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Outline of this section

• Assumptions for parametric data

• Comparing two means: Student’s t-test

• Comparing more than 2 means
• One factor: One-way ANOVA
• Two factors: Two-way ANOVA

• Relationship between 2 continuous variables: Correlation



Introduction

• Key concepts to always keep in mind

– Null hypothesis and error types

– Statistics inference

– Signal-to-noise ratio



The null hypothesis and the error types

• The null hypothesis (H0): H0 = no effect 
– e.g. no difference between 2 genotypes

• The aim of a statistical test is to reject or not H0.

• Traditionally, a test or a difference is said to be “significant” if the probability of type I 
error is: α =< 0.05

• High specificity = low False Positives = low Type I error

• High sensitivity = low False Negatives = low Type II error

Statistical decision True state of H0

H0 True (no effect) H0 False (effect)

Reject H0 Type I error α

False Positive

Correct

True Positive

Do not reject H0 Correct

True Negative

Type II error β

False Negative



+ Noise +

Statistical inference

Difference Meaningful? Real?

Statistical test

Statistic
e.g. t, F …

Big enough?

Difference

Sample Population

Sample

=

Yes



• Stats are all about understanding and controlling variation.

signal

noise

signal

noise

If the noise is low then the signal is detectable …
= statistical significance 

… but if the noise (i.e. interindividual variation) is large
then the same signal will not be detected 
= no statistical significance

• In a statistical test, the ratio of signal to noise determines the significance.

+ NoiseDifference

Difference

Noise

Signal-to-noise ratio 



Analysis of Quantitative Data

• Choose the correct statistical test to answer your question:

– They are 2 types of statistical tests:

• Parametric tests with 4 assumptions to be met by the data,

• Non-parametric tests with no or few assumptions (e.g. Mann-Whitney test) 
and/or for qualitative data (e.g. Fisher’s exact  and χ2 tests). 



• All parametric tests have 4 basic assumptions that must be met for the 
test to be accurate.

First assumption: Normally distributed data

– Normal shape, bell shape, Gaussian shape

• Transformations can be made to make data suitable for parametric analysis.

Assumptions of Parametric Data



• Frequent departures from normality:
– Skewness: lack of symmetry of a distribution

– Kurtosis: measure of the degree of ‘peakedness’ in the distribution

• The two distributions below have the same variance approximately 
the same skew, but differ markedly in kurtosis.

Flatter distribution: kurtosis < 0More peaked distribution: kurtosis > 0

Skewness > 0Skewness < 0 Skewness = 0

Assumptions of Parametric Data



Second assumption: Homoscedasticity (Homogeneity in variance)

• The variance should not change systematically throughout the data

Third assumption: Interval data (linearity)

• The distance between points of the scale should be equal at all parts along the scale.

Fourth assumption: Independence

• Data from different subjects are independent
– Values corresponding to one subject do not influence the values corresponding to another 

subject.

– Important in repeated measures experiments

Assumptions of Parametric Data



• Is there a difference between my groups regarding the variable I am measuring?
– e.g. are the mice in the group A heavier than those in group B?

• Tests with 2 groups:

– Parametric: Student’s t-test
– Non parametric: Mann-Whitney/Wilcoxon rank sum test

• Tests with more than 2 groups: 
– Parametric: Analysis of variance (one-way and two-way ANOVA)
– Non parametric: Kruskal Wallis (one-way ANOVA equivalent)

• Is there a relationship between my 2 (continuous) variables?
– e.g. is there a relationship between the daily intake in calories and an increase in body weight?

• Test: Correlation (parametric or non-parametric)

Analysis of Quantitative Data



Comparison between 2 groups



• Basic idea: 

– When we are looking at the differences between scores for 2 groups, we have to judge 
the difference between their means relative to the spread or variability of their scores.

• Eg: comparison of 2 groups: control and treatment

Comparison between 2 groups: 
Student’s t-test 



Variability does matter
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Student’s t-test 



Student’s t-test 
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n = 3

n = 10



• Independent t-test

• Difference between 2 means of one variable for two independent groups

• Example: difference in weight between WT and KO mice

• Paired t-test

• Difference between two measures of one variable for one group:

• Example: before-after measurements
• the second ‘sample’ of values comes from the same subjects (mouse, petri dish …).

• Importance of experimental design!

• One-Sample t-test 

• Difference between the mean of a single variable and a specified constant. 

Student’s t-test 



Example: coyotes

• Question: do male and female coyotes differ in size?

• Sample size 

• Data exploration

• Check the assumptions for parametric test

• Statistical analysis: Independent t-test



power.t.test(n = NULL, delta = NULL, sd = 1, sig.level = NULL, 

power = NULL, type = c("two.sample", "one.sample", "paired"),

alternative = c("two.sided", "one.sided"))

• Example case:

No data from a pilot study but we have found some information in the
literature.

In a study run in similar conditions as in the one we intend to run, male coyotes
were found to measure: 92cm +/- 7cm (SD).

We expect a 5% difference between genders.
• smallest biologically meaningful difference

Exercise 3: Power analysis



Example case:

We don’t have data from a pilot
study but we have found some
information in the literature.

In a study run in similar conditions
as in the one we intend to run, male
coyotes were found to measure:
92cm+/- 7cm (SD)

We expect a 5% difference between
genders with a similar variability in
the female sample.

Mean 1 = 92
Mean 2 = 87.4 (5% less than 92cm)

delta = 92 – 87.4
sd = 7

power.t.test(delta=92-87.4, sd=7, sig.level=0.05, power=0.8)

We need a sample size of n~76 (2*38)

Exercise 3: Power analysis - Answers



Data exploration ≠ plotting data



Exercise 4: Data exploration
coyote.csv

• The file contains individual body length of male and female coyotes.

Question: do male and female coyotes differ in size?

• Load coyote.csv

• Plot the data as boxplot, histogram, violinplot and stripchart

Data exploration ≠ plotting data



Exercise 4: Data exploration

• Explore data using 4 different representations:



Exercise 4: facet_grid(rows=vars(row),cols=vars(column))

One row

2 columns: one per gender

facet_grid(cols=vars(gender))



Exercise 4: geom_jitter()

• Stripchart
• Variation of geom_point(): geom_jitter()

coyote %>%

ggplot(aes(x=gender,y=length)) + 

geom_jitter(height=0, width=0.3)

coyote %>%

ggplot(aes(x=gender,y=length)) + 

geom_point()



Exercise 4: stat_summary()
• Stripchart

• stat_summary()

• What statistical summary: mean: fun = "mean"
• What geom(): choice of graphical representation: a line: geom_errorbar()

stat_summary(geom="errorbar", fun="mean",fun.min="mean",fun.max="mean")

mean=minimum=max

coyote %>% 

ggplot(aes(gender,length)) +

geom_jitter(height=0, width=0.2)+

stat_summary(geom= "errorbar", fun="mean", fun.min="mean", fun.max="mean")



Exercise 4: Data exploration

• Explore data using 4 different representations:

geom_jitter()

stat_summary()

facet_grid(rows=vars(row),cols=vars(column))

geom_histogram

coyote %>%

ggplot(aes(x=gender, y=length))+

geom_...()

geom_boxplot() geom_violin()

Have a go!



coyote %>%

ggplot(aes(gender,length)) +

geom_jitter(height=0, width=0.2)+

stat_summary(geom= "errorbar", fun="mean", fun.min="mean", fun.max="mean")

Exercise 4: Exploring data - Stripchart

coyote %>%

ggplot(aes(gender,length, colour=gender)) +

geom_jitter(height=0, size=4, width=0.2, show.legend = FALSE) +

ylab("Length (cm)")+

scale_colour_brewer(palette="Dark2")+

xlab(NULL)+

stat_summary(geom="errorbar", fun=mean, fun.min=mean, fun.max=mean, colour="black", size=1.2, width=0.6)



coyote %>%

ggplot(aes(x=gender, y=length)) +

geom_boxplot()

coyote %>%

ggplot(aes(x=gender, y=length)) +

geom_violin()

Exercise 4: Exploring data - Boxplots and beanplots



coyote %>%

ggplot(aes(x=gender, y=length, fill=gender)) +

stat_boxplot(geom="errorbar",width=0.5) +

geom_boxplot(show.legend=FALSE)+

ylab("Length (cm)")+

xlab(NULL)+

scale_fill_manual(values = c("orange","purple"))

coyote %>%

ggplot(aes(gender, length, fill=gender)) +

geom_violin(trim=FALSE, size=1, show.legend=FALSE)+

ylab("Length (cm)")+

scale_fill_brewer(palette="Dark2")+

stat_summary(geom = "point", fun = "median",show.legend=FALSE) 

Exercise 4: Exploring data - Boxplots and beanplots



Exercise 4: Exploring data - Histograms

coyote %>%

ggplot(aes(length))+

geom_histogram(binwidth = 4, colour="black") +

facet_grid(cols=vars(gender))

also works
facet_wrap(vars(gender))



Exercise 4: Exploring data - Histograms

coyote %>%

ggplot(aes(length, fill=gender))+

geom_histogram(binwidth = 4.5, colour="black", show.legend = FALSE) +

scale_fill_brewer(palette="Dark2")+

facet_grid(cols=vars (gender))



coyote %>%

ggplot(aes(gender, length)) +

geom_boxplot(width=0.2)+

geom_violin() 

Exercise 4 extra: Exploring data - Graph combinations

coyote %>%

ggplot(aes(gender,length, fill=gender)) +

geom_violin(size=1, trim = FALSE, alpha=0.2, show.legend=FALSE) +

geom_boxplot(width=0.2, outlier.size=5, outlier.colour = "darkred", show.legend=FALSE)+

scale_fill_brewer(palette="Dark2")+

ylab("Length (cm)")+

xlab(NULL)+

scale_x_discrete(labels=c("female"="Female", "male"="Male"), limits =c("male", "female"))



coyote %>%

ggplot(aes(gender, length)) +

geom_boxplot()+

geom_jitter(height=0, width=0.2)

Exercise 4 extra: Exploring data - Graph combinations

coyote %>%

ggplot(aes(gender, length)) +

geom_boxplot(outlier.shape=NA)+

stat_boxplot(geom="errorbar", width=0.2)+

geom_jitter(height=0, width=0.1, size=2, alpha=0.5, colour="red")+

ylab("Length (cm)")



Checking the assumptions



Normality assumption: QQ Plot 
QQ plot= Quantile – Quantile plot
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Mean = 0
SD = 1

Same sample size
Perfectly normal distribution

Quantiles:

Lower quartile

Upper quartile

A little bit off

Quantiles:

Normality  (ish)



Normality assumption: QQ plot

coyote %>%

ggplot(aes(sample = length)) +

stat_qq(size=2, colour="darkorange3")+

stat_qq_line()+

ylab("Body Length (cm)")+

scale_y_continuous(breaks=seq(from=70, by=5, to=110))+

scale_x_continuous(breaks=seq(from=-3, by=0.5, to=3))

coyote %>%

ggplot(aes(sample = length)) +

stat_qq()+

stat_qq_line()



Normality 

coyote %>%

group_by(gender) %>%

shapiro_test(length)%>%

ungroup()

• First assumption: Normality

 Shapiro-Wilk test  shapiro_test() # rstatix package #
 It is based on the correlation between the data and the corresponding normal scores.

• Second assumption: Homoscedasticity

 Levene test  levene_test()

Assumptions of Parametric Data

coyote %>%

levene_test(length ~ gender)

Homogeneity in variance 

More robust: Brown-Forsythe test
# onewaytests package #,  bf()
Other classic: Bartlett test
bartlett.test()

Other classic: D’Agostino-Pearson test
# fBasic package #
dagoTest()

Normality

Homoscedasticity



Independent t-test: results (tidyverse)
coyote.csv

• Answer: Males tend to be longer 
than females but not significantly so 

(p=0.1045).

coyote %>%

t_test(length~gender)

• Power : How many more coyotes to reach significance?
• Re-run the power analysis with mean=89.7 for females: n~250

• But does it make sense? 

coyote %>%

group_by(gender) %>%

get_summary_stats(length, type = "mean_sd") %>%

ungroup()



Sample size: the bigger the better?

• What if the tiny difference is meaningless?
• Beware of overpower
• Nothing wrong with the stats: it is all about 

interpretation of the results of the test.

• Remember the important first step of power analysis
• What is the effect size of biological interest?

• It takes huge samples to detect tiny differences but tiny samples to detect huge differences. 



Independent t-test: results
The old-fashion way

t = 1.641 < 1.984: not significant

Critical value



Plot ‘coyote.csv’ data: Plotting data
coyote %>%

ggplot(aes(gender,length, colour=gender)) +

geom_bar(stat = "summary", fun="mean", width=0.4, alpha=0, colour="black")+

geom_jitter(height=0, width=0.1)

• Add error bars
coyote %>%

ggplot(aes(gender,length, colour=gender)) +

geom_bar(stat = "summary", fun="mean", width=0.4, alpha=0, colour="black")+

geom_jitter(height=0, width=0.1)+

stat_summary(geom="errorbar", colour="black", width=0.2)



Plot ‘coyote.csv’ data: Plotting data

coyote %>%

ggplot(aes(gender,length, colour=gender, fill=gender)) +

geom_bar(stat="summary", fun="mean", width=0.4, alpha=0.2, colour="black", show.legend=FALSE)+

stat_summary(geom="errorbar", colour="black", width=0.2)+

geom_jitter(height=0, width=0.1, show.legend=FALSE)+

scale_colour_brewer(palette="Dark2")+

scale_fill_brewer(palette="Dark2")+

theme(legend.position = "none")+

scale_x_discrete(limits = c("male", "female"), labels = c("male"="Male", "female"="Female"))+

xlab(NULL)+

ylab("Length (cm)")

• Prettier version



Plot ‘coyote.csv’ data: Plotting data

coyote %>%

ggplot(aes(gender, length)) +

stat_boxplot(geom="errorbar", width=0.2)+

geom_boxplot(outlier.shape = NA)+

geom_jitter(height=0, width=0.1, size = 2, alpha = 0.5, colour="red")+

scale_x_discrete(limits = c("male", "female"), labels = c("male"="Male", "female"="Female"))+

ylab("Length (cm)")+

xlab(NULL)+

geom_signif(comparisons = list(c("female", "male")), map_signif_level=T, test = "t.test")

• Work in progress # ggsignif package #



Exercise 5: Dependent or Paired t-test
working.memory.csv

• A researcher is studying the effects of dopamine depletion on working memory in rhesus monkeys.
• A group of rhesus monkeys (n=15) performs a task involving memory after having received a placebo. 

Their performance is graded on a scale from 0 to 100. They are then asked to perform the same task after 
having received a dopamine depleting agent. 

• Question: does dopamine affect working memory in rhesus monkeys?

• Load working.memory.csv and check out the structure of the data.

• Work out the difference: DA.depletion – placebo and 
assign the difference to a column: working.memory$difference

• Plot the difference as a stripchart with a mean

• Add confidence intervals as error bars
• Clue: stat_summary(…, fun.data=mean_cl_normal)
# Hmisc package #

• Run the paired t-test. t_test(var ~ 1, mu=0)



# Hmisc package #
working.memory %>%

ggplot(aes("DA.Depletion", difference))+

geom_jitter(height=0, width=0.05, size=4, colour="chartreuse3")+

stat_summary(geom="errorbar",fun="mean", fun.min="mean", fun.max="mean",  width=0.3, size=1)+

stat_summary(geom="errorbar", fun.data=mean_cl_normal, width=0.15)+

scale_y_continuous(breaks=-16:0, limits=c(-16, 0))+

xlab(NULL)+

ylab("Mean difference +/- 95% CI")

Exercise 5: Dependent or Paired t-test - Answers
working.memory %>%

mutate(difference = DA.depletion - placebo) -> working.memory



working.memory %>%

t_test(difference ~ 1, mu=0)

Question: does dopamine affect working memory in rhesus monkeys?

Answer: the injection of a dopamine-depleting agent significantly affects working memory in rhesus monkeys (t=-8.62, df=14, 
p=5.715e-7).

Exercise 5: Dependent or Paired t-test (tidyverse) 

working.memory %>%

shapiro_test(difference)



• Work in progress # ggpubr package #

Dependent or Paired t-test 

working.memory.long %>% 

t_test(scores ~ treatment, paired = TRUE) -> stat.test

working.memory.long %>%

ggpaired(x = "treatment", y = "scores", color = "treatment", 

palette = "Dark2", line.color = "gray", line.size = 0.4)+

scale_y_continuous(breaks=seq(from =0, by=5, to=60), 

limits = c(0,60))+

stat_pvalue_manual(stat.test, label = "p", y.position = 55)

working.memory.long



Comparison between more than 2 groups
One factor = One predictor

One-Way ANOVA



Difference

Variability

Signal-to-noise ratio 

Signal
Noise

Signal
Noise

Noise

= statistical significance

= no statistical significance
Signal

=



Analysis of variance: how does it work?

Signal
Noise

Difference between the means
Variability in the groups=

= F ratio



Step 1: Omnibus test

• It tells us if there is a difference between the means but not which 
means are significantly different from which other ones.

Step 2: Post-hoc tests

• They tell us if there are differences between the means pairwise.

One-Way Analysis of variance 



Source of variation Sum of Squares df Mean Square F p-value

Between Groups 18.1 4 4.5 6.32 0.0002

Within Groups 51.8 73 0.71

Total 69.9

Analysis of variance: how does it work?
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Source of variation Sum of Squares df Mean Square F p-value

Between Groups

Within Groups

Total 69.9

Analysis of variance: how does it work?
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Source of variation Sum of Squares df Mean Square F p-value

Between Groups 18.1

Within Groups

Total 69.9

Analysis of variance: how does it work?
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Source of variation Sum of Squares df Mean Squares F p-value

Between Groups 18.1

Within Groups 51.8

Total 69.9

Analysis of variance: how does it work?
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Source of variation Sum of Squares df Mean Squares F ratio p-value

Between Groups 18.1 k-1

Within Groups 51.8 n-k

Total 69.9

Analysis of variance: how does it work?
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df: degree of freedom with df = n-1
n = number of values, k=number of groups

Between groups: df = 4 (k-1)
Within groups: df = 73 (n-k = n1-1 + … + n5-1)

Signal

Noise



Source of variation Sum of Squares df Mean Squares F ratio p-value

Between Groups 18.1 4 4.5

Within Groups 51.8 73 0.71

Total 69.9

Analysis of variance: how does it work?
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df: degree of freedom with df = n-1
18.2/4 = 4.5      51.8/73 = 0.71

Signal

Noise

Mean squares = Sum of Squares / n-1 = Variance!



Source of variation Sum of Squares df Mean Squares F ratio p-value

Between Groups 18.1 4 4.5 6.34 0.0002

Within Groups 51.8 73 0.71

Total 69.9

Analysis of variance: how does it work?

Mean squares = Sum of Squares / n-1 = Variance

Variance between the groups

Variance within the groups (individual variability)
F ratio =

4.5

0.71
= = 6.34
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Comparison of more than 2 means

• Running multiple tests on the same data increases the familywise error rate.

• What is the familywise error rate?

– The error rate across tests conducted on the same experimental data.

• One of the basic rules (‘laws’) of probability:

– The Multiplicative Rule: The probability of the joint occurrence of 2 or more 
independent events is the product of the individual probabilities.



Familywise error rate

• Example: All pairwise comparisons between 3 groups A, B and C: 
– A-B, A-C and B-C

• Probability of making the Type I Error: 5%
– The probability of not making the Type I Error is 95% (=1 – 0.05)

• Multiplicative Rule:
– Overall probability of no Type I errors is: 0.95 * 0.95 * 0.95 = 0.857

• So the probability of making at least one Type I Error is 1-0.857 = 0.143 or 14.3%
• The probability has increased from 5% to 14.3%

• Comparisons between 5 groups instead of 3, the familywise error rate is 40% (=1-(0.95)n)



• Solution to the increase of familywise error rate: correction for multiple comparisons
– Post-hoc tests

• Many different ways to correct for multiple comparisons:
– Different statisticians have designed corrections  addressing different issues

• e.g. unbalanced design, heterogeneity of variance, liberal vs conservative

• However, they all have one thing in common: 
– the more tests, the higher the familywise error rate: the more stringent the correction

• Tukey, Bonferroni, Sidak, Benjamini-Hochberg …
– Two ways to address the multiple testing problem

• Familywise Error Rate (FWER) vs. False Discovery Rate (FDR)

Familywise error rate



• FWER: Bonferroni: αadjust  = 0.05/n comparisons e.g. 3 comparisons: 0.05/3=0.016
– Problem: very conservative leading to loss of power (lots of false negative)
– 10 comparisons: threshold for significance: 0.05/10: 0.005
– Pairwise comparisons across 20.000 genes 

• FDR: Benjamini-Hochberg: the procedure controls the expected proportion of 
“discoveries” (significant tests) that are false (false positive).
– Less stringent control of Type I Error than FWER procedures which control the probability of at least 

one Type I Error
– More power at the cost of increased numbers of Type I Errors.

• Difference between FWER and FDR: 
– a p-value of 0.05 implies that 5% of all tests will result in false positives. 

– a FDR adjusted p-value (or q-value) of 0.05 implies that 5% of significant tests will result in false 
positives. 

Multiple testing problem



Step 1: Omnibus test

• It tells us if there is (or not) a difference between the means but not which 
means are significantly different from which other ones.

Step 2: Post-hoc tests

• They tell us if there are (or not) differences between the means pairwise.

• A correction for multiple comparisons will be applied on the p-values.

• These post hoc tests should only be used when the ANOVA finds a significant 
effect.

One-Way Analysis of variance 



Example: protein.expression.csv

• Question: is there a difference in protein expression between 
the 5 cell lines?

• 1 Plot the data

• 2 Check the assumptions for parametric test



Exercise 6: One-way ANOVA: Data Exploration 
protein.expression.csv

• Question: Difference in protein expression between 5 cell types? 

• Load protein.expression.csv

• Plot the data using at least 2 types of graph
• geom_boxplot(), geom_jitter(), geom_violin()

• Draw a QQplot
• ggplot(aes(sample =)) + stat_qq() + stat_qq_line()

• Check the first assumption (Normality) with a formal test
• shapiro_test()



protein %>%

ggplot(aes(x=line, y=expression, colour=line))+

geom_boxplot(outlier.shape = NA)+

geom_jitter(height=0, width=0.1)

protein %>%

ggplot(aes(x=line, y=expression, colour=line))+

geom_violin(trim=FALSE)+

geom_boxplot(width=0.1)

Exercise 6: One-way ANOVA : Data Exploration - Answers



protein %>%

ggplot(aes(sample = expression))+

stat_qq(size=3)+

stat_qq_line()

Exercise 6: One-way ANOVA – Answers



protein %>%

group_by(line) %>% 

shapiro_test(expression)%>%

ungroup()

Exercise 6: One-way ANOVA – Answers. What do we do now?



protein %>%

ggplot(aes(line, expression, colour=line))+

geom_jitter(height=0, width=0.2, size=3, show.legend=FALSE)+

stat_summary(geom="errorbar", fun=mean, fun.min=mean, fun.max=mean, colour="black", size=1)

protein %>%

mutate(log10.expression=log10(expression)) -> protein

One-way ANOVA: change of scale 

+ scale_y_log10()
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protein %>%

ggplot(aes(x=line, y=log10.expression, colour=line))+

geom_boxplot(outlier.shape = NA)+

geom_jitter(height=0, width=0.1)

protein %>%

ggplot(aes(x=line, y=log10.expression, colour=line))+

geom_violin(trim=FALSE)+

geom_boxplot(width=0.1)

One-way ANOVA: change of scale 



protein %>%

group_by(line) %>% 

identify_outliers(expression)%>%

ungroup()

One-way ANOVA – Outliers identification



protein %>%

ggplot(aes(sample=log10.expression))+

stat_qq(size=3)+

stat_qq_line()

First assumption 

One-way ANOVA: change of scale 

Before log-transformation



protein %>%

group_by(line) %>% 

shapiro_test(log10.expression)%>%

ungroup()

protein %>%

levene_test(log10.expression ~ line)

Assumptions of Parametric Data

First assumption ish

Second assumption 



• Step 1: omnibus test

• Step 2: post-hoc tests

Analysis of variance

Have a go!

Default

data %>%

anova_test(y~x)

data %>%

emmeans_test(y~x, p.adjust.method="bonferroni")

data %>%

tukey_hsd(y~x)

# emmeans package #

R way: 

aov(y~x, data= ) -> model then summary(model)

pairwise.t.test(y, x, p.adj = "bonf")

TukeyHSD(model)

Tukey correction Bonferroni correction



protein %>%

anova_test(log10.expression~line)

protein %>%

tukey_hsd(log10.expression~line) 

Analysis of variance

generalised effect size (Eta squared η2) = R2 ish

Tukey correction



protein %>%

anova_test(log10.expression~line)

protein %>%

emmeans_test(log10.expression ~ line, p.adjust.method = "bonferroni") 

Analysis of variance

generalised effect size (Eta squared η2) = R2 ish

Bonferroni correction



aov(log10.expression~line,data=protein.stack.clean) -> anova.log.protein

summary(anova.log.protein)

TukeyHSD(anova.log.protein,"line")

Analysis of variance (R)
To plot confidence intervals

TukeyHSD(anova.log.protein)->tukey

plot(tukey, las=1)



Analysis of variance (tidyverse)
To plot confidence intervals

protein %>%

tukey_hsd(log10.expression~line)%>%

mutate(comparison = paste(group1, sep=".", group2)) -> tukey.conf

tukey.conf %>%

ggplot(aes(x=comparison, y=estimate, ymin=conf.low, ymax=conf.high)) +

geom_errorbar(colour="black", size=1)+

geom_point(size=3, colour="darkred")+

geom_hline(yintercept=0, linetype="dashed", color = "red")+

coord_flip()



protein %>%

ggplot(aes(line, expression, colour=line))+

geom_jitter(height = 0, width=0.2, size=3, show.legend=FALSE)+

stat_summary(geom="errorbar",fun=mean,fun.min=mean,fun.max = mean, colour="black", size=1)+

scale_y_log10()

Analysis of variance



protein %>%

ggplot(aes(x=line, y=expression, fill=line)) +

geom_bar(stat = "summary", fun="mean", colour="black")+

stat_summary(geom="errorbar", colour="black", width=0.4)

Analysis of variance



Analysis of variance
protein %>%

ggplot(aes(x=line, y=expression, fill=line)) +

geom_bar(stat="summary", fun="mean", colour="black")+

stat_summary(geom="errorbar", colour="black", width=0.4)+

geom_jitter(heigth=0, width=0.1, alpha=0.5)



Analysis of variance

protein %>%

ggplot(aes(x=line, y=log10.expression, fill=line)) +

geom_bar(stat="summary", fun="mean", colour="black")+

stat_summary(geom="errorbar", colour="black", width=0.4)+

geom_jitter(heigth=0, width=0.1, alpha=0.5)



Exercise 7: Repeated measures ANOVA
neutrophils.long.csv

• A researcher is looking at the difference between 4 cell groups. 
He has run the experiment 5 times. Within each experiment, he has neutrophils from a WT 
(control), a KO, a KO+Treatment 1 and a KO+Treatment2.
• Question: Is there a difference between KO with/without treatment and WT?

• Load neutrophils.long.csv
• Plot the data so that you have an idea of the consistency of the results between the 

experiments.
• Check the first assumption
• Run the repeated measures ANOVA and post-hoc tests
anova_test(dv =, wid =, within =) -> res.aov

get_anova_table(res.aov) 

pairwise_t_test(p.adjust.method =)

• Choose a graphical presentation consistent with the experimental design



Exercise 7: Repeated measures ANOVA
neutrophils.long.csv

• Plot the data so that you have an idea of the consistency of the results 
between the experiments.

neutrophils.long %>%

ggplot(aes(Group, Values, group=Experiment, colour=Experiment, fill=Experiment))+

geom_line(size=2)+

geom_point(size=4, shape = 21, colour= "black", stroke=2)+

scale_x_discrete(limits = c("WT", "KO", "KO+T1", "KO+T2"))



• Check the first assumption

Exercise 7: Repeated measures ANOVA
neutrophils.long.csv

neutrophils.long %>%

group_by(Group) %>%

shapiro_test(Values) %>%

ungroup()

neutrophils.long %>%

ggplot(aes(Group, Values))+

geom_boxplot(outlier.shape = NA)+

geom_jitter(height = 0, width = 0.2) 



• Run the repeated measures ANOVA and post-hoc tests

Exercise 7: Repeated measures ANOVA
neutrophils.long.csv

neutrophils.long %>%

pairwise_t_test(Values~Group, paired=TRUE, ref.group = "WT", 

p.adjust.method = "bonferroni")

neutrophils.long %>%

anova_test(dv = Values, wid = Experiment, within = Group) -> res.aov

get_anova_table(res.aov)



• Run the repeated measures ANOVA and post-hoc tests

Exercise 7: Repeated measures ANOVA
neutrophils.long.csv

neutrophils.long %>%

pairwise_t_test(Values~Group, paired=TRUE, ref.group = "WT", 

p.adjust.method = "bonferroni")

neutrophils.long %>%

pairwise_t_test(Values~Group, paired=TRUE, ref.group = "WT", 

p.adjust.method = "holm")

Tukey 



• Choose a graphical presentation consistent with the experimental design

Exercise 7: Repeated measures ANOVA
neutrophils.long.csv

neutrophils.long %>%

group_by(Experiment) %>%

mutate(Difference=Values-Values[Group=="WT"]) %>%

ungroup() -> neutrophils.long



• Choose a graphical presentation consistent with the experimental design

Exercise 7: Repeated measures ANOVA
neutrophils.long.csv

neutrophils.long %>%

filter(Group !="WT") %>%

ggplot(aes(Group, Difference, fill=Group)) +

geom_bar(stat = "summary", fun="mean", colour="black")+

stat_summary(geom="errorbar", fun.data=mean_cl_normal, width=0.15)+

geom_jitter(height = 0, width=0.1, alpha=0.5, size=3)+

ylab("Mean difference from WT +/- 95% CI")+

scale_y_continuous(breaks=seq(from=-40, by=10, to=80))+

scale_fill_brewer(palette = "PuOr")



Comparison between more than 2 groups
Two factors = Two predictors

Two-Way ANOVA



Two-way Analysis of Variance
(Factorial ANOVA)

Source of variation Sum of 

Squares

Df Mean Square F p-value

Variable A (Between Groups) 2.665 4 0.6663 8.42 <0.0001

Within Groups (Residual) 5.775 73 0.0791

Total 8.44 77

SST

Total variance in the Data
Total

SSR
Unexplained Variance

Within Groups

SSM

Variance Explained by the Model
Between Groups

SST

Total variance in the Data

SSM

Variance Explained by the Model

SSR
Unexplained Variance

SSB
Variance Explained by 

Variable B

SSAxB
Variance Explained by the 

Interaction of A and B

One-way ANOVA= 1 predictor variable 2-way ANOVA= 2 predictor variables: A and B 

SSA
Variance Explained by 

Variable A

Source of variation Sum of Squares Df Mean Square F p-value

Variable A * Variable B
1978 2 989.1 F (2, 42) = 11.91 P < 0.0001

Variable B (Between groups)
3332 2 1666 F (2, 42) = 20.07 P < 0.0001

Variable A (Between groups)
168.8 1 168.8 F (1, 42) = 2.032 P = 0.1614

Residuals
3488 42 83.04



• Interaction plots: Examples

• Fake dataset: 
• 2 factors:  Genotype (2 levels) and Condition (2 levels)

Genotype Condition Value

Genotype 1 Condition 1 74.8

Genotype 1 Condition 1 65

Genotype 1 Condition 1 74.8

Genotype 1 Condition 2 75.2

Genotype 1 Condition 2 75

Genotype 1 Condition 2 75.2

Genotype 2 Condition 1 87.8

Genotype 2 Condition 1 65

Genotype 2 Condition 1 74.8

Genotype 2 Condition 2 88.2

Genotype 2 Condition 2 75

Genotype 2 Condition 2 75.2

Two-way Analysis of Variance



Single Effect

Genotype Effect Condition Effect

Two-way Analysis of Variance

• Interaction plots: Examples

• 2 factors:  Genotype (2 levels) and Condition (2 levels)



Zero or Both Effect

Zero Effect Both Effect

Two-way Analysis of Variance

• Interaction plots: Examples

• 2 factors:  Genotype (2 levels) and Condition (2 levels)



Interaction

Two-way Analysis of Variance

• Interaction plots: Examples

• 2 factors:  Genotype (2 levels) and Condition (2 levels)



Two-way Analysis of Variance

Example: goggles.csv

– The ‘beer-goggle’ effect

– Study: effects of alcohol on mate selection in night-clubs.

– Pool of independent judges scored the levels of attractiveness of the person that the 
participant was chatting up at the end of the evening.

– Question: is subjective perception of physical attractiveness affected by alcohol consumption?

– Attractiveness on a scale from 0 to 100



Exercise 8: Two-way ANOVA 
goggles.csv

• Load goggles.csv

• Graphically explore the data
• effect of alcohol only
• effect of gender only
• effect of both 

• Check the assumptions visually (plot+qqplot) and formally (test)
levene_test(y ~ factor1*factor2)



goggles %>%

ggplot(aes(x=alcohol, y=attractiveness))+

geom_boxplot()+

geom_jitter(height=0, width=0.1)

Two-way Analysis of Variance

goggles %>%

ggplot(aes(x=gender, y=attractiveness))+

geom_boxplot()+

geom_jitter(height=0, width=0.1)

• As always, first step: get to know the data



Two-way Analysis of Variance

goggles %>%

ggplot(aes(alcohol, attractiveness, fill=gender))+

geom_boxplot(alpha=0.5)+

scale_fill_brewer(palette="Dark2")



Two-way Analysis of Variance

goggles %>%

ggplot(aes(gender, attractiveness, fill=alcohol))+

geom_boxplot(alpha=0.5)+

scale_fill_brewer(palette="Dark2")



Two-way Analysis of Variance
goggles %>%

ggplot(aes(x=gender, y=attractiveness))+

geom_boxplot()+

geom_jitter(height=0, width=0.1)+

facet_grid(cols=vars(alcohol))



Two-way Analysis of Variance
Checking the assumptions

goggles %>%

ggplot(aes(sample = attractiveness, colour=gender))+

stat_qq()+

stat_qq_line()+

facet_grid(cols=vars(gender))+

scale_colour_brewer(palette = "Accent")

First assumption 



Two-way Analysis of Variance
Checking the assumptions

goggles %>%

group_by(gender, alcohol) %>%

shapiro_test(attractiveness) %>%

ungroup()

goggles %>%

levene_test(attractiveness ~ gender*alcohol)

First assumption 

Second assumption 



ANOVA table SS DF MS F (DFn, DFd) P value

Interaction 1978 2 989.1 F (2, 42) = 11.91 < 0.0001

Alcohol Consumption 3332 2 1666 F (2, 42) = 20.07 < 0.0001

Gender 168.8 1 168.8 F (1, 42) = 2.032 0.1614

Residual 3488 42 83.04

With significant interaction (real data)

ANOVA table SS DF MS F (DFn, DFd) P value

Interaction 7.292 2 3.646 F (2, 42) = 0.06872 0.9337

Alcohol Consumption 5026 2 2513 F (2, 42) = 47.37 < 0.0001

Gender 438.0 1 438.0 F (1, 42) = 8.257 0.0063

Residual 2228 42 53.05

Without significant interaction (fake data)
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Two-way Analysis of Variance



goggles %>%

anova_test(attractiveness~alcohol+gender+alcohol*gender)

Answer:  there is a significant effect of alcohol consumption on the way the attractiveness of a date is perceived but it varies significantly between genders 

(p=7.99e-05). 

With 2 pints or less, boys seem to be very slightly more picky about their date than girls (but not significantly so) but with 4 pints the difference is reversed and 

significant (p=0.0003)

Two-way Analysis of Variance

goggles %>% 

group_by(alcohol) %>%

tukey_hsd(attractiveness ~ gender) %>%

ungroup()



Two-way Analysis of Variance

goggles %>% 

group_by(alcohol) %>%

tukey_hsd(attractiveness ~ gender) %>% 

add_xy_position(x = "alcohol") %>%

ungroup() -> tukey.results

goggles %>%

ggplot(aes(alcohol, attractiveness, colour = gender))+

geom_boxplot()+

stat_pvalue_manual(tukey.results)+

scale_colour_brewer(palette = "Dark2")

• Work in progress # ggpubr package #



Two-way Analysis of Variance

goggles %>% 

group_by(alcohol) %>%

tukey_hsd(attractiveness ~ gender) %>% 

mutate(p.adj.signif = p.adj) %>%

add_xy_position(x = "alcohol") %>%

ungroup() -> tukey.results

goggles %>%

ggplot(aes(alcohol, attractiveness, colour = gender))+

geom_boxplot()+

stat_pvalue_manual(tukey.results)+

scale_colour_brewer(palette = "Dark2")

• Work in progress # ggpubr package # Actual p-values rather than NS or *



Two-way Analysis of Variance

goggles %>%

group_by(gender, alcohol)%>%

summarise(mean=mean(attractiveness))%>%

ungroup() -> goggles.summary

• Now a quick way to have a look at the interaction

goggles.summary %>%

ggplot(aes(x=alcohol, y= mean, colour=gender, group=gender))+

geom_line()+

geom_point()



Association between 2 continuous variables
One variable X and One variable Y

One predictor
Correlation



Similarity

Variability

Signal-to-noise ratio 

Signal
Noise

Signal
Noise

Noise

= statistical significance

= no statistical significance
Signal

=



Signal-to-noise ratio and Correlation 

• Signal is similarity of behaviour between variable x and variable y.

similarity

variability

covariance

similarity

variability

Signal

Noise
=

CO𝑉𝑥𝑦

S𝐷𝑥S𝐷𝑦

σ 𝑥𝑖 − ҧ𝑥 𝑦𝑖 − ത𝑦

𝑛 − 1 S𝐷𝑥S𝐷𝑦

Standard Deviation

r

• Coefficient of correlation:  r =



• Most widely-used correlation coefficient:
• Pearson product-moment correlation coefficient “r”

• The magnitude and the direction of the relation between 2 variables
• It is designed to range in value between -1 and +1
• -0.6 < r > +0.6 : exciting

• Coefficient of determination “r2” 

• It gives the proportion of variance in Y that can be explained by X (in percentage).
• It helps with the interpretation of r
• It’s basically the effect size

Correlation
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• Assumptions for correlation

– Regression and linear Model (lm)

• Linearity: The relationship between X and the mean of Y is linear.

• Homoscedasticity: The variance of residual is the same for any value of X.

• Independence: Observations are independent of each other.

• Normality: For any fixed value of X, Y is normally distributed. 

Correlation
Assumptions



• Outliers: the observed value for the point is very different from that predicted by the 
regression model.

Correlation
Outliers and High leverage points



Correlation
Outliers and High leverage points

• Leverage points: A leverage point is defined as an observation that has a value of x that 
is far away from the mean of x.

• Outliers and leverage points have the potential to be Influential observations: 
– Change the slope of the line. Thus, have a large influence on the fit of the model. 

• One method to find influential points is to compare the fit of the model with and 
without the dodgy observation.



Correlation
Outliers and High leverage points
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Correlation
Outliers and High leverage points

Outlier but not influential value
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Correlation
Outliers and High leverage points

High leverage but not influential value
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Correlation
Outliers and High leverage points
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Thing 1: Pearson correlation is a parametric test
First assumption for parametric test: Normality
Correlation: bivariate Gaussian distribution

Correlation: Two more things

Symmetry-ish of the values on either side of the line of best fit.



Thing 2: Line of best fit comes from a regression

Correlation: nature and strength of the association
Regression: nature and strength of the association and prediction

Correlation = Association Regression = Prediction
Y = A + B*X

x

Y
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Correlation: Two more things



Correlation: correlation.csv

• Questions: 
• What is the nature and the strength of the relationship between X and Y?
• Are there any dodgy points?
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Correlation: correlation.csv

• Question: are there any dodgy points?

read_csv("correlation.csv") -> correlation

correlation %>%

ggplot(aes(variable.x, variable.y, colour=Gender)) + 

geom_point(size=3, colour="sienna2")



• For the lines of best-fit: 3 new functions:

lm(y~x, data=) -> fit

coefficients(fit) -> cf.fit (vector of 2 values)
geom_abline(intercept=cf.fit[1], slope=cf.fit[2])

lm(variable.y ~ variable.x, data=correlation)-> fit.correlation

coefficients(fit.correlation) -> coef.correlation

coef.correlation

Correlation: correlation.csv

intercept   slope



Correlation: correlation.csv
correlation %>%

ggplot(aes(variable.x, variable.y, label = ID)) +

geom_point(size=3, colour="sienna2") +

geom_abline(intercept = coef.correlation[1], slope = coef.correlation[2])+

geom_text(hjust = 0, nudge_x = 0.15)



par(mfrow=c(2,2))

plot(fit.correlation)

Linearity, homoscedasticity and outlier Normality and outlier

Homoscedasticity Influential cases

Correlation: correlation.csv
Assumptions, outliers and influential cases

The Cook’s distance is a combination of each 
observation’s leverage and residual values ; the 
higher the leverage and residuals, the higher the 
Cook’s distance (influential observation).
• It summarizes how much all the values in the 

regression model change when the ith

observation is removed.

• Consensus: cut-off point =1 (0.5).

cooks.distance()



correlation %>%

cor_test(variable.x, variable.y)

Line of best fit: Y=8.38 + 3.59*X

Correlation: correlation.csv

summary(fit.correlation)



Correlation: correlation.csv

Have a go: Remove ID 23, then re-run the model and plot the graph again.
Then decide what you want to do with ID 21 and 22.

correlation %>%

filter(ID != 23) -> correlation.23



Correlation: correlation.csv
correlation %>%

filter(ID != 23) -> correlation.23

lm(variable.y ~ variable.x, correlation.23) -> fit.correlation.23

summary(fit.correlation.23)



Correlation: correlation.csv
correlation.23 %>%

filter(ID != 21) -> correlation.23.21

lm(variable.y ~ variable.x, correlation.23.21) -> fit.correlation.23.21

summary(fit.correlation.23.21)

Correlation.23.21 %>%

cor_test(variable.x, variable.y)



Extra exercise
Correlation: exam.anxiety.csv

• Question: Is there a relationship between time spent revising and exam anxiety? 
And, if yes, are boys and girls different?

• Build a fit for the boys and a fit for the girls
• data %>% filter() lm(y~x, data=) 

• Plot the 2 lines of best fit on the same graph
• coefficients()  geom_abline()

• Check the assumptions visually from the data and with the output for models
• par(mfrow=c(2,2))  plot(fit.male)

• Filter out misbehaving values based on the standardised residuals
• rstandard() add_column()

• Plot the final (improved!) model
• bind_rows()



Correlation: exam.anxiety.csv

• Question: Is there a relationship between time spent revising and exam anxiety? 
And, if yes, are boys and girls different?

read_csv("exam.anxiety.csv") -> exam.anxiety

exam.anxiety %>%

ggplot(aes(x=Revise, y=Anxiety, colour=Gender)) + geom_point(size=3)



• Is there a relationship between time spent revising and exam anxiety?

exam.anxiety %>%

filter(Gender=="Male") -> exam.anxiety.male

lm(Anxiety~Revise, data=exam.anxiety.male) -> fit.male

coefficients(fit.male) -> cf.fit.male

Correlation: exam anxiety.csv

exam.anxiety %>%

filter(Gender=="Female") -> exam.anxiety.female

lm(Anxiety~Revise, data=exam.anxiety.female) -> fit.female

coefficients(fit.female) -> cf.fit.female

Fit for the females

Fit for the males



• Is there a relationship between time spent revising and exam anxiety?

Correlation: exam anxiety.csv

exam.anxiety %>%

ggplot(aes(x=Revise, y=Anxiety, colour=Gender))+

geom_point(size=3)+

geom_abline(intercept=cf.fit.male[1], slope=cf.fit.male[2])+

geom_abline(intercept=cf.fit.female[1], slope=cf.fit.female[2])



par(mfrow=c(2,2))

plot(fit.male)

Correlation: exam anxiety.csv
Assumptions, outliers and influential cases



plot(fit.female)

Correlation: exam anxiety.csv
Assumptions, outliers and influential cases



exam.anxiety %>%

group_by(Gender) %>%

cor_test(Revise, Anxiety) %>%

ungroup()

Anxiety=84.19 - 0.53*Revise

Anxiety=91.94 - 0.82*Revise

Correlation: exam anxiety.csv
summary(fit.male)

summary(fit.female)



Correlation: exam.anxiety.csv
Influential outliers: Boys

rstandard(fit.male) -> st.resid.m

exam.anxiety.male %>%

add_column(st.resid.m) %>%

filter(abs(st.resid.m)<3) -> exam.anxiety.male.clean

lm(Anxiety~Revise, data=exam.anxiety.male.clean) -> fit.male2

summary(fit.male2)

exam.anxiety.male.clean %>%

cor_test(Revise, Anxiety)



Correlation: exam.anxiety.csv
Influential outliers: Girls

rstandard(fit.female) -> st.resid.f

exam.anxiety.female %>%

add_column(st.resid.f) %>%

filter(abs(st.resid.f) < 3) -> exam.anxiety.female.clean

lm(Anxiety~Revise, data=exam.anxiety.female.clean) -> fit.female2

summary(fit.female2)

exam.anxiety.female.clean %>%

cor_test(Revise, Anxiety)



• Question: Is there a relationship between time spent revising and exam anxiety? Yes! 

Correlation: exam.anxiety.csv

bind_rows(exam.anxiety.female.clean, exam.anxiety.male.clean) -> exam.anxiety.clean

coefficients(fit.male2) -> cf.fit.male2

coefficients(fit.female2) -> cf.fit.female2

exam.anxiety.clean %>%

ggplot(aes(Revise, Anxiety, colour=Gender))+geom_point(size=3)+

geom_abline(aes(intercept=cf.fit.male2[1], slope=cf.fit.male2[2]), colour="orange")+

geom_abline(aes(intercept=cf.fit.female2[1], slope=cf.fit.female2[2]), colour="purple")+

scale_colour_manual(values = c("purple", "orange"))



Correlation: exam.anxiety
Influential outliers: Another check

exam.anxiety.male %>%

shapiro_test(st.resid.m)

exam.anxiety.female %>%

shapiro_test(st.resid.f)

exam.anxiety.male.clean %>%

shapiro_test(st.resid.m)
exam.anxiety.female.clean %>%

shapiro_test(st.resid.f)



• Difference between boys and girls?

Correlation: exam anxiety.csv

lm(Anxiety~Revise*Gender, data=exam.anxiety.clean) -> fit.genders

summary(fit.genders)




