

Analysis of Quantitative data

Anne Segonds-Pichon v2020-09

Outline of this section

- Assumptions for parametric data
- Comparing two means: **Student's** *t*-test
- Comparing more than 2 means
 - One factor: **One-way ANOVA**
 - Two factors: **Two-way ANOVA**
- Relationship between 2 continuous variables: **Correlation**

Introduction

- Key concepts to always keep in mind
 - Null hypothesis and error types
 - Statistics inference
 - Signal-to-noise ratio

The null hypothesis and the error types

- The null hypothesis (H₀): H₀ = no effect
 - e.g. no difference between 2 genotypes
- The aim of a statistical test is to reject or not H_{0.}

Statistical decision	True state of H _o	
	H _o True (no effect)	H ₀ False (effect)
Reject H _o	Type I error αFalse Positive	Correct True Positive
Do not reject H ₀	Correct True Negative	Type II error βFalse Negative

- Traditionally, a test or a difference is said to be "significant" if the probability of type I error is: α =< 0.05
- High specificity = low False Positives = low Type I error
- High sensitivity = low False Negatives = low Type II error

Signal-to-noise ratio

• Stats are all about understanding and controlling variation.

- signal If the noise is low then the signal is detectable ...
- noise = statistical significance
- <u>signal</u> ... but if the noise (i.e. interindividual variation) is large
 then the same signal will not be detected
 = no statistical significance
- In a statistical test, the ratio of signal to noise determines the significance.

Analysis of Quantitative Data

- Choose the correct statistical test to answer your question:
 - They are 2 types of statistical tests:
 - **Parametric tests** with 4 assumptions to be met by the data,
 - <u>Non-parametric tests</u> with no or few assumptions (e.g. Mann-Whitney test) and/or for qualitative data (e.g. Fisher's exact and χ^2 tests).

Assumptions of Parametric Data

• All parametric tests have 4 basic assumptions that must be met for the test to be accurate.

First assumption: Normally distributed data

- Normal shape, bell shape, Gaussian shape

• Transformations can be made to make data suitable for parametric analysis.

Assumptions of Parametric Data

- Frequent departures from normality:
 - <u>Skewness</u>: lack of symmetry of a distribution

- <u>Kurtosis</u>: measure of the degree of 'peakedness' in the distribution
 - The two distributions below have the same variance approximately the same skew, but differ markedly in kurtosis.

More peaked distribution: kurtosis > 0

Flatter distribution: kurtosis < 0

(e) Platykurtic and leptokurtic

Assumptions of Parametric Data

Second assumption: Homoscedasticity (Homogeneity in variance)

• The variance should not change systematically throughout the data

Third assumption: Interval data (linearity)

• The distance between points of the scale should be equal at all parts along the scale.

Fourth assumption: Independence

- Data from different subjects are independent
 - Values corresponding to one subject do not influence the values corresponding to another subject.
 - Important in repeated measures experiments

Analysis of Quantitative Data

- Is there a difference between my groups regarding the variable I am measuring?
 - e.g. are the mice in the group A heavier than those in group B?
 - Tests with 2 groups:
 - Parametric: Student's t-test
 - Non parametric: Mann-Whitney/Wilcoxon rank sum test
 - Tests with more than 2 groups:
 - Parametric: Analysis of variance (one-way and two-way ANOVA)
 - Non parametric: Kruskal Wallis (one-way ANOVA equivalent)
- Is there a relationship between my 2 (continuous) variables?
 - e.g. is there a relationship between the daily intake in calories and an increase in body weight?
 - Test: **Correlation** (parametric or non-parametric)

Comparison between 2 groups

Comparison between 2 groups: Student's *t*-test

• Basic idea:

- When we are looking at the differences between scores for 2 groups, we have to judge the difference between their means relative to the spread or variability of their scores.
 - Eg: comparison of 2 groups: control and treatment

Variability does matter

Student's t-test

Student's t-test

Student's t-test

Independent t-test

- Difference between 2 means of one variable for two independent groups
 - Example: difference in weight between WT and KO mice
- Paired t-test
 - Difference between two measures of one variable for <u>one group</u>:
 - Example: before-after measurements
 - the second 'sample' of values comes from the same subjects (mouse, petri dish ...).
 - Importance of experimental design!
- One-Sample t-test
 - Difference between the mean of a single variable and a specified constant.

- <u>Question</u>: do male and female coyotes differ in size?
- Sample size
- Data exploration
- Check the assumptions for parametric test
- Statistical analysis: Independent t-test

Exercise 3: Power analysis

• Example case:

No data from a pilot study but we have found some information in the literature.

In a study run in similar conditions as in the one we intend to run, <u>male coyotes</u> were found to measure: <u>92cm +/- 7cm (SD</u>).

We expect a <u>5% difference</u> between genders.

• smallest biologically meaningful difference

power.t.test(n = NULL, delta = NULL, sd = 1, sig.level = NULL, power = NULL, type = c("two.sample", "one.sample", "paired"), alternative = c("two.sided", "one.sided"))

Exercise 3: Power analysis - Answers

Example case:

We don't have data from a pilot study but we have found some information in the literature.

as in the one we intend to run, male **covotes** were found to measure: 92cm+/- 7cm (SD)

We expect a **5% difference** between genders with a similar variability in the female sample.

Mean 1 = 92Mean 2 = 87.4 (5% less than 92cm)

In a study run in similar conditions power.t.test(delta=92-87.4, sd=7, sig.level=0.05, power=0.8)

```
Two-sample t test power calculation
           = 37.33624
 sig.level = 0.05
      power = 0.8
alternative = two.sided
```

NOTE: n is number in *each* group

We need a sample size of **n~76 (2*38**)

Data exploration \neq **plotting data**

Exercise 4: Data exploration coyote.csv

• The file contains individual body length of male and female coyotes.

<u>Question</u>: do male and female coyotes differ in size?

- Load coyote.csv
- Plot the data as boxplot, histogram, violinplot and stripchart

Data exploration \neq **plotting data**

Exercise 4: Data exploration

• Explore data using 4 different representations:

Exercise 4: facet_grid(rows=vars(row), cols=vars(column))

facet_grid(cols=vars(gender))

2 columns: one per gender

Exercise 4: geom_jitter()

- Stripchart
 - Variation of geom_point(): geom_jitter()

```
100
coyote %>%
  gqplot(aes(x=gender,y=length)) +
                                                   ength
06
  geom_point()
                                                           female
                                                                        male
                                                                 gender
                                                               ٠
                                                         100
coyote %>%
  ggplot(aes(x=gender,y=length)) +
                                                       length
<sup>06</sup>
  geom_jitter(height=0, width=0.3)
                                                         80
```

٠

gender

male

female

70

Exercise 4: stat_summary()

- Stripchart
 - stat_summary()
 - What statistical summary: mean: fun = "mean"
 - What geom(): choice of graphical representation: a line: geom_errorbar()

stat_summary(geom="errorbar", fun="mean",fun.min="mean",fun.max="mean")
mean=minimum=max

```
coyote %>%
ggplot(aes(gender,length)) +
geom_jitter(height=0, width=0.2)+
stat summary(geom= "errorbar", fun="mean", fun.min="mean", fun.max="mean")
```


Exercise 4: Data exploration

coyote %>%
ggplot(aes(x=gender, y=length))+
geom_...()

Have a go!

• Explore data using 4 different representations:

Exercise 4: Exploring data - Stripchart

```
coyote %>%
ggplot(aes(gender,length)) +
    geom_jitter(height=0, width=0.2)+
    stat_summary(geom= "errorbar", fun="mean", fun.min="mean", fun.max="mean")
```


Exercise 4: Exploring data - Boxplots and beanplots

Exercise 4: Exploring data - Boxplots and beanplots

```
coyote %>%
ggplot(aes(x=gender, y=length, fill=gender)) +
stat_boxplot(geom="errorbar",width=0.5) +
geom_boxplot(show.legend=FALSE)+
ylab("Length (cm)")+
xlab(NULL)+
scale_fill_manual(values = c("orange","purple"))
```



```
coyote %>%
ggplot(aes(gender, length, fill=gender)) +
geom_violin(trim=FALSE, size=1, show.legend=FALSE)+
ylab("Length (cm)")+
scale_fill_brewer(palette="Dark2")+
stat_summary(geom = "point", fun = "median", show.legend=FALSE)
```

Exercise 4: Exploring data - Histograms

```
coyote %>%
ggplot(aes(length))+
geom_histogram(binwidth = 4, colour="black") +
facet_grid(cols=vars(gender))
```

also works
facet_wrap(vars(gender))

Exercise 4: Exploring data - Histograms

```
coyote %>%
ggplot(aes(length, fill=gender))+
geom_histogram(binwidth = 4.5, colour="black", show.legend = FALSE) +
scale_fill_brewer(palette="Dark2")+
facet_grid(cols=vars (gender))
```


Exercise 4 extra: Exploring data - Graph combinations

xlab(NULL)+

covote %>%

scale x discrete(labels=c("female"="Female", "male"="Male"), limits =c("male", "female"))

Exercise 4 extra: Exploring data - Graph combinations

coyote %>%

ggplot(aes(gender, length)) +

geom boxplot()+

```
geom jitter(height=0, width=0.2)
```


coyote %>%

```
ggplot(aes(gender, length)) +
    geom_boxplot(outlier.shape=NA)+
    stat_boxplot(geom="errorbar", width=0.2)+
    geom_jitter(height=0, width=0.1, size=2, alpha=0.5, colour="red")+
    ylab("Length (cm)")
```

Checking the assumptions
Normality assumption: QQ Plot

Quantiles:

<pre>viii{r} quantile(coyote\$length) </pre>							
0% 71.000	25% 86.500	50% 91.000	75% 95.875	100% 105.000			

QQ plot= Quantile – Quantile plot

Normality ☑ (ish)

Mean = 0 SD = 1 Same sample size Perfectly normal distribution

Quantiles:

Normality assumption: QQ plot

2.0

25

Assumptions of Parametric Data

- First assumption: <u>Normality</u>
 - Shapiro-Wilk test shapiro_test() # rstatix package #
 - It is based on the correlation between the data and the corresponding normal scores.
- Second assumption: <u>Homoscedasticity</u>
 - Levene test levene_test()

<u>Normality</u>

Other classic: D'Agostino-Pearson test # fBasic package # dagoTest()

Homoscedasticity

More robust: Brown-Forsythe test
onewaytests package #, bf()
Other classic: Bartlett test
bartlett.test()

Independent t-test: results (tidyverse)

coyote.csv

coyote %>%

t_test(length~gender)

	.y. <chr></chr>	group1	group2	n1 ⊲int>	n2 ⊲int>	statistic	df <dbl></dbl>	p <dbl></dbl>
1	length	female	male	43	43	-1.641109	84	0.105

```
coyote %>%
group_by(gender) %>%
get_summary_stats(length, type = "mean_sd") %>%
ungroup()
```

gender <chr></chr>	variable <chr></chr>	n <dbl></dbl>	mean <dbl></dbl>	sd <dbl></dbl>
female	length	43	89.712	6.550
male	length	43	92.056	6.696

• <u>Answer</u>: Males tend to be longer than females but not significantly so (p=0.1045).

- Power : How many more coyotes to reach significance?
 - Re-run the power analysis with mean=89.7 for females: n~250
 - But does it make sense?

Sample size: the bigger the better?

• It takes huge samples to detect tiny differences but tiny samples to detect huge differences.

- What if the tiny difference is meaningless?
 - Beware of **overpower**
 - Nothing wrong with the stats: it is all about interpretation of the results of the test.

- Remember the important first step of power analysis
 - What is the effect size of biological interest?

Independent *t*-test: results The old-fashion way

Level of Significance for One-Tailed Test

			0.25	0.20	0.15	0.10	0.05	0.025	0.01	0.005	0.0005
						Level of Si	gnificance f	for <u>Two-Ta</u> iled	Test		
		df	0.50	0.40	0.30	0.20	0.10	0.05	0.02	0.01	0.001
		1	1.000	1.376	1.963	3.078	0.314	12.706	31.821	63.657	636.620
		2	0.816	1.061	1.386	1.886	2.920	4.303	6.965	9,925	31,599
		3	0.765	0.978	1.259	1.638	2.353	3.182	4,541	5.841	12.924
		4	0.741	0.941	1,190	1.533	2.132	2.776	3.747	4.604	8.610
		5	0.727	0.920	1.156	1.476	2.015	2.571	3,365	4.032	6.869
		6	0.718	0.906	1.134	1.440	1.943	2.447	3.143	3.707	5.959
		2	0.711	0.896	1.119	1.415	1.895	2.365	2.998	3.499	5.408
		8	0.706	0.889	1.108	1.397	1.860	2.306	2.896	3.355	5.041
		9	0.703	0.883	1.100	1.383	1.833	2.262	2.821	3.250	4.781
		10	0.700	0.879	1.093	1.372	1.812	2.228	2.764	3.169	4.587
n2	statistic	11	0.697	0.876	1.088	1.363	1.796	2.201	2.718	3.106	4.437
<int></int>	<dbl></dbl>	12	0.695	0.873	1.083	1.356	1.782	2.179	2.681	3.055	4.318
4.2	1.641100	13	0.694	0.870	1.079	1.350	1.771	2.160	2.650	3.012	4.221
43	-1.641109	14	0.692	0.868	1.076	1.345	1.761	2.145	2.624	2.977	4.140
		15	0.691	0.866	1.074	1.341	1.753	2.131	2.602	2.947	4.073
		16	0.690	0.865	1.071	1.337	1.746	2.120	2.583	2.921	4.015
		17	0.689	0.863	1.069	1.333	1.740	2.110	2.567	2.898	3.965
		18	0.688	0.862	1.067	1.330	1.734	2.101	2.552	2.878	3.922
		19	0.688	0.861	1.066	1.328	1.729	2.093	2.539	2.861	3.883
		20	0.687	0.860	1.064	1.325	1 707	2.007	0.000	2.045	2.050
		21	0.686	0.859	1.063	1.323	_				
		22	0.686	0.858	1.061	1.321	+ -	16	ЛТ	< 1	
		23	0.685	0.858	1.060	1.319	ι —	T . O			JOT
		24	0.685	0.857	1.059	1.318					
		25	0.684	0.856	1.058	1.316	1.708	2.060	2.485	2.787	3.725
		26	0.684	0.856	1.058	1.315	1.706	2.056	2.479	2.779	3.707
		27	0.684	0.855	1.057	1.314	1.703	2.052	2.473	2.771	3.690
		28	0.683	0.855	1.056	1.313	1.701	2.048	2.467	2.763	3.674
		29	0.683	0.854	1.055	1.311	1.699	2.045	2.462	2.756	3.659
		30	0.683	0.854	1.055	1.310	1.697	2.042	2.457	2.750	3.646
		40	0.681	0.851	1.050	1.303	1.684	2.021	2.423	2.704	3.551
		50	0.679	0.849	1.047	1.299	1.676	2.009	2.403	2.678	3.496
		100	0.677	0.845	1.042	1.290	1.660	1.984	2.364	2.626	3.390
			0.674	0.842	1.036	1.282	1.645	1.960	2.326	2.576	3.291

Plot 'coyote.csv' data: Plotting data

```
coyote %>%
ggplot(aes(gender,length, colour=gender)) +
    geom_bar(stat = "summary", fun="mean", width=0.4, alpha=0, colour="black")+
    geom_jitter(height=0, width=0.1)
```


• Add error bars

```
coyote %>%
    gender
ggplot(aes(gender,length, colour=gender)) +
    geom_bar(stat = "summary", fun="mean", width=0.4, alpha=0, colour="black")+
    geom_jitter(height=0, width=0.1)+
    stat_summary(geom="errorbar", colour="black", width=0.2)
```

Plot 'coyote.csv' data: Plotting data

• Prettier version


```
coyote %>% Male Female
ggplot(aes(gender,length, colour=gender, fill=gender)) +
geom_bar(stat="summary", fun="mean", width=0.4, alpha=0.2, colour="black", show.legend=FALSE)+
stat_summary(geom="errorbar", colour="black", width=0.2)+
geom_jitter(height=0, width=0.1, show.legend=FALSE)+
scale_colour_brewer(palette="Dark2")+
scale_fill_brewer(palette="Dark2")+
theme(legend.position = "none")+
scale_x_discrete(limits = c("male", "female"), labels = c("male"="Male", "female"="Female"))+
xlab(NULL)+
ylab("Length (cm)")
```

Plot 'coyote.csv' data: Plotting data

• *Work in progress* # ggsignif package #

Exercise 5: Dependent or Paired t-test

working.memory.csv

- A researcher is studying the effects of dopamine depletion on working memory in rhesus monkeys.
 - A group of rhesus monkeys (n=15) performs a task involving memory after having received a placebo.
 Their performance is graded on a scale from 0 to 100. They are then asked to perform the same task after having received a dopamine depleting agent.
- **Question**: does dopamine affect working memory in rhesus monkeys?
 - Load working.memory.csv and check out the structure of the data.
 - Work out the difference: DA.depletion placebo and assign the difference to a column: working.memory\$difference
 - Plot the difference as a stripchart with a mean
 - Add confidence intervals as error bars
 - Clue: stat_summary(..., fun.data=mean_cl_normal)
 # Hmisc package #
 - Run the paired t-test. t_test (var ~ 1, mu=0)

Exercise 5: Dependent or Paired t-test - Answers

Exercise 5: Dependent or Paired t-test (tidyverse)

Question: does dopamine affect working memory in rhesus monkeys?

working.memory %>%
 shapiro_test(difference)

variable	statistic	p
<chr></chr>	_{<dbl></dbl>}	<dbl></dbl>
difference	0.9772671	0.9474075

working.memory %>%
 t test(difference ~ 1, mu=0)

	.y. <chr></chr>	group1 <chr></chr>	group2	n <int></int>	statistic _dbl>	df <dbl></dbl>	q <idb></idb>
1	difference	1	null model	15	-8.616059	14	5.71e-07
-							

<u>Answer</u>: the injection of a dopamine-depleting agent significantly affects working memory in rhesus monkeys (t=-8.62, df=14, p=5.715e-7).

Dependent or Paired t-test

• *Work in progress* # ggpubr package #

```
working.memory.long %>%
```

```
t_test(scores ~ treatment, paired = TRUE) -> stat.test
```

```
working.memory.long %>%
ggpaired(x = "treatment", y = "scores", color = "treatment",
palette = "Dark2", line.color = "gray", line.size = 0.4)+
scale_y_continuous(breaks=seq(from =0, by=5, to=60),
limits = c(0,60))+
```

stat_pvalue_manual(stat.test, label = "p", y.position = 55)

treatment 📥 placebo 📥 DA.depletion

working.memory.long

	🚈 🍸 Filte	r	
•	subjects $\stackrel{\diamond}{}$	treatment $\hat{}$	scores $^{\diamond}$
1	M1	placebo	9
2	M2	placebo	10
3	M3	placebo	15
4	M4	placebo	18
5	M5	placebo	19
6	M6	placebo	22
7	M7	placebo	24
8	M8	placebo	26
9	M9	placebo	28
10	M10	placebo	30
11	M11	placebo	33
12	M12	placebo	37
13	M13	placebo	39
14	M14	placebo	49
15	M15	placebo	50
16	M1	DA.depletion	7
17	M2	DA.depletion	7
18	M3	DA.depletion	10
19	M4	DA.depletion	12
20	M5	DA.depletion	13
21	M6	DA.depletion	15

Comparison between more than 2 groups One factor = One predictor One-Way ANOVA

Signal-to-noise ratio

Signal
Noise= statistical significanceSignal
Noise= no statistical significanceNoise

SignalDifference between the meansNoiseVariability in the groups

= F ratio

One-Way Analysis of variance

Step 1: Omnibus test

• It tells us if there is a difference between the means but not which means are significantly different from which other ones.

Step 2: Post-hoc tests

• They tell us if there are differences between the means pairwise.

Source of variation	Sum of Squares	df	Mean Square	F	p-value
Between Groups	18.1	4	4.5	6.32	0.0002
Within Groups	51.8	73	0.71		
Total	69.9				

Continuous variable

5 differences: $\sum_{1}^{5} (mean_n - grand mean)^2$

Sum of squared errors Between the groups

Source of variation	Sum of Squares	df	Mean Square	F	p-value
Between Groups	18.1				
Within Groups					
Total	69.9				

Continuous variable

Source of variation	Sum of Squares	df	Mean Squares	F	p-value
Between Groups	18.1				
Within Groups	51.8				
Total	69.9				

	Source of variation	Sum of Squares	df	Mean Squares	F ratio	p-value
Signal	Between Groups	18.1	k-1			
Noise	Within Groups	51.8	n-k			
	Total	69.9				

df: degree of freedom with df = n-1 n = number of values, k=number of groups Between groups: df = 4 (k-1) Within groups: df = 73 (n-k = n_1 -1 + ... + n_5 -1)

	Source of variation	Sum of Squares	df	Mean Squares	F ratio	p-value
Signal	Between Groups	18.1	4	4.5		
Noise	Within Groups	51.8	73	0.71		
	Total	69.9				

df: degree of freedom with df = n-1 18.2/4 = 4.5 51.8/73 = 0.71

Mean squares = **Sum of Squares / n-1 = Variance!**

Source of variation	Sum of Squares	df	Mean Squares	F ratio	p-value
Between Groups	18.1	4	4.5	6.34	0.0002
Within Groups	51.8	73	0.71		
Total	69.9				

Mean squares = Sum of Squares / n-1 = Variance

$$= ratio = \frac{Variance between the groups}{Variance within the groups (individual variability)} = \frac{4.5}{0.71} = 6.34$$

Comparison of more than 2 means

- Running multiple tests on the same data increases the **familywise error rate**.
- What is the familywise error rate?
 - The error rate across tests conducted on the same experimental data.
- One of the basic rules ('laws') of probability:
 - The Multiplicative Rule: The probability of the joint occurrence of 2 or more independent events is the product of the individual probabilities.

 $\mathsf{P}(\mathsf{A},\mathsf{B})=\mathsf{P}(\mathsf{A})\times\mathsf{P}(\mathsf{B})$

For example:

 $P(2 \text{ Heads}) = P(\text{head}) \times P(\text{head}) = 0.5 \times 0.5 = 0.25$

Familywise error rate

- <u>Example</u>: All pairwise comparisons between 3 groups A, B and C:
 A-B, A-C and B-C
- Probability of making the Type I Error: **5%**
 - The probability of not making the Type I Error is 95% (=1 0.05)
- Multiplicative Rule:
 - Overall probability of <u>no Type I errors</u> is: 0.95 * 0.95 * 0.95 = 0.857
- So the probability of making <u>at least one Type I Error</u> is 1-0.857 = 0.143 or 14.3%
 The probability has increased from E⁹/₂ to 14.3%
 - The probability has increased from 5% to 14.3%
- Comparisons between 5 groups instead of 3, the familywise error rate is 40% (=1-(0.95)ⁿ)

Familywise error rate

- <u>Solution</u> to the increase of familywise error rate: correction for multiple comparisons
 Post-hoc tests
- Many different ways to correct for multiple comparisons:
 - Different statisticians have designed corrections addressing different issues
 - e.g. unbalanced design, heterogeneity of variance, liberal vs conservative
- However, they all have **one thing in common**:
 - the more tests, the higher the familywise error rate: the more stringent the correction
- Tukey, Bonferroni, Sidak, Benjamini-Hochberg ...
 - Two ways to address the multiple testing problem
 - Familywise Error Rate (FWER) vs. False Discovery Rate (FDR)

Multiple testing problem

- **<u>FWER</u>**: **Bonferroni**: $\alpha_{adjust} = 0.05/n$ comparisons e.g. 3 comparisons: 0.05/3=0.016
 - Problem: very conservative leading to loss of power (lots of false negative)
 - 10 comparisons: threshold for significance: 0.05/10: 0.005
 - − Pairwise comparisons across 20.000 genes ⊗
- <u>FDR</u>: Benjamini-Hochberg: the procedure controls the expected proportion of "discoveries" (significant tests) that are false (false positive).
 - Less stringent control of Type I Error than FWER procedures which control the probability of <u>at least</u> <u>one</u> Type I Error
 - <u>More power</u> at the cost of increased numbers of Type I Errors.
- Difference between FWER and FDR:
 - a p-value of 0.05 implies that 5% of all tests will result in false positives.
 - a FDR adjusted p-value (or q-value) of 0.05 implies that 5% of significant tests will result in false positives.

One-Way Analysis of variance

Step 1: Omnibus test

• It tells us if there is (or not) a difference between the means but not which means are significantly different from which other ones.

Step 2: Post-hoc tests

- They tell us if there are (or not) differences between the means pairwise.
- A correction for multiple comparisons will be applied on the p-values.
- These post hoc tests should only be used when the ANOVA finds a significant effect.

Example: protein.expression.csv

• <u>Question</u>: is there a difference in protein expression between the 5 cell lines?

- 1 Plot the data
- 2 Check the assumptions for parametric test

Exercise 6: One-way ANOVA: Data Exploration protein.expression.csv

- **Question**: Difference in protein expression between 5 cell types?
 - Load protein.expression.csv
 - Plot the data using at least 2 types of graph
 - geom_boxplot(), geom_jitter(), geom_violin()
 - Draw a QQplot
 - ggplot(aes(sample =)) + stat_qq() + stat_qq_line()
 - Check the first assumption (Normality) with a formal test
 - shapiro_test()

Exercise 6: One-way ANOVA : Data Exploration - Answers

```
protein %>%
ggplot(aes(x=line, y=expression, colour=line))+
geom_boxplot(outlier.shape = NA)+
geom_jitter(height=0, width=0.1)
```

```
protein %>%
ggplot(aes(x=line, y=expression, colour=line))+
geom_violin(trim=FALSE)+
geom_boxplot(width=0.1)
```


Exercise 6: One-way ANOVA – Answers

```
protein %>%
ggplot(aes(sample = expression))+
    stat_qq(size=3)+
    stat_qq_line()
```


Exercise 6: One-way ANOVA – Answers. What do we do now?

protein %>%
group_by(line) %>%
shapiro_test(expression)%>%
ungroup()

line <chr></chr>	variable <chr></chr>	statistic <dbl></dbl>	q <idb></idb>
А	expression	0.9295671	0.3755460156
В	expression	0.9535144	0.6887867228
С	expression	0.8196840	0.0029210891
D	expression	0.7530720	0.0003548725
E	expression	0.9670693	0.7411280600

One-way ANOVA: change of scale

protein %>%

ggplot(aes(line, expression, colour=line))+

geom jitter(height=0, width=0.2, size=3, show.legend=FALSE)+

stat_summary(geom="errorbar", fun=mean, fun.min=mean, fun.max=mean, colour="black", size=1)

protein %>%
 mutate(log10.expression=log10(expression)) -> protein

One-way ANOVA: change of scale

```
protein %>%
ggplot(aes(x=line, y=log10.expression, colour=line))+
    geom_boxplot(outlier.shape = NA)+
    geom_jitter(height=0, width=0.1)
```

```
protein %>%
```

```
ggplot(aes(x=line, y=log10.expression, colour=line))+
    geom_violin(trim=FALSE)+
    geom_boxplot(width=0.1)
```


One-way ANOVA – Outliers identification

protein %>%
group_by(line) %>%
identify_outliers(expression)%>%
ungroup()

line <chr></chr>	expression 	log10.expression	is.outlier	is.extreme
С	3.14	0.4969296	TRUE	FALSE
С	2.78	0.4440448	TRUE	FALSE
D	9.32	0.9694159	TRUE	TRUE

3 rows

One-way ANOVA: change of scale

```
protein %>%
   ggplot(aes(sample=log10.expression))+
         stat_qq(size=3) +
         stat_qq_line()
                                              1.0 -
                                              0.5
                                            sample
                                              0.0
   Before log-transformation
                                                          ......
                                   ٠
                                             -0.5 -
 7.5
sample
                                                        -2
                                                                                                    2
                                                                   -1
                                                                              0
                                                                          theoretical
 2.5
 0.0
                                2
             -1
                    0
```

theoretical

First assumption ✓

Assumptions of Parametric Data

protein %>% group_by(line) %>% shapiro_test(log10.expression)%>% ungroup()

line <chr></chr>	variable <chr></chr>	statistic <dbl></dbl>	p <dbl></dbl>
А	log10.expression	0.8542464	0.04143953
В	log10.expression	0.9458450	0.57725321
С	log10.expression	0.9657060	0.71417958
D	log10.expression	0.9868425	0.99348831
E	log10.expression	0.9313425	0.20502703

First assumption ✓ ish

q	statistic	df2	df1
<ldb></ldb>	_dbl>	<int></int>	⊲int>
0.4227373	0.982112	73	4

• Step 1: <u>omnibus test</u>

data %>% **anova_test**(y~x)

Step 2: <u>post-hoc tests</u>
 <u>Tukey correction</u>
 <u>Bonferroni correction</u> # emmeans package #
 data %>%
 data %>%
 data %>%
 emmeans_test(y~x, p.adjust.method="bonferroni")

Have a go!

<u>R way</u>: aov(y~x, data=) -> model then summary(model) pairwise.t.test(y, x, p.adj = "bonf") TukeyHSD(model)

protein %>%
 anova_test(log10.expression~line)

ANOVA Table (type II tests)

Effect DFn DFd F pp<.05 ges 1 line 4 73 8.123 1.78e-05 * 0.308

generalised **e**ffect **s**ize (Eta squared η^2) = R² ish

protein %>% tukey_hsd(log10.expression~line)

Tukey correction

	term	group1	group2	estimate <dbl></dbl>	conf.low	conf.high	p.adj p.adj.signif
1	line	Α	В	-0.25024832	-0.578882494	0.07838585	2.19e-01 ns
2	line	А	С	-0.07499724	-0.374997820	0.22500335	9.56e-01 ns
3	line	А	D	0.30549397	0.005493391	0.60549456	4.39e-02 [*]
4	line	А	E	0.13327517	-0.166725416	0.43327575	7.27e-01 ns
5	line	В	С	0.17525108	-0.124749499	0.47525167	4.81e-01 ns
6	line	В	D	0.55574230	0.255741712	0.85574288	1.83e-05 ****
7	line	В	E	0.38352349	0.083522904	0.68352407	5.48e-03 **
8	line	С	D	0.38049121	0.112162532	0.64881989	1.54e-03 **
9	line	С	E	0.20827240	-0.060056276	0.47660108	2.02e-01 ns
10	line	D	E	-0.17221881	-0.440547487	0.09610987	3.84e-01 ns

protein %>%
 emmeans_test(log10.expression ~ line, p.adjust.method = "bonferroni")

Bonferroni correction

	.y. <chr></chr>	group1	group2	df <dbl></dbl>	statistic <dbl></dbl>	q <ldb></ldb>	p.adj p.adj.signif
1	log10.expression	А	В	73	2.1299578	3.654611e-02	3.654611e-01 ns
2	log10.expression	А	С	73	0.6992552	4.866147e-01	1.000000e+00 ns
3	log10.expression	А	D	73	-2.8483483	5.705474e-03	5.705474e-02 ns
4	log10.expression	А	E	73	-1.2426238	2.179833e-01	1.000000e+00 ns
5	log10.expression	В	С	73	-1.6339966	1.065653e-01	1.000000e+00 ns
6	log10.expression	В	D	73	-5.1816001	1.882302e-06	1.882302e-05 ****
7	log10.expression	В	E	73	-3.5758757	6.238766e-04	6.238766e-03 **
8	log10.expression	С	D	73	-3.9663413	1.687079e-04	1.687079e-03 **
9	log10.expression	С	E	73	-2.1710868	3.317601e-02	3.317601e-01 ns
10	log10.expression	D	E	73	1.7952545	7.675206e-02	7.675206e-01 ns

Analysis of variance (R) To plot confidence intervals

aov(log10.expression~line,data=protein.stack.clean) -> anova.log.protein
summary(anova.log.protein)

Df Sum Sq Mean Sq F value Pr(>F) line 4 2.691 0.6728 8.123 1.78e-05 *** Residuals 73 6.046 0.0828 ---Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

TukeyHSD(anova.log.protein)->tukey plot(tukey, las=1)

TukeyHSD (anova.log.protein, "line")

Tukey multiple comparisons of means 95% family-wise confidence level

Fit: aov(formula = log10.expression ~ line, data = protein.stack.clean)

\$line

diff lwr p adi upr B-A -0.25024832 -0.578882494 0.07838585 0.2187264 -0.07499724 -0.374997820 0.22500335 0.9560187 0.005493391 0.60549456 0.0438762 0.30549397 0.13327517 -0.166725416 0.43327575 0.7265567 0.17525108 -0.124749499 0.47525167 0.4809387 0.55574230 0.255741712 0.85574288 0.0000183 0.38352349 0.083522904 0.68352407 0.0054767 0.38049121 0.112162532 0.64881989 0.0015431 0.20827240 -0.060056276 0.47660108 0.2023355 E-D -0.17221881 -0.440547487 0.09610987 0.3841989

95% family-wise confidence level

Differences in mean levels of protein\$line

Analysis of variance (tidyverse) To plot confidence intervals

protein %>%

```
tukey_hsd(log10.expression~line)%>%
```

mutate(comparison = paste(group1, sep=".", group2)) -> tukey.conf

term [‡]	group1 [‡]	group2 🍦	null.value	1	estimate 🔅	conf.low $\ ^{\diamond}$	conf.high	p.adj 🍦	p.adj.signif	ſ	comparison
line	Α	В		þ	-0.25024832	-0.578882494	0.07838585	2.19e-01	ns		A.B
line	A	С		þ	-0.07499724	-0.374997820	0.22500335	9.56e-01	ns		A.C
line	Α	D		þ	0.30549397	0.005493391	0.60549456	4.39e-02	*		A.D
line	Α	E		þ	0.13327517	-0.166725416	0.43327575	7.27e-01	ns		A.E
line	В	с		þ	0.17525108	-0.124749499	0.47525167	4.81e-01	ns		B.C
line	В	D		þ	0.55574230	0.255741712	0.85574288	1.83e-05	****		B.D
line	В	E		þ	0.38352349	0.083522904	0.68352407	5.48e-03	**		B.E
line	с	D		þ	0.38049121	0.112162532	0.64881989	1.54e-03	**		C.D
line	с	E		þ	0.20827240	-0.060056276	0.47660108	2.02e-01	ns		C.E
line	D	E		9	-0.17221881	-0.440547487	0.09610987	3.84e-01	ns		D.E

tukey.conf %>%

```
ggplot(aes(x=comparison, y=estimate, ymin=conf.low, ymax=conf.high)) +
geom_errorbar(colour="black", size=1)+
geom_point(size=3, colour="darkred")+
geom_hline(yintercept=0, linetype="dashed", color = "red")+
coord_flip()
```

```
protein %>%
ggplot(aes(line, expression, colour=line))+
geom_jitter(height = 0, width=0.2, size=3, show.legend=FALSE)+
stat_summary(geom="errorbar",fun=mean,fun.min=mean,fun.max = mean, colour="black", size=1)+
scale_y_log10()
```



```
protein %>%
ggplot(aes(x=line, y=expression, fill=line)) +
    geom_bar(stat = "summary", fun="mean", colour="black")+
    stat_summary(geom="errorbar", colour="black", width=0.4)
```



```
protein %>%
ggplot(aes(x=line, y=expression, fill=line)) +
    geom_bar(stat="summary", fun="mean", colour="black")+
    stat_summary(geom="errorbar", colour="black", width=0.4)+
    geom_jitter(heigth=0, width=0.1, alpha=0.5)
```



```
protein %>%
ggplot(aes(x=line, y=log10.expression, fill=line)) +
    geom_bar(stat="summary", fun="mean", colour="black")+
    stat_summary(geom="errorbar", colour="black", width=0.4)+
    geom_jitter(heigth=0, width=0.1, alpha=0.5)
```


- A researcher is looking at the difference between 4 cell groups.
 He has run the experiment 5 times. Within each experiment, he has neutrophils from a WT (control), a KO, a KO+Treatment 1 and a KO+Treatment2.
- **Question**: Is there a difference between KO with/without treatment and WT?
- Load neutrophils.long.csv
- Plot the data so that you have an idea of the consistency of the results between the experiments.
- Check the first assumption
- Run the repeated measures ANOVA and post-hoc tests

```
anova_test(dv =, wid =, within =) -> res.aov
get_anova_table(res.aov)
pairwise_t_test(p.adjust.method =)
```

• Choose a graphical presentation consistent with the experimental design

• Plot the data so that you have an idea of the consistency of the results between the experiments.

```
neutrophils.long %>%
ggplot(aes(Group, Values, group=Experiment, colour=Experiment, fill=Experiment))+
geom_line(size=2)+
geom_point(size=4, shape = 21, colour= "black", stroke=2)+
scale_x_discrete(limits = c("WT", "KO", "KO+T1", "KO+T2"))
```


• Check the first assumption

```
neutrophils.long %>%
ggplot(aes(Group, Values))+
geom_boxplot(outlier.shape = NA)+
geom_jitter(height = 0, width = 0.2)
```



```
neutrophils.long %>%
group_by(Group) %>%
shapiro_test(Values) %>%
ungroup()
```

Group <chr></chr>	variable <chr></chr>	statistic <dbl></dbl>	q <ldb></ldb>
КО	Values	0.9117498	0.4781767
KO+T1	Values	0.9865912	0.9664514
KO+T2	Values	0.8529329	0.2039683
WT	Values	0.9482754	0.7248636


```
neutrophils.long %>%
    anova_test(dv = Values, wid = Experiment, within = Group) -> res.aov
get_anova_table(res.aov)
```

```
ANOVA Table (type III tests)
```

Effect DFn DFd F p p<.05 ges 1 Group 3 12 28.575 9.51e-06 * 0.656

neutrophils.long %>%
 pairwise_t_test(Values~Group, paired=TRUE, ref.group = "WT",
p.adjust.method = "bonferroni")

.y. <chr></chr>	group1	group2	n1 <int></int>	n2 <int></int>	statistic <dbl></dbl>	df <dbl></dbl>	p <dbl></dbl>	p.adj p.adj.signif
Values	WT	KO	5	5	-8.657886	4	0.000979	0.003 **
Values	WT	KO+T1	5	5	1.310271	4	0.260000	0.780 ns
Values	WT	KO+T2	5	5	-6.481813	4	0.003000	0.009 ***

• Run the repeated measures ANOVA and post-hoc tests

.y. <chr></chr>	group1	group2	n1 <int></int>	n2 <int></int>	statistic	df <dbl></dbl>	p <dbl></dbl>	p.adj p.adj.signif
Values	WT	KO	5	5	-8.657886	4	0.000979	0.003 **
Values	WT	KO+T1	5	5	1.310271	4	0.260000	0.780 ns
Values	WT	KO+T2	5	5	-6.481813	4	0.003000	0.009 **

neutrophils.long %>%

pairwise_t_test(Values~Group, paired=TRUE, ref.group = "WT",
p.adjust.method = "holm")

	.y. <chr></chr>	group1	group2	n1	n2 <int></int>	statistic _dbl>	$df_{}$	p <ldb>></ldb>	p.adj <dbl></dbl>	
1	Values	WT	КО	5	5	-8.657886	4	0.000979	0.003	
2	Values	WT	KO+T1	5	5	1.310271	4	0.260000	0.260	
3	Values	WT	KO+T2	5	5	-6.481813	4	0.003000	0.006	J

• Choose a graphical presentation consistent with the experimental design

```
neutrophils.long %>%
group_by(Experiment) %>%
mutate(Difference=Values-Values[Group=="WT"]) %>%
ungroup() -> neutrophils.long
```

Experiment	Group <chr></chr>	Values <dbl></dbl>	Difference
Expl	WT	34	0
Expl	KO	53	19
Expl	KO+T1	35	1
Expl	KO+T2	91	57
Exp2	WT	23	0
Exp2	KO	52	29
Exp2	KO+T1	30	7
Exp2	KO+T2	99	76
Exp3	WT	45	0
Exp3	KO	69	24
1-10 of 20 rows			

Choose a graphical presentation consistent with the experimental design

```
neutrophils.long %>%
filter(Group !="WT") %>%
ggplot(aes(Group, Difference, fill=Group)) +
geom_bar(stat = "summary", fun="mean", colour="black")+
stat_summary(geom="errorbar", fun.data=mean_cl_normal, width=0.15)+
geom_jitter(height = 0, width=0.1, alpha=0.5, size=3)+
ylab("Mean difference from WT +/- 95% CI")+
scale_y_continuous(breaks=seq(from=-40, by=10, to=80))+
scale_fill_brewer(palette = "PuOr")
```


Comparison between more than 2 groups Two factors = Two predictors Two-Way ANOVA

Two-way Analysis of Variance (Factorial ANOVA)

Source of variation	Sum of	Df Mean Square		F	p-value	
	Squares					
Variable A (Between Groups)	2.665	4	0.6663	8.42	<0.0001	
Within Groups (Residual)	5.775	73	0.0791			
Total	8.44	77				

Source of variation	Sum of Squares	Df	Mean Square	F	p-value
Variable A * Variable B	1978	2	989.1	F (2, 42) = 11.91	P < 0.0001
Variable B (Between groups)	3332	2	1666	F (2, 42) = 20.07	P < 0.0001
Variable A (Between groups)	168.8	1	168.8	F (1, 42) = 2.032	P = 0.1614
Residuals	3488	42	83.04		

- Interaction plots: Examples
 - Fake dataset:
 - <u>2 factors</u>: **Genotype** (2 levels) and **Condition** (2 levels)

Genotype	Condition	Value
Genotype 1	Condition 1	74.8
Genotype 1	Condition 1	65
Genotype 1	Condition 1	74.8
Genotype 1	Condition 2	75.2
Genotype 1	Condition 2	75
Genotype 1	Condition 2	75.2
Genotype 2	Condition 1	87.8
Genotype 2	Condition 1	65
Genotype 2	Condition 1	74.8
Genotype 2	Condition 2	88.2
Genotype 2	Condition 2	75
Genotype 2	Condition 2	75.2

- Interaction plots: Examples
 - <u>2 factors</u>: **Genotype** (2 levels) and **Condition** (2 levels)

Single Effect

- Interaction plots: Examples
 - <u>2 factors</u>: **Genotype** (2 levels) and **Condition** (2 levels)

Zero or Both Effect

- Interaction plots: Examples
 - <u>2 factors</u>: **Genotype** (2 levels) and **Condition** (2 levels)

Interaction

Alcohol	N	lone	21	Pints	4 Pints		
Gender	Female	Male	Female	Male	Female	Male	
	65	50	70	55	45	30	
	70	55	65	65	60	30	
	60	80	60	70	85	30	
	60	65	70	55	65	55	
	60	70	65	55	70	35	
	55	75	60	60	70	20	
	60	75	60	50	80	45	
	55	65	50	50	60	40	

Example: goggles.csv

The 'beer-goggle' effect

- <u>Study</u>: effects of alcohol on mate selection in night-clubs.
- Pool of independent judges scored the levels of attractiveness of the person that the participant was chatting up at the end of the evening.
- **Question**: is subjective perception of physical attractiveness affected by alcohol consumption?
 - Attractiveness on a scale from 0 to 100

Exercise 8: Two-way ANOVA

goggles.csv

- Load goggles.csv
- Graphically explore the data
 - effect of alcohol only
 - effect of gender only
 - effect of both
- Check the assumptions visually (plot+qqplot) and formally (test)
 levene_test (y ~ factor1*factor2)

• As always, first step: get to know the data

```
goggles %>%
ggplot(aes(x=alcohol, y=attractiveness))+
    geom_boxplot()+
    geom_jitter(height=0, width=0.1)
```


goggles %>%

ggplot(aes(x=gender, y=attractiveness))+
 geom_boxplot()+
 geom_jitter(height=0, width=0.1)


```
goggles %>%
ggplot(aes(alcohol, attractiveness, fill=gender))+
    geom_boxplot(alpha=0.5)+
    scale_fill_brewer(palette="Dark2")
```



```
goggles %>%
ggplot(aes(gender, attractiveness, fill=alcohol))+
geom_boxplot(alpha=0.5)+
scale fill brewer(palette="Dark2")
```



```
goggles %>%
ggplot(aes(x=gender, y=attractiveness))+
geom_boxplot()+
geom_jitter(height=0, width=0.1)+
facet_grid(cols=vars(alcohol))
```


Two-way Analysis of Variance Checking the assumptions

goggles %>%

ggplot(aes(sample = attractiveness, colour=gender))+

- stat_qq()+
- stat_qq_line()+

facet_grid(cols=vars(gender))+

```
scale colour brewer(palette = "Accent")
```


Two-way Analysis of Variance Checking the assumptions

goggles %>%
group_by(gender, alcohol) %>%
shapiro_test(attractiveness) %>%
ungroup()

gender <chr></chr>	alcohol <chr></chr>	variable <chr></chr>	statistic <dbl></dbl>	p ⊲dbl>
Female	0 Pint	attractiveness	0.8715152	0.1559521
Female	2 Pints	attractiveness	0.8989639	0.2828089
Female	4 Pints	attractiveness	0.8972707	0.2729917
Male	0 Pint	attractiveness	0.9410603	0.6215419
Male	2 Pints	attractiveness	0.9666411	0.8704264
Male	4 Pints	attractiveness	0.9508657	0.7199577

First assumption ✓

goggles %>%

levene test(attractiveness ~ gender*alcohol)

df1	df2	statistic	d
⊲int>	⊲int>		<ldb></ldb>
5	42	1.425225	0.2350678

ANOVA table	SS	DF	MS	F (DFn, DFd)	P value
Interaction	1978	2	989.1	F (2, 42) = 11.91	< 0.0001
Alcohol Consumption	3332	2	1666	F (2, 42) = 20.07	< 0.0001
Gender	168.8	1	168.8	F (1, 42) = 2.032	0.1614
Residual	3488	42	83.04		

With significant interaction (real data)

2 Pints

None

4 Pints

Without significant interaction (fake data)

ANOVA table	SS	DF	MS	F (DFn, DFd)	P value
Interaction	7.292	2	3.646	F (2, 42) = 0.06872	0.9337
Alcohol Consumption	5026	2	2513	F (2, 42) = 47.37	< 0.0001
Gender	438.0	1	438.0	F (1, 42) = 8.257	0.0063
Residual	2228	42	53.05		

goggles %>%

anova test(attractiveness~alcohol+gender+alcohol*gender)

ANOVA Table (type II tests) Effect DFn DFd p p<.05 ges F 2 42 20.065 7.65e-07 * 0.489 alcohol 1 1 42 2.032 1.61e-01 0.046 gender 80 alcohol:gender 2 42 11.911 7.99e-05 * 0.362 attractiveness qoqqles %>% gender Female group by (alcohol) %>% 📥 Male tukey hsd(attractiveness ~ gender) %>% 40 ungroup() 20 p.adj p.adj.signif alcohol group1 group2 estimate conf.low conf.high term 0 Pint 2 Pints 4 Pints alcohol gender Female Male 6.250 -2.43737914.93738 0.145000 ns 1 0 Pint 0.396000 ns 2 2 Pints Female 4.375 -6.33695815.08696 gender Male -31.686394 3 4 Pints gender Female Male -21.875 -12.06361 0.000292 ***

Answer: there is a significant effect of alcohol consumption on the way the attractiveness of a date is perceived but it varies significantly between genders (p=7.99e-05).

With 2 pints or less, boys seem to be very slightly more picky about their date than girls (but not significantly so) but with 4 pints the difference is reversed and significant (p=0.0003)

• Work in progress # ggpubr package #

```
goggles %>%
group_by(alcohol) %>%
tukey_hsd(attractiveness ~ gender) %>%
add_xy_position(x = "alcohol") %>%
ungroup() -> tukey.results
```

alcohol $^{\diamond}$	term $^{\circ}$	group1 [‡]	group2 [‡]	estimate $~^{\diamond}$	conf.low $\ ^{\diamond}$	conf.high [‡]	p.adj 🗦	p.adj.signif	y.position 🗘	groups ÷	x - ‡	xmin [‡]	xmax $^{\diamond}$
0 Pint	gender	Female	Male	6.250	-2.437379	14.93738	0.145000	ns	83.6	c("Female", "Male")	1	0.8	1.2
2 Pints	gender	Female	Male	4.375	-6.336958	15.08696	0.396000	ns	88.6	c("Female", "Male")	2	1.8	2.2
4 Pints	gender	Female	Male	-21.875	-31.686394	-12.06361	0.000292	***	73.6	c("Female", "Male")	3	2.8	3.2

```
goggles %>%
ggplot(aes(alcohol, attractiveness, colour = gender))+
geom_boxplot()+
stat_pvalue_manual(tukey.results)+
scale_colour_brewer(palette = "Dark2")
```


Two-way Analysis of Variance

• Work in progress # ggpubr package # Actual p-values rather than NS or *

alcohol 🗘 t	term [‡]	group1 [‡]	group2 [‡]	null.value	estimate 👘	conf.low $^{\diamond}$	conf.high $^{\circ}$	p.adj 🗘	p.adj.signif	y.position 🗦	groups [‡]	x = ‡	xmin [‡]	xmax $^{\diamond}$
0 Pint g	gender	Female	Male	0	6.250	-2.437379	14.93738	0.145000	0.145000	83.6	c("Female", "Male")	1	0.8	1.2
2 Pints g	gender	Female	Male	0	4.375	-6.336958	15.08696	0.396000	0.396000	88.6	c("Female", "Male")	2	1.8	2.2
4 Pints g	gender	Female	Male	0	-21.875	-31.686394	-12.06361	0.000292	0.000292	73.6	c("Female", "Male")	3	2.8	3.2

```
goggles %>%
ggplot(aes(alcohol, attractiveness, colour = gender))+
geom_boxplot()+
stat_pvalue_manual(tukey.results)+
scale_colour_brewer(palette = "Dark2")
```


Two-way Analysis of Variance

• Now a quick way to have a look at the interaction

```
goggles %>%
group_by(gender, alcohol)%>%
summarise(mean=mean(attractiveness))%>%
ungroup() -> goggles.summary
```

gender <chr></chr>	alcohol <chr></chr>	mean
Female	0 Pint	60.625
Female	2 Pints	62.500
Female	4 Pints	57.500
Male	0 Pint	66.875
Male	2 Pints	66.875
Male	4 Pints	35.625

```
goggles.summary %>%
ggplot(aes(x=alcohol, y= mean, colour=gender, group=gender))+
geom_line()+
geom_point()
```


Association between 2 continuous variables One variable X and One variable Y One predictor <u>Correlation</u>

Signal-to-noise ratio

Signal
Noise= statistical significanceSignal
Noise= no statistical significanceNoise

Signal-to-noise ratio and Correlation

• Signal is **similarity** of behaviour between variable x and variable y.

Correlation

- Most widely-used correlation coefficient:
 - Pearson product-moment correlation coefficient "r"
 - The magnitude and the direction of the relation between 2 variables
 - It is designed to range in value between -1 and +1
 - -0.6 < r > +0.6 : exciting

C <u>oefficient</u> (+ <u>ve</u> or <u>-ve</u>)	Strength of the relationship
0.0 to 0.2	Negligible
0.2 to 0.4	Weak
0.4 to 0.7	Moderate
0.7 to 0.9	Strong
0.9 to 1.0	Very strong

- Coefficient of determination "r²"
 - It gives the proportion of variance in Y that can be explained by X (in percentage).
 - It helps with the interpretation of r
 - It's basically the effect size

Correlation

Correlation Assumptions

- Assumptions for correlation
 - Regression and linear Model (Im)

- Linearity: The relationship between X and the mean of Y is linear.
- Homoscedasticity: The variance of residual is the same for any value of X.
- Independence: Observations are independent of each other.
- **Normality:** For any fixed value of X, Y is normally distributed.

• **Outliers**: the observed value for the point is very different from that predicted by the regression model.

Correlation

Outliers and High leverage points

- Leverage points: A leverage point is defined as an observation that has a value of x that is far away from the mean of x.
- Outliers and leverage points have the potential to be **Influential observations**:
 - Change the slope of the line. Thus, have a large influence on the fit of the model.
- One method to find influential points is to compare the fit of the model **with** and **without** the dodgy observation.

All good

Outlier but not influential value

High leverage but not influential value

Outlier and High leverage: Influential value

Correlation: Two more things

Thing 1: Pearson correlation is a parametric test First assumption for parametric test: Normality Correlation: bivariate Gaussian distribution

Symmetry-ish of the values on either side of the line of best fit.

Correlation: Two more things

Thing 2: Line of best fit comes from a regression

Correlation: nature and strength of the association Regression: nature and strength of the association <u>and</u> **prediction**

• Questions:

- What is the nature and the strength of the relationship between X and Y?
- Are there any dodgy points?

• Question: are there any dodgy points?

```
read_csv("correlation.csv") -> correlation
correlation %>%
ggplot(aes(variable.x, variable.y, colour=Gender)) +
geom point(size=3, colour="sienna2")
```


<pre>dbl></pre>	variable.x	variable.y
1	0.10000	-0.0716
2	0.45401	4.1673
3	1.09765	6.5703
4	1.27936	13.8150
5	2.20611	11.4501
6	2.50064	12.9554
7	3.04030	20.1575
8	3.23583	17.5633
9	4.45308	26.0317
10	4.16990	22.7573

1-10 of 23 rows

• For the lines of best-fit: <u>3 new functions</u>:

```
lm(y~x, data=) -> fit
coefficients(fit) -> cf.fit (vector of 2 values)
geom_abline(intercept=cf.fit[1], slope=cf.fit[2])
```

lm(variable.y ~ variable.x, data=correlation) -> fit.correlation
coefficients(fit.correlation) -> coef.correlation
coef.correlation

(Intercept)	variable.x
8.379803	3.588814
intercept	slope

```
correlation %>%
ggplot(aes(variable.x, variable.y, label = ID)) +
geom_point(size=3, colour="sienna2") +
geom_abline(intercept = coef.correlation[1], slope = coef.correlation[2])+
geom_text(hjust = 0, nudge x = 0.15)
```


Assumptions, outliers and influential cases

Have a go: Remove ID 23, then re-run the model and plot the graph again. Then decide what you want to do with ID 21 and 22.

```
correlation %>%
  filter(ID != 23) -> correlation.23
```

correlation %>%
 filter(ID != 23) -> correlation.23

lm(variable.y ~ variable.x, correlation.23) -> fit.correlation.23
summary(fit.correlation.23)

F-statistic: 265.8 on 1 and 20 DF, p-value: 5.13e-13

correlation.23 %>%
filter(ID != 21) -> correlation.23.21

lm(variable.y ~ variable.x, correlation.23.21) -> fit.correlation.23.21
summary(fit.correlation.23.21)

Call:

cor test(variable.x, variable.y)

cor

0.99

var1

variable.x

var2

variable.y

statistic

28.66085

conf.low

0.9716067

р

4.23e-17

Residuals: 10 Median Min 30 Мах -4.3636 -1.8607 -0.5376 2.2987 5.0434 Coefficients: Estimate Std. Error t value Pr(>|t|)(Intercept) 2.4679 1.0757 2.294 0.0333 * variable.x 4.9272 0.1719 28.661 <2e-16 *** Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Residual standard ernor: 2.709 on 19 degrees of freedom Multiple R-squared: 0.9774, Adjusted R-squared: 0.9762 conf.high method tistic: 821.4 on I and 19 DF, p-value: < 2.2e-16 0.9954718 Pearson

lm(formula = variable.y ~ variable.x, data = correlation.23.21)

Extra exercise

Correlation: exam.anxiety.csv

• **Question**: Is there a relationship between time spent revising and exam anxiety? And, if yes, are boys and girls different?

- Build a fit for the boys and a fit for the girls
 - data %>% filter() lm(y~x, data=)
- Plot the 2 lines of best fit on the same graph
 - coefficients() geom_abline()
- Check the assumptions visually from the data and with the output for models
 - par(mfrow=c(2,2)) plot(fit.male)
- Filter out misbehaving values based on the standardised residuals
 - rstandard() add_column()
- Plot the final (improved!) model
 - bind_rows()

• **Question**: Is there a relationship between time spent revising and exam anxiety? And, if yes, are boys and girls different?

```
read_csv("exam.anxiety.csv") -> exam.anxiety
exam.anxiety %>%
ggplot(aes(x=Revise, y=Anxiety, colour=Gender)) + geom point(size=3)
```


	Α	В	С	D	E
	Code	Revise	Exam	Anxiety	Gender
	1	4	40	86.298	Male
	2	11	65	88.716	Female
	3	27	80	70.178	Male
	4	53	80	61.312	Male
	5	4	40	89.522	Male
	6	22	70	60.506	Female
	7	16	20	81.462	Female
	8	21	55	75.82	Female
)	9	25	50	69.372	Female
					-

• Is there a relationship between time spent revising and exam anxiety?

• Is there a relationship between time spent revising and exam anxiety?

```
exam.anxiety %>%
ggplot(aes(x=Revise, y=Anxiety, colour=Gender))+
geom_point(size=3)+
geom_abline(intercept=cf.fit.male[1], slope=cf.fit.male[2])+
geom_abline(intercept=cf.fit.female[1], slope=cf.fit.female[2])
```


Assumptions, outliers and influential cases

par(mfrow=c(2,2)) plot(fit.male)

Assumptions, outliers and influential cases

plot(fit.female)

Residual standard error: 10 42 on 49 degrees of freedom Multiple R-squared: 0.6746, Adjusted R-squared: 0.668 F-statistic: 101.6 on I and 49 DF, p-value: 1.544e-13

Influential outliers: Boys

```
rstandard(fit.male) -> st.resid.m
```

```
exam.anxiety.male %>%
   add_column(st.resid.m) %>%
      filter(abs(st.resid.m)<3) -> exam.anxiety.male.clean
```

lm(Anxiety~Revise, data=exam.anxiety.male.clean) -> fit.male2

```
summary(fit.male2)
```

```
Call:
lm(formula = Anxiety ~ Revise, data = exam.anxiety.male.clean)
Residuals:
```

Min 1Q Median 3Q Max -22.0296 -3.8704 0.5626 6.0786 14.2525

```
Coefficients:
```

	Estimate	Std. Error	t value	Pr(> t)					
(Intercept)	86.97461	1.64755	52.790	< 20-16	***				
Revise	-0.60752	0.06326	-9.603	7.59e-13	***				
Signif. code	es: 0 '*	**' 0.001'	**' 0.01	'*' 0.05	' .'	0.1	"	,	1

Residual standard error: 8.213 on 49 degrees of freedom Multiple R-squared: 0.653, Adjusted R-squared: 0.6459 F-statistic: 92.22 on 1 and 49 DF, p-value: 7.591e-13 exam.anxiety.male.clean %>%
 cor_test(Revise, Anxiety)

var1	var2	cor <dbl></dbl>	statistic	p <dbl></dbl>	conf.low	conf.high ⊲dbl>
Revise	Anxiety	-0.81	-9.602995	7.59e-13	-0.8863013	-0.6850763

Influential outliers: Girls

```
rstandard(fit.female) -> st.resid.f
exam.anxiety.female %>%
   add_column(st.resid.f) %>%
   filter(abs(st.resid.f) < 3) -> exam.anxiety.female.clean
lm(Anxiety~Revise, data=exam.anxiety.female.clean) -> fit.female2
```

summary(fit.female2)

```
Call:
lm(formula = Anxiety ~ Revise, data = exam.anxiety.female.clean)
Residuals:
Min 1Q Median 3Q Max
-18.7518 -5.7069 -0.7782 3.2117 18.5538
```

```
Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 92.24536 1.93591 47.65 <2e-16 ***

Revise -0.87504 0.07033 -12.44 <2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Residual standard error: 8.849 on 48 degrees of freedom Multiple R-squared: 0.7633 Adjusted R-squared: 0.7584 F-statistic: 154.8 on 1 and 48 DF, p-value: < 2.2e-16 exam.anxiety.female.clean %>%
 cor_test(Revise, Anxiety)

var1	var2	cor <dbl></dbl>	statistic	p <dbl></dbl>	conf.low 	conf.high
Revise	Anxiety	-0.87	-12.44127	1.25e-16	-0.9266661	-0.7866117

• Question: Is there a relationship between time spent revising and exam anxiety? Yes!

```
bind_rows(exam.anxiety.female.clean, exam.anxiety.male.clean) -> exam.anxiety.clean
coefficients(fit.male2) -> cf.fit.male2
coefficients(fit.female2) -> cf.fit.female2
exam.anxiety.clean %>%
ggplot(aes(Revise, Anxiety, colour=Gender))+geom_point(size=3)+
geom_abline(aes(intercept=cf.fit.male2[1], slope=cf.fit.male2[2]), colour="orange")+
geom_abline(aes(intercept=cf.fit.female2[1], slope=cf.fit.female2[2]), colour="purple")+
scale_colour_manual(values = c("purple", "orange"))
```


Influential outliers: Another check

exam.an: shapi:	xiety.male %>% ro_test(st.resid	d.m)	exam.an shapi	xiety.female % ro_test(st.res	>% id.f)
variable <chr></chr>	statistic <dbl></dbl>	dbl>	variable	statistic	q ⊲dbl>
st.resid.m	0.6992772	5.05199e-09	st.resid.f	0.9442729	0.01828732
t.resid.m	0.6992772	5.05199e-09	st.resid.f	0.9442729	0.01828732
exam.an: shapi	xiety.male.cleam ro_test(st.resid	n %>% d.m)	exam.an shapi	xiety.female.c ro test(st.res	lean %>% id.f)

variable	statistic	p
<chr></chr>	_dbl>	<dbl></dbl>
st.resid.f	0.9767888	0.4258592

variable	statistic	q
<chr></chr>	_dbl>	<ldb></ldb>
st.resid.m	0.9539309	0.04607996
Correlation: exam anxiety.csv

• Difference between boys and girls?

lm(Anxiety~Revise*Gender, data=exam.anxiety.clean) -> fit.genders

summary(fit.genders)

Call: lm(formula = Anxiety ~ Revise * Gender, data = exam.anxiety.clean) Residuals: Min 10 Median 3Q Мах -22.0296 -5.6022 -0.3294 5.6091 18.5538 Coefficients: Estimate Std. Error t value Pr(>|t|)(Intercept) 92.24536 1.86694 49.410 < 2e-16 *** Revise -0.87504 0.06783 -12.901 < 2e-16 *** <u>GenderMale -5.27075 2.53296 -2.081 0.04008 *</u> Revise:GenderMale 0.26752 0.09445 2.832 0.00562 ** Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Residual standard error: 8.534 on 97 degrees of freedom Multiple R-squared: 0.7228, Adjusted R-squared: 0.7142

F-statistic: 84.32 on 3 and 97 DF, p-value: < 2.2e-16