Quality Control for Sequencing Experiments

v2024-11

Simon Andrews, Sarah Inglesfield <u>simon.andrews@babraham.ac.uk</u> <u>sarah.inglesfield@babraham.ac.uk</u>

Interests in QC

What is the Point of QC? An Example...

PC2

PC2 Genes (85 total)

- No clear biological theme
- No clear connection to system

What is going on?

What is the Point of QC? An Example...

Conclusion: The original separation was a technical artefact of no biological interest

What is the Point of QC?

Technical Problems ...

- Don't always cause pipelines to fail
- Don't prevent hits being generated
- These hits can look biologically real

Real biology...

• Can cause unexpected, interesting behaviour of data

— Set Pipelines can miss things....

QC Saves Time, Effort and Money!!

- Better to know asap what you're dealing with
- Want to be sure any follow-up work will be worth it

Course Structure

How Does Sequencing Work?

- Fundamentals of Illumina Sequencing
- The Format of Sequencing Data
- How QC Programmes Fit In

What can QC tell us?

- Universal metrics
- Library Dependent metrics
- Consistency

How Does (Illumina) Sequencing Work?

Processing Sequencing Data

Illumina Sequencing: An Overview

Illumina Sequencing: An Overview

Comparing Chemistry

Detecting a Signal

- One Molecule isn't Enough

- Amplify to generate Cluster
- Cluster Molecules sequenced
- Multiple Clusters on a Flow Cell

Flow Cell Imaging

Real Illumina Sequence Data

Creating Clusters

Non Patterned Flow Cell

Random Clusters

Patterned Flow Cell

Pre-defined Clusters

Creating Clusters: Patterned Flow Cells

Good and Bad things about Clusters

Good

- Generates large signal
- Is robust to random mistakes
- Small amount of starting material

Bad

- Bridging limits length
- Molecules in a cluster get out of sync
 - 2 bases added
 - No bases added
 - Reaction stalls
- Can get mixed signals if clusters overlap (non-patterned)
- Can get re-seeding (patterned)
- Can get index hopping (patterned)

Different Sequencers, Same Chemistry

Sequencer	Number of lanes	Reads per lane	Max read length	Dyes
iSeq 100	1	~4 million	150bp	1
MiniSeq	1	~7 million	150bp	2
MiSeq	1	~20 million	300bp	4
NextSeq	1	~400 million	150bp	2
HiSeq 2xxx	16	~200 million	150bp	4
HiSeq 4xxx	16	~300 million	150bp	4
NovaSeq	8	~2.5 billion	150bp	2

Illumina Sequencing: An Overview

What Reads Do You Get: Single or Paired?

What Reads Do You Get: Multiplexed?

So For a Paired End, Single Index Multiplexed Library....

So what is actually in these files?

FastQ Format Data

A Single FastQ Entry

- **1.** @HWUSI-EAS611:34:6669YAAXX:1:1:5266:1162 1:N:0:
- 2. GGAGGAAGTATCACTTCCTTGCCTGCCTCCTCGGGGCCT
- **3.** +

- 1. Header starts with @
- 2. Base calls (can include N or IUPAC codes)
- 3. Mid-line starts with + usually empty
- 4. Quality scores (= Phred Scores)

Illumina Header Sections (Line 1)

@HWUSI-EAS611:34:6669YAAXX:5:1:5069:1159 1:N:0:

• Starts with @ (required by fastq spec)

(34)

- Instrument ID (HWUSI-EAS611)
- Run number
- (6669YAAXX) Flowcell ID
- (5) Lane
- Tile (1)
- (5069)• X-position
- Y-position (1159)
- [space]
- Read number
- (1)• Was filtered (Y/N) (N) - You wouldn't normally see the Ys

(0 = no control)

- Control number •
- Sample number
- (only if demultiplexed using Illumina's software)

Phred Scores (Line 4)

How it's calculated:

- Start from (p) the probability that the reported call is incorrect
- Transformation to a Phred score = positive integer from floating point
- Phred = -10 * (int)log₁₀(p)
 - p=0.1 Phred = 10
 - p=0.01 Phred = 20
 - p=0.001 Phred = 30

Higher Phred Score Higher Confidence

Phred Score Encoding

- Translation of Phred score to single ASCII letter
- Based on standard ASCII table
- Can't translate directly
 - low values are non-printing
- Encode with Sanger System*
 - Phred+33

0	NUL	17	C1	33	i	50	2	67	С
1	SOH	18	DC2	34	"	51	3	68	D
2	STX	19	DC3	35	#	52	4	69	Е
3	ETX	20	DC4	36	\$	53	5	70	F
4	EOT	21	NAK	37	%	54	6	71	G
5	ENQ	22	SYN	38	&	55	7	72	Н
6	АСК	23	ETB	39	T	56	8	73	T
7	BEL	24	CAN	40	(57	9	74	J
8	BS	25	EM	41)	58		75	К
9	HT	26	SUB	42	*	59	* 7	76	L
10	LF	27	ESC	43	+	60	<	77	Μ
11	VT	28	FS	44	,	61	=	78	Ν
12	FF	29	GS	45	-	62	>	79	0
13	CR	30	RS	46		63	?	80	Ρ
14	SO	31	US	47	/	64	@	81	Q
15	SI	32	(SPACE)	48	0	65	Α	82	R
16	DLE			49	1	66	В	83	S

Interpreting Phred Scores

:GBGGGGGGGGGGGGGGDEDGGGGGGGHHDHGHHGBGG:GG

032{ }	052	4	072	Н	092	١	112 р
033 !	053	5	073	Ι	093]	113 q
034 "	054	6	074	J	094	^	114 r
035 #	055	7	075	Κ	095		115 s
036 \$	056	8	076	L	096	<u>`</u>	116 t
037 %	057	9	077	М	097		117 u
038 &	058	:	078	Ν	098	b	118 v
039 '	059	;	079	0	099	С	119 w
040 (060	-	080	Ρ	100	d	120 x
041)	061	=	081	Q	101	е	121 y
042 *	062	>	082	R	102	f	122 z
043 +	063	?	083	S	103	g	123 {
044 ,	064	a	084	Т	104	_	124
045 -	065	Α	085	U	105	i	125 j
046 .	066	В	086	V	106	j	126 ~
047 /	067	С	087	W	107	-	127{ }
048 0	068	D	880	Х	108	1	128 Ç
049 1	069	Ε	089	Υ	109	m	129 ů
050 2	070	F	090	z	110	n	130 é
051 3	071	G	091	ſ	111	0	131 â

: = ASCII 58

Phred33 encoding so Phred = 25

 $p = 10^{(25/-10)}$

p = 0.003

Interpreting Phred Scores

Symbol	ASCII	Phred	Probability of miscall
:	58	25	$p = 10^{(25/-10)} = 0.003$
G	71	?	?

n

WORSF

032{ } 072 H 052 4 092 \ 112 p 033 ! 053 5 073 I 093] 113 g 034 " 054 6 074 J 094 ^ 114 r 035 # 055 7 075 K 095 115 s 036 \$ 056 8 076 L 096 116 t 037 % 057 9 077 M 097 a 117 u 038 & 058 : 078 N 098 b 118 v 039 ' 059 ; 079 0 099 c 119 w 040 (060 < 080 P 100 d 120 x 041) 061 = 081 Q 101 e 121 y 042 * 062 > 082 R 102 f 122 z 043 + 063 ? 083 S 103 g 123 { 044 , **064** @ 084 T 104 h 124 045 -065 A 085 U 105 i 125 } 046 . 066 B 106 j 126 ~ 086 V 067 C 087 W 107 k 047 / 127 { } 048 0 068 D 088 X 108 l 128 Ç 069 E 089 Y 109 m 129 ü 049 1 050 2 070 F 090 Z 110 n 130 é 051 3 071 G 111 o 131 â 091 [

Interpreting Phred Scores

Symbol	ASCII	Phred	Probability of miscall
:	58	25	$p = 10^{(25/-10)} = 0.003$
G	71	38	$p = 10^{(38/-10)} = 0.00016$

032{ }	052 4	072	Н	092 \	112 р
033 !	053 5	5 073	Ι	093]	113 q
034 "	054 6	6 074	J	094 ^	114 r
035 #	055 7	075	Κ	095 _	
036 \$	056 8	8 076	L	096 `	116 t
037 %	057 9	077	М	097 a	
038 &	058 :	078	Ν	098 b	118 v
039 '	059;	079	0	099 c	119 w
040 (060 <	080	Ρ	100 d	120 x
041)	061 =	081	Q	101 e	121 y
042 *	062 >	· 082	R	102 f	122 z
043 +	063 ?	083	S	103 g	123 {
044 ,	064	084	Т	104 h	124
045 -	065 A	085	U	105 i	125
046 .	066 B	086	V	106 j	126 ~
047 /	067 0	; 087	W	107 k	127{ }
048 0	068 D	088	X	108 1	
049 1	069 E	089	Υ	109 m	129 ů
050 2	070 F	090	Z	110 n	130 é
051 3	071 6	091	[111 o	131 â
			_		

Interpreting Phred Scores

Symbol	ASCII	Phred	Probability of miscall
G	71	38	$p = 10^{(38/-10)} = 0.00016$
В	66	?	?

n

NRSE

072 H 032{ } 052 4 092 \ 112 p 033 ! 053 5 073 I 093] 113 g 034 " 054 6 074 J 094 ^ 114 r 095 _ 035 # 055 7 075 K 115 s 036 \$ 056 8 076 L 096 116 t 057 9 037 % 077 M 097 a 117 u 038 & 058 : 078 N 098 b 118 v 039 ' 059 ; 079 0 099 c 119 w 040 (060 < 080 P 100 d 120 x 041) 061 = 081 Q 101 e 121 y 042 * 062 > 082 R 102 f 122 z 043 + 063 ? 083 S 103 g 123 { 044 , **064** @ 084 T 104 h 124 045 -065 A 085 U 105 i 125 } 046 . 066 B 086 V 106 j 126 ~ 067 C 087 W 107 k 047 / 127 { } 048 0 068 D 088 X 108 l 128 Ç 089 Y 109 m 129 ü 049 1 069 E 050 2 070 F 090 Z 110 n 130 é 071 G 091 [111 o 131 â 051 3

Interpreting Phred Scores

Symbol	ASCII	Phred	Probability of miscall
G	71	38	$p = 10^{(38/-10)} = 0.00016$
В	66	33	$p = 10^{(33/-10)} = 0.0005$

032{ }	052 4	072 H	092 \	112 р
033 !	053 5	073 I	093]	113 q
034 "	054 6	074 J	094 ^	114 r
035 #	055 7	075 K	095	115 s
036 \$	056 8	076 L	096 `	116 t
037 %	057 9	077 M	097 a	117 u
038 &	058 :	078 N	098 b	118 v
039 '	059;	079 0	099 c	119 w
040 (060 <	080 P	100 d	120 x
041)	061 =	081 Q	101 e	121 y
042 *	062 >	082 R	102 f	122 z
043 +	063 ?	083 S	103 g	123 {
044 ,	064 @	084 T	104 ĥ	124 j
045 -	065 A	085 U	105 i	125 }
046 .	066 B	086 V	106 j	126 ~
047 /	067 C	087 W	107 k	127{ }
048 0	068 D	088 X	108 l	128 Ç
049 1	069 E	089 Y	109 m	129 ů
050 2	070 F	090 Z	110 n	130 é
051 3	071 G	091 [111 o	131 â

Further Processing: Beyond Raw FastQ Files

Aligned Data – BAM Files

Expanded file containing alignment data (+ FastQ file details), in 2 Sections:

Header Section

samtools view -H filename.bam

General Metadata

- Information on:
 - Technical details of File
 - Reference
 - Programmes Involved
- Each line begins with @ + 2 letter code

Alignments Section

samtools view filename.bam | less

Details of sequence alignments:

- One line per read
- 11 required columns (tab separated)
- Information on:
 - Sequence
 - Where alignments and how it aligns

Need special programs to read, normally 'samtools'

BAM Header Section: Example

@HD	VN:1.0	SO:unsorted
ØSQ	SN:1	LN:195471971
QSQ	SN:10	LN:130694993
QSQ	SN:11	LN:122082543
QSQ	SN:12	LN:120129022
@SQ	SN:13	LN:120421639
etc		

@PG ID:hisat2 PN:hisat2 VN:2.1.0 CL:"/bi/apps/hisat2/2.1.0/hisat2-align-s --wrapper basic-0 --dta --sp 1000,1000 -p 7 -t --phred33-quals -x /bi/scratch/Genomes/Mouse/GRCm38/Mus_musculus.GRCm38 --known-splicesite-infile /bi/scratch/Genomes/Mouse/GRCm38/Mus_musculus.GRCm38.90.hisat2_splices.txt -U /tmp/17469.unp"

Header line Format \	/ersion	Sorting Order	r	
Reference Sequence	Name	Length		
Program Information	ID	Name	Version	Command

BAM Alignments Section: Example

HWI-D00	436:394:	CBGLBANX	X:1:1101	:1222:1861	16	chr18	57944851
60	50M	*	0	0			
AAAAGAT	CTCTTGAT	TTAGAATT	TTCTCTCA	AATGTGAGGG	ACTTTTATN		
GGGGGGG	GGGGGGGG	GGGGGGGGG	GGGGGGGG	GGGGGGGGGGG	GGGGBA<=#	AS:i:-2 XN	N:i:0 XM:i:1
XO:i:O	XG:i:O	NM:i:1	MD:Z:49	GO Y	T:Z:UU NH:i:1		

Sections

1.	Sequence name	HWI-D00436:394:CBGLBANXX:1:1101:1222:1861
2.	Alignment Flags	16
3.	Reference sequence name	chr18
4.	Start position	5794485
5.	Mapping Quality (Phred)	60
6.	Alignment (CIGAR) string	50M
7.	Paired sequence name	*
8.	Paired sequence position	0
9.	Total insert length	0
10.	Called Bases	AAAAGATCTCTTGATTTAGAATTTTCTCTCAAATGTGAGGGACTTTTATN
11.	Base Quality String (Phred 33)	GGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG
12.	Other Tags	

How QC Programmes Fit Into Processing Pipelines

QC metrics can we work with

Library Composition	The Nature of our Sequenced Reads	
Library Composition	Biases	
Adapter Insert Adapter	Contaminants	
	 Duplication 	

QC Programmes in Data Processing

FastQC

PastQC Report

Summary

Basic Statistics
Per base sequence quality
Per tile sequence quality
Per sequence quality scores
Per base sequence content
Per sequence GC content
Per base N content
Sequence Length Distribution
Sequence Duplication Levels
Overrepresented sequences
Adapter Content

fastqc seqfile1 seqfileN

fastqc *.fastq.gz

- Reads raw fastq file(s)
- Performs multiple checks
 - Pass/warn/fail
 - Compares to genomic library
- Generates a HTML Report

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/

FastQ Screen

fastq_screen seqfile1 seqfileN

fastq_screen *.fastq.gz

- Reads fastq file(s)
- Maps against a range of species / contaminants
- Identifies unexpected sequences in your library
- Generates a HTML Report

https://www.bioinformatics.babraham.ac.uk/projects/fastq_screen/

MultiQC

multiqc directory_with_reports
 multiqc .

- Reads in all QC files in a directory
- Aggregates QC information from multiple samples
- Large number of programs supported
- Generates a combined HTML report

https://multiqc.info/

What can QC tell us?

Context is Key for QC

QC should be about what you expect and what you see

Context is Key for QC

Assessing Universal Metrics

Context is Key for QC

the same for all libraries

What Does it Mean?

Universal QC Metrics

• Demultiplexing

 Barcode
 Adapter
 Insert
 Adapter
 Barcode

 Barcode
 Adapter
 Insert
 Adapter
 Barcode

• Adapter Content

• Base Call Quality

• Mapping Quality

Universal QC Metrics

• Demultiplexing

Base Call Quality

• Adapter Content

Barcode	Adapter	Insert	Adapter	

• Mapping Quality

Demultiplexing: Expectations

Only the barcodes we assigned to samples should be present—**no others**

What could unknown barcode sequences mean?

Demultiplexing: Unknown Barcode Sequences

Expected Barcode

Unknown Sequence

Barcodes shown explain 92% of the data

Human Error is a really common source of barcode issues

Barcodes shown explain 91% of the data

Demultiplexing: Unknown Barcode Sequences

Universal QC Metrics

• Demultiplexing

BarcodeAdapterInsertAdapterBarcode

• Base Call Quality

• Adapter Content

Barcode Adapter	Insert	Adapter	
-----------------	--------	---------	--

• Mapping Quality

Base Call Quality: Expectations

Illumina Sequencers are technically reliable, so we expect confident calls

Clusters get out of sync over long read length

Technical problem with the sequencer

🕖 Diagnosing Less Clear Cut Base Call Problems 🥝

Not everything is bad

• Why are some calls bad and not others?

- What can we learn
 - Salvage this run
 - Fix future runs

Per Sequence Quality Score Plot

Mean Sequence Phred Score

Diagnosing Less Clear Cut Base Call Problems

Lot of Reads with really low Scores

Positional Quality

Read Position / Cycles of Chemistry

Diagnosing Less Clear Cut Base Call Problems

Quality scores across all bases (Sanger / Illumina 1.9 encoding)

Focusing Fail!

Position Specific Patterning

Overloading of Flow Cell

Obstruction

Universal QC Metrics

• Demultiplexing

Base Call Quality

• Adapter Content

Adapter

Insert

Adapter

Adapters Content: Expectations

Due to variable insert and read length, we may sequence adapter at the end of our reads

ReastQC ReportMeasuring Read-though Adapters

Clean-Up Options (Adapters & Poor Calls)

Trimming 3' end:

- Remove adapter read through
- Remove poor quality bases

Remove Specific Reads

- Average Quality
- Location on Flow Cell

Live with it:

• Sometimes it's good enough e.g. mapping

Universal QC Metrics

• Demultiplexing

Base Call Quality

Adapter Content

Adapter	Adapter	

• Mapping Quality

Mapping: Expectations

But if many reads do not align as expected... Where are they from?

Classify matches as: unique to one species & single or multiple mapping

One Genome Hits Should Match The Species Sequenced

Library Screening

lane3079_ACTTGA_Ctrl_Hs_HF_L006_R1_screen

One Genome Hits Should Match The Species Sequenced

Library Screening

contaimated_screen

Library Screening

unguessable_screen

Exercise Part 1: Assessing Universal Metrics

There are QC problems with all of these libraries, can you spot them?

Assessing Library Dependent Metrics

Context is Key for QC

Resture expects a Genomic Library: Do you?

Library Dependent QC Metrics

From the Base Sequence:

• GC Content

GC

Base Composition

GATC

• Duplication

GATCTACGAGTTACGATCAGT GATCTACGAGTTACGATCAGT GATCTACGAGTTACGATCAGT GATCTACGAGTTACGATCAGT

Library Dependent QC Metrics

From the Base Sequence:

• GC Content

Base Composition

GATC

• Duplication

GATCTACGAGTTACGATCAGT GATCTACGAGTTACGATCAGT GATCTACGAGTTACGATCAGT GATCTACGAGTTACGATCAGT

Library GC Content

• Generic summary of library composition at a read level

*R*FastQC

• Expect a normally distributed set of values centred on the overall GC content

Sharp Peaks in GC Concern or Expected

Specific Contamination with single sequence or closely related sequences

Artificial sequences, ribosomal RNA, contaminants

Broader Peaks in GC Concern or Expected

More extensive mixture of reads with different GC content

GC Skew Concern or Expected

PolyA's

PolyG's

More extensive subset of reads with extreme differences in GC

Library Dependent QC Metrics

From the Base Sequence:

GC Content

G(

Base Composition

GATC

• Duplication

GATCTACGAGTTACGATCAGT GATCTACGAGTTACGATCAGT GATCTACGAGTTACGATCAGT GATCTACGAGTTACGATCAGT

Library Base Composition

- For every chemistry cycle we can look at the number of ATGC we call
- For Libraries with random start positions the composition should be the same for all cycles

Bias Composition Throughout

Concern or Expected

Wrong Sequence

Proportional biases of bases at specific positions: Very low diversity

Bias Composition Throughout Concern or Expected

Bias Composition at 5' end Concern or Expected

ATAC – Transposases

RRBS – Restriction Start Site

Proportional biases of bases at the start of a read: A preferred start site

Proportional biases of bases at the end of a read: consistent closing sequence

Bias Composition at 3' end Concern or Expected

Proportional biases of bases at the end of a read: consistent closing sequence

Bioinformatics processing can also influence QC metrics!

Library Dependent QC Metrics

From the Base Sequence:

GC Content

G(

Base Composition

GATC

• Duplication

GATCTACGAGTTACGATCAGT GATCTACGAGTTACGATCAGT GATCTACGAGTTACGATCAGT GATCTACGAGTTACGATCAGT

Duplication

Percent of seqs remaining if deduplicated 97.28%

- How frequently the exact same sequence appears in your library
- For WGS expect most sequences to be unique

Duplication

If the exact same sequence appears more than once it could be...

Technical:

ATCCGAGCTATTCGGCGAGCTCGCCAGTTACG

ATCCGAGCTATTCGGCGAGCTCGCCAGTTACG

ATCCGAGCTATTCGGCGAGCTCGCCAGTTACG

• PCR duplicates

Coincidental:

ATCCGAGCTATTCGGCGAGCTCGCCAGTTACG

ATCCGAGCTATTCGGCGAGCTCGCCAGTTACG

ATCCGAGCTATTCGGCGAGCTCGCCAGTTACG

- Deep sequencing
- Highly present sequences
- Restricted diversity libraries

Duplication Concern or Expected

Amplicon

BUT could have technical duplication with expected coincidental duplication!

Overrepresented Sequences

- Extreme duplication
- The exact same sequence is a significant proportion of the whole library (which might not be duplicated overall)

- Poly Sequences
- Specific Sequences

Sources of Poly Sequences

PolyN – Quality too poor to make any calls

Sequence	Count	Percentage
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN	462344	1.070097045533307
GNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN	232540	0.5382147642627897
АММИМИМИМИМИМИМИМИМИМИМИМИМИМИМИМИМИМИМ	127291	0.29461553090984244
CNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN	87792	0.20319493671694688
TNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN	85181	0.19715176672688003
GANNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN	48918	0.11322090753507845

Average Quality per read

PolyG – Empty space in 2 colour chemistry, can be technically "high quality" calls

Sequence	Count	Percentage
666666666666666666666666666666666666666	406221	1.9711963990403654
Тессессессессессессессессессессессессесс	315458	1.530766931420275
AGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	161606	0.7841966940737117
TTGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	46937	0.2277628320095653
Сессебебебебебебебебебебебебебебебебебеб	32291	0.15669279264590566
ATGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	24237	0.1176105792746838

Sources of Poly Sequences

PolyA (or PolyT) – Common in RNA-Seq

Sequence	Count	Percentage
*****	68355	1.7344041279604823
ААААААААААААААААААААААААААААААААААААААА	67792	1.7201188595230343

Overrepresented Specific Sequences

- Normally artificial sequences (primers, adapters, vectors etc)
- Can search a database of known sequences to find matches

Sequence	Count	Percentage
GATCGGAAGAGCACACGTCTGAACTCCAGTCACCTTGTAATCTCGTATGC	17957	0.14359551756800035

Example of an Adapter dimer:

Barcode Adapter	Insert	Adapter	Barcode
-----------------	--------	---------	---------

Barcode	Adapter	Adapter	Barcode

Overrepresented Specific Sequences

• Other potential sources...

Sequence	Count	Percentage	Possible Source
GGCTTCCTCGGCCCCGGGATTCGGCGAAAGCTGCGGCCGGAGGGCTGTAA	746766	1.360148419566899	No Hit
Image: Constraint of the second se	de	H	
Sequence	Count	Percentage	Possible Source
ocqueries			

	Description		Scientific Name	Max Score	Total Score	Query Cover	E value	Per. Ident	Acc. Len	Accession
	Mus musculus large subunit ribosomal RNA gene, partial sequence		Mus musculus	93.5	93.5	100%	1e-15	100.00%	4731	MN537140.
	Mus musculus clone contig 15 chromocenter region genomic sequence		Mus musculus	93.5	93.5	100%	1e-15	100.00%	884	KX121621.
	Mus musculus genome assembly, chromosome: 18		Mus musculus	93.5	186	100%	1e-15	100.00%	89877872	<u>OX439032</u>
	Mus musculus genome assembly, chromosome: 16		Mus musculus	93.5	93.5	100%	1e-15	100.00%	96079412	OX439031
	Mus musculus genome assembly, chromosome: 18		Mus musculus	93.5	93.5	100%	1e-15	100.00%	90037828	OX390161
	Mus musculus genome assembly, chromosome: 16		Mus musculus	93.5	93.5	100%	1e-15	100.00%	97401718	OX390159
			Mus musculus	93.5	93.5	100%	1e-15	100.00%	62939505	OX389813
Г			Mus musculus	93.5	93.5	100%	1e-15	100.00%	89861325	OX389812
h	Ribosomal	ē	Mus musculus	93.5	93.5	100%	1e-15	100.00%	15928	GU372691
•		th enriched library, clone:F730219H1.	<u>Mus musculus</u>	93.5	93.5	100%	1e-15	100.00%	910	AK155774
		sngth enriched library, clone:F63021	. Mus musculus	93.5	93.5	100%	1e-15	100.00%	1045	AK155253
•	Mus musculus CNR gene for cadherin-related neuronal receptor, comple	te cds	Mus musculus	93.5	93.5	100%	1e-15	100.00%	10521	AB114630.
~ 1	Mus musculus putative membrane-associated guanylate kinase 1 (Magi-	1) mRNA, alternatively spliced b form,	. Mus musculus	93.5	93.5	100%	1e-15	100.00%	5371	AF027503
	Chain L5, Mus musculus 28S ribosomal RNA		Mus musculus	86.1	86.1	100%	2e-13	98.00%	4731	<u>7CPU_L5</u>
	Mus musculus 45S pre-ribosomal RNA (Rn45s), ribosomal RNA		Mus musculus	86.1	86.1	100%	2e-13	98.00%	13400	<u>NR_04623</u>
• 1	TPA: Mus musculus ribosomal DNA, complete repeating unit		Mus musculus	86.1	86.1	100%	2e-13	98.00%	45306	BK000964
	Mus musculus 28S ribosomal RNA (Rn28s1), ribosomal RNA		Mus musculus	86.1	86.1	100%	2e-13	98.00%	4730	<u>NR_00327</u>
	M.musculus 45S pre rRNA gene		Mus musculus	86.1	86.1	100%	2e-13	98.00%	22118	<u>X82564.1</u>
	Mouse 28S ribosomal RNA		Mus musculus	86.1	86.1	100%	2e-13	98.00%	4712	X00525.1

Con	itam	ina	nt
CUI	itam	шa	IIL

- Bacterium ARSSAG-00000681 DNA, putative prophage region, clone: 00000681 pp1
 Bacterium APSSAG-00000681 DNA, putative prophage region, clone: 00000681 pn3
- Bacterium ARSSAG-00000681 DNA_putative prophage region_clone: 00000681_pp2
- Rhodobacteraceae bacterium ARSSAG-00000591 DNA, putative prophage region, clone: 00000591_pp1
- Escherichia coli strain O111 chromosome, complete genome
- Deinococcus grandis ATCC 43672 DNA, complete genome

•	-	-	-	T	-		
Escherichia pha	93.5	186	100%	1e-15	100.00%	47678	LR597651.1
Escherichia pha	93.5	93.5	100%	1e-15	100.00%	50126	NC_049948.1
Bacillus phage	93.5	93.5	100%	1e-15	100.00%	45023	MH538296.1
Escherichia coli	93.5	93.5	100%	1e-15	100.00%	2780	MH213709.1
Polynucleobacte	93.5	93.5	100%	1e-15	100.00%	1655757	LT606948.1
Bacillales bacter	93.5	93.5	100%	1e-15	100.00%	4793	LC663156.1
bacterium	93.5	93.5	100%	1e-15	100.00%	4287	LC663089.1
<u>bacterium</u>	93.5	93.5	100%	1e-15	100.00%	6385	LC663013.1
bacterium	93.5	93.5	100%	1e-15	100.00%	24280	LC662963.1
Paracoccaceae	93.5	93.5	100%	1e-15	100.00%	5070	LC662864.1
Escherichia coli	89.8	391	100%	2e-14	100.00%	5288508	CP101307.1
Deinococcus gra	87.9	258	100%	7e-14	98.00%	3241502	AP021849.1

Exercise Part 2: Assessing Library Dependent Metrics

- Per base sequence content
- Per sequence GC content
- Sequence Duplication Levels
- Overrepresented sequences

One of these samples is normal for an RNA-Seq library, the other is not. Which is which?

Assessing Consistency

Context is Key for QC

Aggregated Statistics

Individual QC reports are useful but helpful to have a wider picture

Aggregate and plot range of QC stats together

MultiQC currently has modules to support 128 different bioinformatics tools, https://multiqc.info/modules/

Sample1 Sample2 PE mapped uniquely Sample3 PE multimapped Sample4 PE neither mate aligned Sample5 Sample6 2.5M 12.5M 15M 17.5N 22.5M 25M 27.5M 32.5M 35M 37.5M 40M 42.5M 20M Number of Reads 100 75 25 SPCC ambda 4coli uman st. 6 Samples, 24 files: Paired end Pre/post trimming

General Stats

Bowtie 2 / HiSAT2

Cutadapt

Filtered Reads

Trimmed Sequence Lengths (3')

FastQ Screen

FastQC

Sequence Counts

Sequence Quality Histograms

Per Sequence Quality Scores

Per Base Sequence Content

Per Sequence GC Content

Per Base N Content

Sequence Length Distribution

Sequence Duplication Levels

Overrepresented sequences

Basic Statistics

Adapter Content

Status Checks

Per Base Sequence Per Tile Sequence Qu Per Sequence Quality Per Base Sequence Co Per Sequence GC Per Base N Content Sequence Length Dist Sequence Duplication Overrepresented Adapter Content Cont Seau Ou

Aggregated Mapping Stats

Identify local QC problems by spotting samples that behave differently

Exercise Part 3: Putting it All Together with MultiQC

There is a QC problem, can you tell what it is and whether the data is usable?

Final Thoughts

Expectations and Observations are Key

Report **Report**

Summary

Basic Statistics Per base sequence quality Per tile sequence quality Per sequence quality scores Per base sequence content Per sequence GC content Per base N content Sequence Length Distribution Sequence Duplication Levels Overrepresented sequences Adapter Content

CFastQC Report

Summary

PastQC Report

Summary

Basic Statistics Per base sequence quality Per tile sequence quality Per sequence quality scores Per base sequence content Per sequence GC content Per base N content Sequence Length Distribution Sequence Duplication Levels Overrepresented sequences Adapter Content

Can you tell if these libraries are any good?

QC In A Nut-Shell

Good Science 😳

Useful Links

Articles about common next-generation sequencing problems

https://sequencing.qcfail.com/

FastQC <u>http://www.bioinformatics.babraham.ac.uk/projects/fastqc/</u> FastQ Screen <u>https://www.bioinformatics.babraham.ac.uk/projects/fastq_screen/</u> MultiQC <u>https://multiqc.info/</u>