 4 WT M 18 265
5 5 KO M 26 120
6 6 KO F 22 165
7 7 KO F 19 143
8 8 KO M 27 110
```

- Want to get the average Height and Length for each combination of sex and genotype
Grouping and Summarising Workflow

1. Load a tibble with repeated values in one or more columns

2. Use `group_by` to select all of the categorical columns you want to combine to define your groups

3. Run `summarise` saying how you want to combine the quantitative values

4. Run `ungroup` to remove any remaining group information
Grouping and Summarising

- Want to get the average Height and Length for each combination of sex and genotype
Grouping and Summarising

```r
A tibble: 8 x 5

Groups: Genotype, Sex [4]

Sample Genotype Sex Height Length
<dbl> <chr> <chr> <dbl> <dbl>
1 1 WT M 15 200
2 2 WT F 13 185
3 3 WT F 14 221
4 4 WT M 18 265
5 5 KO M 26 120
6 6 KO F 22 165
7 7 KO F 19 143
8 8 KO M 27 110
```

Discard Group Group Mean Median

Sample Genotype Sex Height Length
<dbl> <chr> <chr> <dbl> <dbl>
Grouping and Summarising Workflow

1. Load a tibble with repeated values in one or more columns

2. Use `group_by` to select all of the categorical columns you want to combine to define your groups

3. Run `summarise` saying how you want to combine the quantitative values

4. Run `ungroup` to remove any remaining group information
Grouping and Summarising

```r
group.data %>%
 group_by(Genotype, Sex) %>%
count()
```

# A tibble: 4 x 3
# Groups: Genotype, Sex [4]

<table>
<thead>
<tr>
<th>Genotype</th>
<th>Sex</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>KO</td>
<td>F</td>
<td>2</td>
</tr>
<tr>
<td>KO</td>
<td>M</td>
<td>2</td>
</tr>
<tr>
<td>WT</td>
<td>F</td>
<td>2</td>
</tr>
<tr>
<td>WT</td>
<td>M</td>
<td>2</td>
</tr>
</tbody>
</table>

Discard  Group  Group  Mean  Median
Sample  Genotype  Sex  Height  Length
<dbl>  <chr>  <chr>  <dbl>  <dbl>
Discard
 Group  Group
 Mean  Median

Sample  Genotype  Sex  Height  Length
<dbl>  <chr>  <chr>  <dbl>  <dbl>
1 KO       F         2
2 KO       M         2
3 WT       F         2
4 WT       M         2
Grouping and Summarising

```r
group.data %>%
 group_by(Genotype, Sex) %>%
 summarise(Height2 = mean(Height), Length = median(Length))
```

Sample Genotype  Sex   Height2  Length
<dbl> <chr> <chr>    <dbl>  <dbl>
Discard
 Group Group
 Mean Median

# A tibble: 4 x 4
# Groups:   Genotype [2]

Genotype  Sex   Height2  Length
<chr> <chr> <dbl>  <dbl>
1 KO     F        20.5   154
2 KO     M        26.5   115
3 WT     F        13.5   203
4 WT     M        16.5   232.

If you want the count of values as part of a summarised result use the n() function
Grouping and Summarising Workflow

1. Load a tibble with repeated values in one or more columns

2. Use `group_by` to select all of the categorical columns you want to combine to define your groups

3. Run `summarise` saying how you want to combine the quantitative values

4. Run `ungroup` to remove any remaining group information
Ungrouping

• A summarise operation removes the the last level of grouping (“Sex” in our worked example)

• Other levels of grouping (“Genotype”) remain annotated on the data, so you could do an additional summarisation if needed

• If you’re not going to use them it’s a good idea to use `ungroup` to remove remaining groups so they don’t interfere with other operations
Grouping affects lots of operations

Find the tallest member of each Sex

group.data %>%
  arrange(desc(Height)) %>%
  group_by(Sex) %>%
  slice(1)

# A tibble: 2 x 5
# Groups:   Sex [2]
Sample Genotype Sex   Height Length
 <dbl> <chr>    <chr>  <dbl>  <dbl>
1   6   KO      F      22   165
2   8   KO      M      27   110
Grouping affects lots of operations
Normalise the Length by the average for that sex

```r
A tibble: 8 x 6
Groups: Genotype [2]
Sample Genotype Sex Height Length Diff <dbl> <chr> <chr> <dbl> <dbl> <dbl>
1 1 WT M 15 200 23.9
2 2 WT F 13 185 8.88
3 3 WT F 14 221 44.9
4 4 WT M 18 265 88.9
5 5 KO M 26 120 -56.1
6 6 KO F 22 165 -11.1
7 7 KO F 19 143 -33.1
8 8 KO M 27 110 -66.1
```

```r
group.data %>%
mutate(Diff=Length - mean(Length))
group_by(Genotype) %>%
mutate(Diff=Length - mean(Length))
```
Exercise 5
Mutating, Grouping and Summarising
Extending tibbles

- **add_row** adds an additional row
- **bind_rows** join two tibbles by row
- **add_column** adds an additional column
- **bind_cols** join two tibbles by column
- **rename** renames an existing column
Joining tibbles x and y

- `left_join` join matching values from y into x
- `right_join` join matching values of x into y
- `inner_join` join x and y keeping only rows in both
- `full_join` join x and y keeping all values in both
Join types

> join1
  name  count
  1 Simon   3
  2 Steven  6
  3 Felix   2

> join2
  name    percentage
  1 Felix          10
  2 Anne           NA
  3 Simon          36

left_join
  name  count percentage
  1 Simon   3       36
  2 Steven  6       NA
  3 Felix   2       10

right_join
  name  count percentage
  1 Felix   2       10
  2 Anne    NA       25
  3 Simon   3       36

inner_join
  name  count percentage
  1 Simon   3       36
  2 Felix   2       10

full_join
  name  count percentage
  1 Simon   3       36
  2 Steven  6       NA
  3 Felix   2       10
  4 Anne    NA       25
Joining options

• **by** specify the columns to join on
  – Simple name if it’s the same between both
    by="gene"
  – Paired names if they differ between x and y
    by=c("gene" = "gene_name")

• **suffix** the text suffix for duplicated column names
Rejoining split tables
Find the highest value for each genotype

```r
> gathered.data
A tibble: 12 x 4
 Gene genotype replicate value
 <chr> <chr> <int> <dbl>
 1 Gnai3 WT 1 9.39
 2 Pbsn WT 1 91.7
 3 Cdc45 WT 1 69.2
 4 Gnai3 WT 2 10.9
 5 Pbsn WT 2 59.6
 6 Cdc45 WT 2 36.1
 7 Gnai3 KO 1 33.5
 8 Pbsn KO 1 45.3
 9 Cdc45 KO 1 54.4
10 Gnai3 KO 2 81.9
11 Pbsn KO 2 82.3
12 Cdc45 KO 2 38.1
>
> gathered.annotation
A tibble: 3 x 4
 Gene Chr Start End
 <chr> <dbl> <dbl> <dbl>
1 Gnai3 2 163898 167465
2 Pbsn 5 4888573 4891351
3 Cdc45 7 1250084 1262669
```
Rejoining split tables
Find the highest value for each genotype

gathered.data %>%
  arrange(desc(value)) %>%
  group_by(genotype) %>%
  slice(1)
Exercise 6
Extending and Joining
Custom Functions

```r
bmi <- function(w, h) {
 h <- h/100
 h = h^2
 return(w/h)
}

> bmi(90,175)
[1] 29.38776

> bmi(c(90,102), c(175,183))
[1] 29.38776 30.45776
```
Custom Functions with Tidyverse

summarise.gene <- function(tbl, genename) {
  tbl %>%
    filter(GENE==genename) %>%
    filter(str_length(REF) == 1, str_length(ALT) == 1) %>%
    group_by(REF, ALT) %>%
    count()
}

child %>%
  summarise.gene("PLEC")

# A tibble: 6 x 3
# Groups:   REF, ALT [6]
  REF ALT  n
  <chr> <chr> <int>
1 A   C    1
2 A   G    9
3 C   T    6
4 G   A    8
5 T   C    6
6 T   G    1
Custom functions with mutate

```
trumpton %>% mutate(bmi=Weight/(Height/100)^2)
```

```
bmi <- function(w, h) {
 h <- h/100
 h = h^2
 return(w/h)
}
```

```
trumpton %>% mutate(bmi=bmi(Weight,Height))
```
Custom functions and grouping

```r
trumpton %>%
 mutate(agegroup = ifelse(Age > 30, "Old", "Young")) %>%
 group_by(agegroup) %>%
 summarise(bmi = mean(bmi(Weight, Height)))
```

# A tibble: 2 x 2
  agegroup   bmi
  <chr>   <dbl>
1 Old     37.2
2 Young  28.8
plot.fireman <- function(data) {
  data %>%
    ggplot(aes(Weight,Height, size=Age)) +
    geom_point() +
    ggtitle(data$old)
}

trumpton %>%
  mutate(old=ifelse(Age>30,"Old","Young")) %>%
  group_by(old) %>%
  do(plots=plot.fireman(.))

# A tibble: 2 x 2
old   plots
* <chr> <list>
1 Old   <gg>
2 Young <gg>
Custom functions and grouping

```r
plot.fireman <- function(data) {
 data %>%
 ggplot(aes(Weight, Height, size=Age)) +
 geom_point() +
 ggtitle(data$old)
}

trumpton %>%
 mutate(old=ifelse(Age>30, "Old", "Young")) %>%
 group_by(old) %>%
 do(plots=plot.fireman(.)) %>%
 pull(plots)
```
Exercise 7
Custom Functions