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Outline of the course

* Short introduction to Power analysis

* Analysis of qualitative data:
* Chi-square test

* Analysis of quantitative data:
 Student’s t-test, One-way ANOVA and correlation



R packages needed

beanplot
pastecs
plotrix

reshape2



Power analysis

* Definition of power: probability that a statistical test will reject a false null hypothesis (H,).
* Translation: the probability of detecting an effect, given that the effect is really there.

* In a nutshell: the bigger the experiment (big sample size), the bigger the power (more likely
to pick up a difference).

* Main output of a power analysis:
* Estimation of an appropriate sample size

* Too big: waste of resources,

Too small: may miss the effect (p>0.05)+ waste of resources,

Grants: justification of sample size,

Publications: reviewers ask for power calculation evidence, e ol | [ ey s sk
the use of animals number of animals and improve animal
used per experiment welfare

Home office: the 3 Rs: Replacement, Reduction and Refinement.



Experimental design
Think stats!!

* Translate the hypothesis into statistical questions:
* What type of data?
* What statistical test ?
* What sample size?

* Very important: Difference between technical and biological replicates.

Technical Biological
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What does Power look like?
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What does Power look like? Null and alternative hypotheses

critical value

- power

Probability density
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* Probability that the observed result occurs if H, is true
* H,: Null hypothesis = absence of effect
* H,: Alternative hypothesis = presence of an effect



What does Power look like? Type | error a
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o : the threshold value that we measure p-values against.
* For results with 95% level of confidence: a = 0.05
= probability of type | error

e p-value: probability that the observed statistic occurred by chance alone

e Statistical significance: comparison between a and the p-value
* p-value <0.05: reject H, and p-value > 0.05: fail to reject H,



What does Power look like? Power and Type Il error 3
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* Type ll error (B) is the failure to reject a false H,
* Probability of missing an effect which is really there.
* Power: probability of detecting an effect which is really there

e Direct relationship between Power and type Il error:
* Power=1-



What does Power look like? Power = 80%
* Type Il error (B) is the failure to reject a false H, 5 \\"h
* Probability of missing an effect which is really there. =
* Power: probability of detecting an effect which is really there & \
* Direct relationship between Power and type Il error: i “‘\——;——-
* if Power=0.8then B = 1- Power = 0.2 (20%) .

* Hence a true difference will be missed 20% of the time

e General convention: 80% but could be more

e Cohen (1988):
* For most researchers: Type | errors are four times more serious than

Type Il errors so0 0.05 * 4 = 0.2
* Compromise: 2 groups comparisons:

* 90% = +30% sample size
* 95% = +60%s sample size



What does Power look like? Critical value
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* In hypothesis testing, a critical value is a point on the test distribution that is compared to
the test statistic to determine whether to reject the null hypothesis
 Example of test statistic: t-value

* If the absolute value of your test statistic is greater than the critical value, you can declare
statistical significance and reject the null hypothesis
 Example: t-value > critical t-value



To recapitulate:

* The null hypothesis (H,): H, = no effect

* The aim of a statistical test is to reject or not H,

Statistical decision True state of H,,
H, True (no effect) H, False (effect)
Reject H, Type I error a @, | Correct ;@f)
False Positive ' | True Positive

o~

Do not reject H, | Correct @ Type II error B gt
True Negative False Negative | a4

* Traditionally, a test or a difference are said to be “significant” if the probability of type |
erroris: a =< 0.05

* High specificity = low False Positives = low Type | error

* High sensitivity = low False Negatives = low Type Il error



Sample Size: Power Analysis

The power analysis depends on the relationship between 6 variables:

* the difference of biological interest ]
- Effect size

* the variability in the data (standard deviation)
* the significance level (5%)
* the desired power of the experiment (80%)

* the sample size

* the alternative hypothesis (ie one or two-sided test)



The difference of biological interest

* Thisis to be determined scientifically, not statistically.

« minimum meaningful effect of biological relevance

* the larger the effect size, the smaller the experiment will need to be to detect it.

* How to determine it?
* Substantive knowledge, previous research, pilot study ...

The Standard Deviation (SD)

* Variability of the data

* How to determine it?
» Substantive knowledge, previous research, pilot study ...

* In ‘power context’: effect size: combination of both:

« e.g.:Cohen’sd=(Mean 1—- Mean 2)/Pooled SD



Power Analysis
The power analysis depends on the relationship between 6 variables:

* the difference of biological interest

* the standard deviation

* the significance level (5%) (p< 0.05) a

* the desired power of the experiment (80%) 8

* the sample size

* the alternative hypothesis (ie one or two-sided test)



Power Analysis
The power analysis depends on the relationship between 6 variables:

* the effect size of biological interest

* the standard deviation

* the significance level (5%)

 the desired power of the experiment (80%)
* the sample size

* the alternative hypothesis (ie one or two-sided test)



The alternative hypothesis: what is it?

. One-tailed or 2-tailed test? One-sided or 2-sided tests?

Two-Tailed Versus One-Tailed Hyphothesis Tests

Figure A: Figure B: t=-1.70 (.03) t= 4170 (.05)
Two-Tailed Test One-Tailed Test
(Left-Tailed Test) t=-205 (L025) t= 4205 (,025])

Critical value .,.—/'/ \*-..__M

\ 2 -2 -1 0 1 i 2
t -
t. = +1.9
5.0%

p Level of Significance for a Directional Test
((os) .oz o1 005 0005
0 0 Lewvel of Significance for a Mon-Direckional Test
CDS) 02 01 ool
® |S the queSt|On 1,70 205 247 ZTE  BET
. Is the there a difference?
. s it bigger than or smaller than? e dper il
g8

 Canrarely justify the use of a one-tailed test
. Two times easier to reach significance with a one-tailed than a two-tailed
. Suspicious reviewer!




* Fix any five of the variables and a mathematical relationship can be used
to estimate the sixth.

e.g. What sample size do | need to have a 80% probability (power) to detect this particular
effect (difference and standard deviation) at a 5% significance level using a 2-sided test?

Difference l Standard deviation T

e}
\ \

Significance levell Power 2-sided test (T)



e Good news:
there are packages that can do the power analysis for you ... providing you have some prior
knowledge of the key parameters!

difference + standard deviation = effect size
* Free packages:
e R
e G*Power and InVivoStat

 Russ Lenth's power and sample-size page:
e  http://www.divms.uiowa.edu/~rlenth/Power/

* Cheap package: StatMate (~ S95)

* Not so cheap package: MedCalc (~ $495)


http://www.divms.uiowa.edu/~rlenth/Power/
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19 | 638 461 LDss 1323 I 2003 2205 2539 2861
20 | 687 A60 1064 1335 2086 2197 2528 28435
21| 486 459 1083 1323 > 2080 2189 2518 2831,
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Qualitative data



Qualitative data

* = nhot humerical

* = values taken = usually names (also nominal)
* e.g. causes of death in hospital

* Values can be numbers but not numerical
* e.g. group number = numerical label but not unit of measurement

e Qualitative variable with intrinsic order in their categories = ordinal

e Particular case: qualitative variable with 2 categories: binary or dichotomous
* e.g. alive/dead or presence/absence



Fisher’s exact and Chi?

Example: cats.dat o oo

M A

e Cats trained to line dance \1 \1
e 2 different rewards: food or affection

e Question: Is there a difference between the rewards?

e |s there a significant relationship between the 2 variables?
— does the reward significantly affect the likelihood of dancing?

e To answer this type of question: _m

— Contingency table Dance ? ?

. . No dance ? ?
— Fisher’s exact or Chi? tests

But first: how many cats do we need?



Power analysis: Fisher’s test

* Preliminary results from a pilot study: 25% line-danced after having received affection as a reward vs. 70%
after having received food.

power.prop.test (n = NULL, pl = NULL, p2 = NULL , sig.level = NULL, power = NULL , alternative
= c("two.sided", "one.sided")

* Exactly one of the parametersn, pl, p2, power and sig.level must be passed as NULL, and that
parameter is determined from the others. “two-sided” is the default.

power.prop.test(pl = 0.25, p2 = 0.7, sig.level = 0.05, power = 0.8)

Two-sample comparison of proportions power calculation

n = 18.10585
pr =56~

p2 = 0.7

sig. level = 0.05
power = 0.8

alternative = two.sided

NOTE: n is number in *each® group

Providing the effect size observed in the experiment is similar to the one observed in the pilot study, we will
need 2 samples of about 18 cats to reach significance (p<0.05) with a Fisher’s exact test.



Plot ‘cats.dat’ (From raw data)

plot (cats.dataSTraining, cats.data$Dance,

table (cats.data)

Dance
Training NO Yes
Affection as Reward 114 48
Food as Reward 10 28

Dance

head (cats.data)

Yes

No

Food
Food
Food
Food
Food
Food

ohown o B

Training Dance

ds
ds
ds
ds
ds
ds

xlab = "Training",

Reward Yes
Reward Yes
Reward Yes
Reward Yes
Reward Yes
Reward Yes
ylab = "Dance")

Affection as Reward

Training

1.0

Food as Reward



Plot cats data (From raw data)

contingency.table <- table(cats)

contingency.table <- prop.table(contingency.table, 1)
contingency.tablel00 <- round(contingency.table*100)
contingency.tablel(O0

Dance Dance
Training NO Yes Training No Yes

Affection as Reward 114 48 Affection as Reward 0.7037037 0.2962963 —»

Food as Reward 10 28 Food as Reward 0.2631579 0.7368421

Training

Dance
MO Yes

Affection as Reward 70 30

Food as Reward

26 74

contingency.tablel00<-cbind(contingency.tablelO0[,"Yes"],contingency.tablel00[, "No"])

colnames (contingency.tablel00) <- c("Yes", "No")
contingency.tablel(O0

barplot (t(contingency.tablel(00),
legend. text=TRUE,
ylab = "Percentages",
las =1
)

Percentages

100

Affection as Reward

Food as Reward

O No
B Yes




Plot cats data (From raw data) Prettier!

barplot (t(contingency.tablel00),
col=c ("chartreuse3", "lemonchiffon2"),

. 100
cex.axlis=1.2,
cex.names=1.5, Smma
" Yes 0
cex.lab=1.5, a0
ylab = "Percentages",
las=1)
o
o 60 7
o
=
@
2
uJ 1
P 40
legend ("topright",
title="Dancing",

inset=.05,
c("Yes","No"), Affection as Reward Food as Reward
horiz=TRUE,

pch=15,

col=c ("chartreuse3", "lemonchiffon2"))



Chi-square and Fisher’s tests

Chi? test very easy to calculate by hand but Fisher’s very hard
Many software will not perform a Fisher’s test on tables > 2x2

Fisher’s test more accurate than Chi? test on small samples
Chi2 test more accurate than Fisher’s test on large samples

Chi? test assumptions:
e 2x2 table: no expected count <5
e Bigger tables: all expected > 1 and no more than 20% < 5

Yates’s continuity correction
e  All statistical tests work well when their assumptions are met
*  When not: probability Type 1 error increases
 Solution: corrections that increase p-values
 Corrections are dangerous: no magic
* Probably best to avoid them




Chi-square test

* |In a chi-square test, the observed frequencies for two or more groups are compared with
expected frequencies by chance.

(Observed Frequency - Expected Frequencyy

Expected Frequency

* With observed frequency = collected data

 Example with ‘cats.dat’



Chi-square test

* Formula for Expected frequency = (row total)*(column total)/grand total

Example: expected frequency of cats line dancing
after having received food as a reward:

Total observations in Table: 200

| car.dataspance Expected = (38*76)/200=14.44
cat.dataf$Training | No | Yes | Row Total |
———————————————————— O e B
affection as rReward | 114 48 1627 |
123:;?3% gé:ggg% £1.000% I Alternatlvelv:

Probability of line dancing: 76/200
Probability of receiving food: 38/200

(76/200)*(38/200)=0.072
Expected: 7.2% of 200 = 14.44

Chi2 = (114-100.4)2/100.4 + (48-61.6)2/61.6 + (10-23.6)2 /23.6 + (28-14.4)2/14.4
= 25.35

column Total

Is 25.35 big enough for the test to be significant?



Chi-square and Fisher’s Exact tests

> chisg.test{contingency.table)

Pearson's Chi-squared test with vates' continuity correction

data: contingency.table
¥-squared = 23.52, df =1, p-value < 1.236e-06

- without the correction:

> chisg.test{contingency.table, correct=F)

Pearson's Chi-squared test
data: contipgercy.table
X-squared df = 1, p-value

= fisher.test{contingency.table)

4.767e-07

Fisher's Exact Test for Count Data

data: copringencysgable
p-value £ 1.312e-06
alternativetypethésis: true odds ratio 15 not equal to 1

95 percent confidence interval:
2.837773 16.429686

100
Dancing
" Yes No
80
i
0360—
1]
T
[(}]
e
m —
e 40

Affection as Reward Food as Reward

Odds of dancing

i . Dance _
33321 ?ai?i: mares: i Training NO Yes 48/114 = affection
6. 570065 > Ratiooftheodds —— affection as rReward 114 48 -, 28/10=food
T Food as Reward 10 28
food
affection 6.6

Answer: Training significantly affects the likelihood of cats line dancing (p=4.8e-07).



Quantitative data



Quantitative data

* They take numerical values (units of measurement)

* Discrete: obtained by counting
* Example: number of students in a class
* values vary by finite specific steps

e or continuous: obtained by measuring
* Example: height of students in a class
* any values

* They can be described by a series of parameters:
 Mean, variance, standard deviation, standard error and confidence interval



Measures of central tendency
Mode and Median

* Mode: most commonly occurring value in a distribution

AL AL
Lol ) | |

4 -2 0

N a———

 Median: value exactly in the middle of an ordered set of numbers

Example 1: 18 27 34 52 54 59 EE- 82 85 87 91 93 100, Median = 63
Example 2: 18 27 27 34 52 52 59 61 63 68 85 85 85 90, Median = 60



Measures of central tendency
Mean

* Definition: average of all values in a column

* |t can be considered as a model because it summaries the data

 Example: a group of 5 lecturers: number of friends of each members of the group: 1,
2,3,3and 4
* Mean: (1+2+3+3+4)/5 = 2.6 friends per person

e Clearly an hypothetical value

e How can we know that it is an accurate model?
e Difference between the real data and the model created



Measures of dispersion

* Calculate the magnitude of the differences between each data and the mean:

5

® +1.4
k=4

g 31

IC +0.4 +0.4

s
16 ©

From Field, 2000 Lecturer

e Total error = sum of differences
=0 = 2(x; — x) = (-1.6)+(-0.6)+(0.4)+(1.4) =0

No errors !
* Positive and negative: they cancel each other out.



Sum of Squared errors (SS)

* To avoid the problem of the direction of the errors: we square them
* |nstead of sum of errors: sum of squared errors (SS):

(85) = Z(x; — x)(x; — X)
=(1.6)2 + (-0.6)2 + (0.4)%2 +(0.4)2 + (1.4)2
=2.56+0.36+0.16 + 0.16 +1.96
=5.20
* SS gives a good measure of the accuracy of the model

* But: dependent upon the amount of data: the more data, the higher the SS.

 Solution: to divide the SS by the number of observations (N)

* As we are interested in measuring the error in the sample to estimate the one in the population we
divide the SS by N-1 instead of N and we get the variance (5?) = SS/N-1




Variance and standard deviation

. SS T (xi—x)? 5.20
e variance (s%) = —=——=——=13

* Problem with variance: measure in squared units

* For more convenience, the square root of the variance is taken to obtain a measure in
the same unit as the original measure:

e the standard deviation
 S.D.=V(SS/N-1)=V(s?)=s= v1.3 =1.14

* The standard deviation is a measure of how well the mean represents the data.



Standard deviation

Overall Raling of Lecturer
[

[ VO —
Standard Deviation = 1.82
5 @

G R e O S O R l
| Standard Deviation = 0.55 }
g 3 © © o
=
2
3 2 @ Q
|
0 —~ ——
0 1 2 a3 4 5 6
Lecture
Small S.D.:

data close to the mean:
mean is a good fit of the data

Large S.D.:
data distant from the mean:
mean is not an accurate representation



SD and SEM (SEM = SD/VN)

* What are they about?

* The SD quantifies how much the values vary from one another: scatter or spread
* The SD does not change predictably as you acquire more data.

* The SEM quantifies how accurately you know the true mean of the population.
* Why? Because it takes into account: SD +[sample size

* The SEM gets smaller as your sample gets larger

* Why? Because the mean of a large sample is likely to be closer to the true mean than is the
mean of a small sample.
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The SEM and the sample size

‘Infinite’ number of samples
Samples means = X

2 4

-

Sample means

'
—

2

(=] iy

Sample means

Small samples (n=3)

Big samples (n=30)




SD and SEM

B e e e e e e, o - 45
4 4
5 <)
| 3:5
E d- Q § 3 i ’
L g
‘53 | L 2.5
g i e i o 2
E £
LR @ g
; ® 0
|
R e s | " , .
Leciure
Sample
The SD quantifies the scatter of the data. The SEM quantifies the distribution

of the sample means.



SD or SEM ?

* If the scatter is caused by biological variability, it is important to show the
variation.

* Report the SD rather than the SEM.
* Better even: show a graph of all data points.

* If you are using an in vitro system with no biological variability, the scatter is
about experimental imprecision (no biological meaning).

* Report the SEM to show how well you have determined the mean.



Confidence interval

Range of values that we can be 95% confident contains the true mean of the population.
- So limits of 95% Cl: [Mean - 1.96 SEM; Mean + 1.96 SEM] (SEM = SD/VN)

150+ - - /\
95% Cl 95%Cl | ., ..  95%cCl
* -3
* 'l.
100 . - P I - =
- - 68270/0
* -t * —
50+ N=5 . N=10 - N=150 95% N\
99%
L I
0 | | u-c U U+C :
'u-1-9660 H+1-966G
p—2-5766 u+2-5760
Error bars Type Description
Standard deviation Descriptive | Typical or average difference Standard Deviation(SD) (D otive) Standard E (SE) (Inf tial)
; : angar eviation escripuive anaar rror nierenta
between the data points and their Q's w/n a population: /s this "normal"? Q's between populations: Are they “different”?
mean. .
°
Standard error Inferential A measure of how variable the ) ¥ Z(y_y,z ) . §;
mean will be, if you repeat the 5 o : ] . . _SD
‘P o ‘? SE e
whole study many times. > P (n-1) » . vn
Confidence interval | Inferential A range of values you can be 95% D T Dro
usually 95% CI confident contains the true mean. rug g




Analysis of Quantitative Data

* Choose the correct statistical test to answer your question:

* They are 2 types of statistical tests:

e Parametric tests with 4 assumptions to be met by the data,

* Non-parametric tests with no or few assumptions (e.g. Mann-Whitney test)
and/or for qualitative data (e.g. Fisher’s exact and x? tests).




Assumptions of Parametric Data

* All parametric tests have 4 basic assumptions that must be met for the
test to be accurate.

1) Normally distributed data

* Normal shape, bell shape, Gaussian shape

Lengths of Raven eggs (from Ratcliff, 1993)

- _fiﬁi\\

a a 0
Length (mm

¢ TranSformationS can be iiiauc w nianc ugE TUitauic 1ur paramEtriC anaIYSiS.

Frequency

o H & &8 #
]




Assumptions of Parametric Data

Frequent departures from normality:
* Skewness: lack of symmetry of a distribution

Skewness < 0 Skewness = 0 Skewness > 0
(a) Negatively skewed (b) Normal (no skew) (c) Positively skewed
Mean
Meadian

Mode Mode

Frequency

' i i A i A i

FARANORMAL DISTRIBUTION

Negative diraction The normal curve Positive direction
represents a perfectly
symmetrical distribution

» Kurtosis: measure of the degree of ‘peakedness’ in the distribution

* The two distributions below have the same variance approximately
the same skew, but differ markedly in kurtosis.

Eurtosis = 1.25 Kurtosis = —1.23

Leptokurtic Platykurtic
Score
() Platykurtic and leptokurtic

More peaked distribution: kurtosis > O Flatter distribution: kurtosis < 0

Frequency




Assumptions of Parametric Data

2) Homogeneity in variance

* The variance should not change systematically throughout the data

3) Interval data (linearity)

* The distance between points of the scale should be equal at all parts along the scale.

4) Independence

* Data from different subjects are independent
* Values corresponding to one subject do not influence the values corresponding to another subject.
* Important in repeated measures experiments



Analysis of Quantitative Data

* |s there a difference between my groups regarding the variable | am measuring?
* e.g. are the mice in the group A heavier than those in group B?

e Tests with 2 groups:
* Parametric: Student’s t-test
* Non parametric: Mann-Whitney/Wilcoxon rank sum test

e Tests with more than 2 groups:
* Parametric: Analysis of variance (one-way ANOVA)
* Non parametric: Kruskal Wallis

* |s there a relationship between my 2 (continuous) variables?
e e.g.is there a relationship between the daily intake in calories and an increase in body weight?

* Test: Correlation (parametric) and curve fitting
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. Tl probability p
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21| 486 459 1083 1323 > 2080 2189 2518 2831,
22 | 686 858 1461 1321 1717 2074 2183 2508 2819

3.197

3174

315
3135
3419

7173
5.893
5208
4785
4.501
4,144
4.025
3550
3852
3787
3733
3686

3.611
3.579
3552
3.521
3.505

&.610
6.869
5959
5.408
5041
4781

4587

4437
4318
4221
4140
4073
4,015

3965

3883
3.850
3.819
37992




Signal-to-noise ratio

e Stats are all about understanding and controlling variation.

[ Difference ] S|gna|

[[ Difference J+ Noise }

signal  |f the noise is low then the signal is detectable ...

noise = statistical significance
signal ... butif the noise (i.e. interindividual variation) is large

then the same signal will not be detected

noise e
= no statistical significance

* |n a statistical test, the ratio of signal to noise determines the significance.



Comparison between 2 groups:
Student’s t-test

e Basic idea:

* When we are looking at the differences between scores for 2 groups, we have to judge
the difference between their means relative to the spread or variability of their scores.
* Eg: comparison of 2 groups: control and treatment

treatment

group
mean







Student’s t-test

signal _ difference between group means
noise variability of groups
X,—%X. A

var varg
+
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Cl overlap ~ 1 n=3
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Cl overlap ~ 0.5 n=3

~ 0.5 x Cl: p~0.01 |
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Cl overlap ~ 0 n>=10
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Student’s t-test

* 3 types:

* Independent t-test
e compares means for two independent groups of cases.

e Paired t-test

* looks at the difference between two variables for a single group:
* the second ‘sample’ of values comes from the same subjects (mouse, petri dish ...).

* One-Sample t-test
* tests whether the mean of a single variable differs from a specified constant (often 0)



Before going any further

e Data format: melt () wide vs long (molten) format

e Some extra R:

- tapply ()
— par (mfrow)

~ y~x



Data file format

e Wide vs long (molten) format

(predor ) (Oucome

condition measure
5

A
condA condB & 8
" —
: - A 3
4 2 B _
3 3 B 5
B 0
B 2
B 3

InR:melt ( ) ## reshape2 package ##




Extra R: tapply ()

e \Want to compute summaries of variables? tapply ()

— break up a vector into groups defined by some classifying factor,

— compute a function on the subsets,
Some.data

Condition Measure
" Cond.A
Cond.A
1 Cond.A
Cond.A
. Cond.A

Cond.B
tapply (some.data$measure, some.dataScondition, mean) Cond.B
1 Cond.B
Cond.B
. Cond.B

— and return the results in a convenient form.

(]

« tapply(data, groups, function)

cond. A cond.B
5.8 2.4

W N O UL N WS O

(Long format)



Extra R: par (mfrow)

e Want to create a multi-paneled plotting window? par (mfrow)

— Rather par (mfrow=c (row,col))

— Will plot a window with x rows and y columns

e We want to plot conditions A, B, C and D on the same panel

par (mfrow=c(2,2))

barplot (some
barplot (some
barplot (some
barplot (some
dev.off ()

.data$cond.A,
.data$cond.B,
.data$cond.C,
.dataS$cond.D,

main
main
main

main

Some.data

so that’s 2 row and 2 columns

"Condition A",
"Condition B",
"Condition C",

"Condition D",

col="red")
col="orange")

_n "
col="purple") Condition A

@
©
-
) l.
o

col="pink")

CondA CondB CondC CondD

5

W & 0 o

2

(LI R e R

7

[ I ¥ T o B

1 Condition C

©
©
-
) .-
o

= O n

oo

Condition B

Condition D




Extra R: y~x

e Want to plot and do stats on long-format file? y~X

— break up a vector into groups defined by some classifying factor,

— compute a function on thesubsets Some.data
. . Condition Measure

— creates a functional link between x and y, a model CondA 5
. ] Cond.A 8
— does what tapply does but in different context. CondA 9
Cond.A 4
Cond.A 3
e function (y~x) : yexplained/predicted by x, y=f(x) CondB 2
Cond.B 5
. . Cond.B 0
beanplot (some.data$measure~some.dataScondition) TR
Cond.B 3

Y = measure

cond.A cond.B

X = condition



Example: coyote.csv

e Question: do male and female coyotes differ in size?

 Sample size

* Data exploration

* Check the assumptions for parametric test
* Statistical analysis: Independent t-test



Power analysis

No data from a pilot study but we have found some information in the
literature.

In a study run in similar conditions as in the one we intend to run, male coyotes
were found to measure: 92cm+/- 7cm (SD).

We expect a 5% difference between genders.
. smallest biologically meaningful difference

power.t.test (n = NULL, delta = NULL, sd = 1, sig.level = NULL, power = NULL,
type = c("two.sample", "one.sample", "paired"),alternative = c("two.sided","one.sided"))



Power analysis

Independent t-test
A priori Power analysis

Example case:

We don’t have data from a pilot
study but we have found some
information in the literature.

In a study run in similar conditions
as in the one we intend to run,
male coyotes were found to
measure:

92cm+/- 7cm (SD)

We expect a 5% difference
between genders with a similar
variability in the female sample.

power.t.test (n = NULL,
power = NULL, type = c("two.sample",
alternative = c("two.sided", "one.sided"))

Mean 1 =92
Mean 2 = 87.4 (5% less than 92cm)

delta=92-87.4
sd=7

power.t.test (delta=92-87.4, sd = 7,
sig.level = 0.05, power = 0.8)

Two-sample € test power calculation

B

a
sd
sig. level
r
e

(=]

powe
alternativ

r'fDC:l'“«-l
[ e

Wo.

MOTE: n 15 number in %*each® group

We need a sample size of n~76 (2*38)

delta = NULL, sd = 1, sig.level = NULL,
"one.sample"

"paired"),



Data exploration + plotting data

Download: coyote.csv
Explore data using 4 different representations: boxplot, histogram, beanplot and stripchart

- function (Y“'X) % -

80

eeeeee

eeeeee

0 | A, $.e
N T o tapply ()
2 S segment ()

nnnnnnnnnnnn
eeeeee

par (mfrow=c(?,?))
coyote|[ ]1$length
coyote|[ ]$length



Length (cm)

1109

100"

901

80"

701

Coyote

Maximum

T -/

Upper Quartile (Q3) 75t percentile
— Upp (Q3) 757 p

60

Mediah \ Lower Quartile (Q1) 25t percentile

Smallest data /

......... g----------- Cutoff =Q1 —-1.5*IQR

> lower cutoff \
°

Outlier

Male Female
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http://upload.wikimedia.org/wikipedia/commons/8/89/Boxplot_vs_PDF.png

Exploring data: quantitative data
Boxplots or beanplots

Scatterplot shows individual data

A bean= a ‘batch’ of data
boxplot beanplot /
&
A

|
- -ul_-\

S e IS 4

1 3 3 Bimodal Uniform Normal
Distributions

Data density mirrored by the shape of the polygon



Boxplots and beanplots

Length (cm)

105 —_—

100

95

boxplot (coyote$Slength~coyoteS$Sgender,
col=c ("orange", "purple"),
las=1,
ylab="Length (cm)")

90

Length (cm)

85

80 [ I

75

110 70 -

female male

100

90
beanplot (coyote$length~coyote$gender,
las=1,
ylab="Length (cm)")
## beanplot package ##

80

70 1

60

T T
female male



Histograms

par (mfrow=c (1, 2))
hist (coyote[coyote$gender=="male",]$length, main="Male", xlab="Length", col="lightgreen", las=1)
hist (coyote[coyote$gender=="female",]Slength, main="Female", xlab="Length", col="tomatol", las=1)

Male Female

Frequency

Freguency

I 1 1 1 1 1 1 I 1 \ 1 1 1 1 1
75 80 85 90 95 100 105 70 75 80 85 90 95 100 105

Length Length



Stripcharts

stripchart (coyoteSlength~coyote$Sgender,
vertical=TRUE,
method="jitter",

las=1,
ylab="Length",
pch=16,
col=c ("darkorange", "purple"),
cex=1.5
) 105
length.means <- tapply(coyoteSlength, coyoteSgender, mean) 7 .%:.
95 o ...:..
segments (x,, Yo, X;, Y1) Yo=Y oo _,._3:_
3 L, & |
segments ( x,=1:2-0.15, "1 .°:‘
ybzlength.means:\\\\\ . 3 :
x,=1:2+0.15, \ 111 0.85 1.85 S
yv;=length.means, E?iﬁJﬁ . .

Lo .15 2.15 X0 1 Xq
)



Graphs combinations

boxplot (coyote$length~coyote$Sgender,

lwd = 2,

ylab = "Length",
cex.axis=1.5,
las=1,
cex.lab=1.5)

stripchart (coyote$Slength~coyote$Sgender,

vertical = TRUE,
method = "jitter",
pch = 20,

col = 'red',
cex=2,

add = TRUE)

110

100 ~

Length
©
o
|

80

70

60

female male

105 — T
—_— .
' o,
100 H ! ®
e
.:. --:...
95 - e L+
& T * .
® o0 :.'o
£ 90 A — o*
E’ -® :ol *
s - e is
85 1 .ﬂ%. ::o
1
| e Lo
80 4 — o
- e
75 4
o
ok
70 - ‘ ‘
female male

beanplot (coyote$length~coyote$Sgender,
overallline = "median",

las=1,
ylab = 'Length',
cex.lab=1.5,
col="bisque",

what = ¢(1, 1, 1, 0),

cex.axis=1.5)

boxplot (coyote$length~coyote$Sgender,

col=rgb(0.2,0.5,0.3,
pch = 20,

cex=2,

lwd=2,

yaxt='n',

xaxt="'n'

add=TRUE)

alpha=0.




Assumptions of Parametric Data

8 & "--‘;—r. ...::t__c.:_..___.‘¢

T T
female male

* First assumption: Normality
+** Shapiro-Wilk test shapiro.test ()

* Second assumption: Homoscedasticity
*» Bartlett test bartlett.test ()




Assumptions of Parametric Data

o * First assumption: Normality
o] 2 ¢ Shapiro-Wilk test shapiro.test ()
N * Second assumption: Homoscedasticity

) s Bartlett test bartlett.test ()

tapply (coyote$Slength, coyoteSgender, shapiro.test)

= tapply(coyote$length,coyote$gender, shapiro.test)
§ female”

Shapiro-wilk normality test

data: X[[‘i]
w = 0.97001, (p-value = 0.3164 . o
Normality

tmale

shapiro-wilk normality test

data: x[[1]
W = 0.98445,( p-value = 0.819

bartlett.test (coyote$Slength~coyote$gender)
= bartlett.test{coyoreslength~Ccoyoteigender)

Homogenelty in variance

Bartlett test of homogeneity of wvariances

data: coyote$length by coyotefgender
Bartlett's K-squared = 0.02021, df = 1 { p-value = 0. 887



Independent Student’s t-test

t.test (coyote$Slength~coyote$gender,
Two Sample t-test

data: coyote$length
t = -1.6411, df = 8¢
alternative hypothesis
95 percent confidence interval:
-5.184747 0.496375

sample estimates:
mean in group female
89.71163

0.1045

mean in group male
92.05581

e in means is not equal to 0 %

var.equal=T)

% o

ee ®
o .... :'.: ° .. o°
R
o| oPee e

Lengths

®
3
L]

+

female

male

Answer: males coyote are longer than females but not significantly so (p=0.1045).

 How many more coyotes to reach significance?

power.t.test (delta=92-89.7, sd

7y

But does it make sense?

0.8)

sig.level = 0.05, power =
Two-sample Tt test power calculation
n = 146, 3712
delta = 2.3
sd = 7
sig. level = 0.05
power = 0.8
alternative = two.sided
NOTE: n is number in *each®* group



The sample size: the bigger the better?

|t takes huge samples to detect tiny differences but tiny samples to detect huge differences.

90 -

80 - E *kk

*  What if the tiny difference is meaningless?
e Beware of overpower
* Nothing wrong with the stats: it is all about
interpretation of the results of the test.

70 J

30 4
e Remember the important first step of power analysis

* What s the effect size of biological interest? —L T

10 -

n=1178238




Plot ‘coyote.csv’ data + 1engeh.neans

100 — B9.71163 92.05581

bar.length<-barplot (length.means, /
col=c("darkslategrayl", "darkseagreenl"),
ylim=c (50,100),
beside=TRUE,
x1lim=c (0,1),
width=0.3, 80
ylab="Mean length",
las=1,
Xpd=FALSE) 0 4

90

Mean length

length.se <- tapply(coyoteSlength,coyoteSgender,std.error)

## plotrix package ## 60 -

female male
0.9988377 1.0211241

o
(6,
~

0.21

bar.length [,11 50
[1,] 0.21 female male
[2,] 0.57

arrows (x,=bar.length,
— Y1

vo=length.means-length.se, —
x,=bar.length,
y;=length.means+length.se, - — —P— X=X,
length=0.3,

—— Yo

angle=90,
code=3)




Dependent or Paired t-test
working.memory.csv

* Aresearcher is studying the effects of dopaminedepletion on working memory in rhesus monkeys.

* Question: does dopamine affect working memory in rhesus monkeys?

* Load working.memory.csv and use head () to get to know the structure of the data.

 Work out the difference: DA.depletion — placebo and
assign the difference to a column: working.memorySdifference

* Plot the difference as a stripchart with a mean

 Add confidence intervals as error bars
* Clue 1: you need std.errox () from # plotrix package #
* Clue 1 alternative: write a function to calculate the SEM (SD/VN)
* Clue 2: interval boundaries: mean+/-1.96*SEM

* Run the paired t-test.



Dependent or Paired t-test - Answers

Subject Placebo DA.depletion
working.memory<-read.csv ("working.memory.csv", header=T) 1 M1 9 7
head (working.memory) g Eg ig lg
. . . _ , 4 M4 18 1z
working.memorySdifference <- working.memory$placebo-working.memorySDA.depletion 5 M5 19 13
6 Mé 22 15
stripchart (working.memorySdifference,
vertical=TRUE,
method="jitter",
las=1,
ylab="Differences", ¢
pch=16, 7 ¢
col="blue", 1o »
cex=2)
» 10 —[e
diff.mean <- mean (working.memoryS$difference) % * *
centre<-1 % 8 - o [e
segments (centre-0.15,diff.mean, centre+0.15, diff.mean, col="black", lwd=3) bl I
6 ~
diff.se <- std.error(working.memorySdifference) ## plotrix package ## ¢
lower<-diff.mean-1.96*diff.se ‘7 .
upper<-diff.mean+1.96*diff.se 5 °
arrows (x0O=centre,
y0=lower,
xl=centre,
yl=upper, Alternative to using the plotrix package:
length=0.3, length.se<-tapply (coyote$length, coyote$Sgender,
code=3, function (x) sd(x)/sqrt (length(x)))
angle=90,

1lwd=3)




Differences

Dependent or Paired t-test - Answers

Question: does dopamine affect working memory in rhesus monkeys?

> apply(working.memory[,3:4], 2, shapiro.test)
$ DA.depletion’

®
" ¢ Shapiro-wilk normality test
12 [_J
data: newx[, 1]
10 4 ® W = 0.94274, p-value = 0.4181
® ®
8 ® ®
hd $pifference
6 L _J
o ¢ Shapiro-wilk normality test
®
2 ° data: newx[, 1]

W = 0.97727, p-value = 0.9474

> shapiro. test(working. memory$pifference)
Shapiro-wilk normality test

data: working.memory3$Difference
W = 0.97727, p-value = 0.9474

t.test (working.memoryS$placebo, working.memory$DA.depletion,paired=T)

Paired t-test

data: working.memory$placebo and working.memory$DA.depletion Answer: the injection of a dopamine-depleting agent
t = 8.6161, df = 14, p-value = 5.715e-07 o ) )
alternative hypothesis: true difference in means is not equal to 0 S|gn|f|cantly affects worklng memaory In rhesus monkeys
95 percent confidence interval:
6.308997 10.491003 (t=8.62, df=14, p=5.715e-7).

sample estimates:
mean of the differences
8.4



Comparison of more than 2 means

* Running multiple tests on the same data increases the familywise error rate.

 What is the familywise error rate?
* The error rate across tests conducted on the same experimental data.

* One of the basic rules (‘laws’) of probability:

* The Multiplicative Rule: The probability of the joint occurrence of 2 or more
independent events is the product of the individual probabilities.

P(A,B) = P(A) x P(B)

For example:

P(2 Heads) = P(head) x P(head) =05 x05=0.25



Familywise error rate

Example: All pairwise comparisons between 3 groups A, B and C:

* A-B, A-Cand B-C

Probability of making the Type | Error: 5%
* The probability of not making the Type | Error is 95% (=1 — 0.05)

Multiplicative Rule:
* Overall probability of no Type | errorsis: 0.95 * 0.95 * 0.95 = 0.857

So the probability of making at least one Type | Erroris 1-0.857 =0.143 or 14.3%
* The probability has increased from 5% to 14.3%

Comparisons between 5 groups instead of 3, the familywise error rate is 40% (=1-(0.95)")



Familywise error rate

* Solution to the increase of familywise error rate: correction for multiple comparisons
* Post-hoc tests

* Many different ways to correct for multiple comparisons:

» Different statisticians have designed corrections addressing different issues
* e.g. unbalanced design, heterogeneity of variance, liberal vs conservative

* However, they all have one thing in common:
* the more tests, the higher the familywise error rate: the more stringent the correction

* Tukey, Bonferroni, Sidak, Benjamini-Hochberg ...

* Two ways to address the multiple testing problem
* Familywise Error Rate (FWER) vs. False Discovery Rate (FDR)



Multiple testing problem

* FWER: Bonferroni: a4, = 0.05/n comparisons e.g. 3 comparisons: 0.05/3=0.016
* Problem: very conservative leading to loss of power (lots of false negative)
* 10 comparisons: threshold for significance: 0.05/10: 0.005
* Pairwise comparisons across 20.000 genes ®

* FDR: Benjamini-Hochberg: the procedure controls the expected proportion of
“discoveries” (significant tests) that are false (false positive).

* Less stringent control of Type | Error than FWER procedures which control the probability of at least one
Type | Error

 More power at the cost of increased numbers of Type | Errors.

e Difference between FWER and FDR:

* a p-value of 0.05 implies that 5% of all tests will result in false positives.

* a FDR adjusted p-value (or gq-value) of 0.05 implies that 5% of significant tests will result in false
positives.



Analysis of variance

e Extension of the 2 groups comparison of a t-test but with a slightly different logic:

-0

* t-test = meanl — mean2

Pooled SEM Pooled SEM ’
@ _.
|
* ANOVA =variance between means ! ’ !
1 1
Pooled SEM ‘ 6 €—

Pooled SEM

* ANOVA compares variances:

 |f variance between the several means > variance within the groups (random error) then the means
must be more spread out than it would have been by chance.



Analysis of variance

The statistic for ANOVA is the F ratio.

Variance between the groups

F= Variance within the groups (individual variability)

Variation explained by the model (= systematic)

Variation explained by unsystematic factors (= random variation)

If the variance amongst sample means is greater than the error/random variance, then F>1
* Inan ANOVA, we test whether F is significantly higher than 1 or not.



Analysis of variance

Source of variation | Sum of Squares | df Mean Square |F p-value
Between Groups 2.665 4 0.6663 8.423 |<0.0001
Within Groups 5.775 73 0.0791

Total 8.44 77

e Variance (= SS/ N-1) is the mean square
e df: degree of freedom with df = N-1

Between groups variability

— .’8::: 8° 2eg®
Ooo......o" { —or— °
0040,000° o: ®ece® "3 ° oo

Within groups variability

Total sum of squares



Example: One-way ANOVA: protein.expression.csv

* Question: is there a difference in protein expression between the 5 cell
lines?

* 1 Plot the data
e 2 Check the assumptions for parametric test

3 Statistical analysis: ANOVA



Example: One-way ANOVA: protein.expression.csv

* Question: Difference in protein expression between 5 cell types?

* Load protein.expression.csv

* Restructure the file: wide to long
e Clue:melt () ##reshape2 ##

* Renamethe columns: "1ine" and "expression"
* Clue: colnames ()

e Remove the NAs
e Clue:na.omit

* Plot the data using at least 2 types of graph



Example: One-way ANOVA: protein.expression.csv

protein<-read.csv ("protein.expression.csv",header=T)
protein.stack<-melt (protein) ## reshape2 package ##
colnames (protein.stack)<-c("line", "expression")
protein.stack.clean <- na.omit (protein.stack)

head (protein.stack.clean)

1ine expression
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stripchart (protein.stack.clean$Sexpression~protein.stack.clean$line,vertical=TRUE, method="jitter", las=1,
ylab="Protein Expression",pch=16,col=1:5)

expression.means<-tapply (protein.stack.cleanSexpression,protein.stack.clean$Sline,mean)

segments (1:5-0.15,expression.means, 1:5+0.15, expression.means, col="black", lwd=3)

boxplot (protein.stack.cleanSexpression~protein.stack.clean$Sline,col=rainbow(5),ylab="Protein Expression",las=1)

beanplot (protein.stack.cleanSexpression~protein.stack.clean$Sline, log="",ylab="Protein Expression",las=1)
## beanplot package ##

10 +

Prolein Expression

Protein Expression
Protein Expression
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- 1 s o
. - ° | H
. . o H H i
. !
g . H
2 e o o *e 24 —_ - 2
o8 . .‘ "-:c- ] |
To= T — BN
. [ 4 ‘ - ; = : — i 0
01 T T T T T 0
c c ‘ ‘ .
B c D E

A



Assumptions of Parametric Data

tapply (protein.stack.cleanSexpression,protein.stack.clean$line, shapiro.test)

A7
shapiro-wilk normality test
data: x[[i]]
W = 0.92857, p-value = 0.3755
$B
shapiro-wilk normality test
data: x[[i]1]
W = 0.95351, p-value = 0.6888
$C

Shapiro-wilk normality test

data: x[[i]]
W = 0.81968, p-value 0.002921

D

Shapiro-wilk normality test

data: x[[i]1]
W = 0.75307, p-value 0.0003549

$E
Shapiro-wilk normality test

data: x[[i]1]
W = 0.96707, p-value = 0.7411

protein.stack.clean$loglO.expression<-1ogl0 (protein.stack.cleanSexpression)



Plot ‘protein.expression.csv’ data
Log transformation

beanplot (protein.stack.cleanSexpression~protein.stack.clean$Sline, ylab="Protein Expression", las=1)

stripchart (protein.stack.cleanSexpression~protein.stack.clean$line,vertical=TRUE,
method="jitter", las=1, ylab="Protein Expression",pch=16,col=rainbow (5),log="y")

expression.means<-tapply (protein.stack.cleanSexpression,protein.stack.clean$Sline, mean)
segments (1:5-0.15, expression.means, 1:5+0.15, expression.means, col="black", lwd=3)

boxplot (protein.stack.clean$logl0.expression~protein.stack.clean$line,col=rainbow(5), ylab="Protein
Expression", las=1)
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data:

W

iE

= 0.

data:

W

e

$D

data:

W

$E

= 0.

data:

W

Shapiro-wilk

x[[1]
85425, p-value

shapiro-wilk

x[[i1]
. 94584, p-value

shapiro-wilk

x[[11]
.96571, p-value

Shapiro-wilk

x[[i1]
98684, p-value

shapiro-wilk

x[[11]
.93134, p-value

Assumptions of Parametric Data

tapply (protein.stack.clean$logl0.expression,protein.stack.clean$line,shapiro.test)
3 S . '

normality test

0.04144

normality test

= 0.5773

normality test

normality test

normality test

= 0.205

Normality M-ish

bartlett.test (protein.stack.clean$logl0.expression~protein.stack.cleanS$line)

data:

Bartlett test of homogeneity of wariances

protein.stack. clean®logll. expression by
Bartlett's K-squared = 5.8261, df = 4, p-value

1: ack.clean3line

Homogeneity in variance



Analysis of variance: Post hoc tests

* The ANOVA is an “omnibus” test: it tells you that there is (or not) a difference
between your means but not exactly which means are significantly different
from which other ones.

* To find out, you need to apply post hoc tests.

* These post hoc tests should only be used when the ANOVA finds a significant effect.



Analysis of variance

anova.log.protein<-aov(loglO.expression~line,data=protein.stack.clean)
summary (anova.log.protein)

Df Sum 5g Mean 5g F value Pr{=F)
1ine 4 2.691 0.6728 8.123 1.78e-05 ##¥
Residuals 73 6.046 0.0828

Signif. codes: O "#%%' 0,001 *#*' Q.01 **' Q.03 *." 0.1 * "1

pairwise.t.test(protein.stack.clean$logl0.expression,protein.stack.clean$Sline, p.adj = "bonf")

Fairwise comparisons using T tests with pooled sD
data: protein.stack.clean$logld.expression and protein.stack.clean$line

B C o

:DDDDJHDDDD - - TukeyHSD (anova.log.protein,"line")

00571 1.9e-05 0.0017 -
1.0000 0.0062 0.3318 0.7675

mQmm
‘b

Tukey multiple comparisons of means
95% family-wise confidence level

P value adjustment method: bonferroni . . .
] Fit: aov(formula = logl0O.expression ~ line, data = protein.stack.clean)

£line

diff Twr e p~adj
- 25024832 -0.5788824594 0.0783B&EY 0. 2187204

B-A -0 0

C-A -0.07499724 -0.374997820 0.22500335709500187
D-A 0.30549397 0.005493391 0.60549456 0.0438762
E-A 0.13327517 -0.1667253416 0.43327575 0.7265567
C-B 0.17525108 -0.124749499 0.47525167 0.4809387
D-B  0.55574230 0.255741712 0. 85574288 0. 0000183
E-B 0.38352349 0.0835%22904 0.6E352407 0.0054767
D-C 0.38049121 0.112162532 0.648E81989 0.0015%4321
E-C 0.20827240 -0.060056276 0.47660108 0. 2023355
E-D -0.17221881 -0.4405347487 0.09610987 0.3841989



Analysis of variance

bar.expression<-barplot (expression.means, beside=TRUE, ylab="Mean expression", ylim=c (0, 3),

expression.se <- tapply(protein.stack.cleanSexpression,protein.stack.clean$line,std.error)

arrows (x0O=bar.expression,

x1l=bar.expression,

yO0=expression.means-expression.se,

yl=expression.means+expression.se, length=0.2, angle=90, code=3)

Mean expression
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Association between 2 continuous variables



Correlation

e A correlation coefficient is an index number that measures:
* The magnitude and the direction of the relation between 2 variables
* It is designed to range in value between -1 and +1
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Correlation

* Most widely-used correlation coefficient:
e Pearson product-moment correlation coefficient

o7
r

> (% — Xy, — ¥

im]

M o
Z (x; — fj:z v _.?F}E
iml iml
* The 2 variables do not have to be measured In the same units but they have to be proportional
(meaning linearly related)

»=

e Coefficient of determination:
e risthe correlation between Xand Y
* r2jsthe coefficient of determination:

* |t gives you the proportion of variance in Y that can be explained by X, in
percentage.



Correlation

Assumptions for correlation
e Regression and linear Model (Im)

Linearity: The relationship between X and the mean of Y is linear.
Homoscedasticity: The variance of residual is the same for any value of X.
Independence: Observations are independent of each other.

Normality: For any fixed value of X, Y is normally distributed.



Correlation

 Assumptions for correlation
* Regression and linear Model (Im)

e Qutliers: the observed value for the point is very different from that predicted by the
regression model.

* Leverage points: A leverage point is defined as an observation that has a value of x that is
far away from the mean of x.

 Influential observations: change the slope of the line. Thus, have a large influence on the
fit of the model.

One method to find influential points is to compare the fit of the model with and without
each observation.

e Bottom line: influential outliers are problematic.



Correlation: exam.anxiety.dat

e |s there a relationship between time spent revising and exam anxiety?

Code

exam.anxiety<-read.table ("Exam Anxiety.dat",

head (exam.anxiety)

sep="\t", header=T)

hown B b

plot (exam.anxietySRevise,exam.anxietySAnxiety, col=exam.anxiety$Gender, pch=16)

legend ("topright",

title="Gender",inset=.05,

exam.anxiety$Anxiety

100

80

60

40

20

c("Female", "Male"),

hown B b

Revise Exam Anxiety Gender

Gender
* Female * Male

T T
40 60

exam anxiety$Revise

4
11
27
53

4
22

40
65
&0
&0
40
70

horiz=TRUE, pch=16,col=1:2)

ga.
BE.
70.
6l.
89.
60.

208 Male
716 Female
178 Male
312 Male
522 Male
506 Female



Correlation: exam anxiety.dat

e |s there a relationship between time spent revising and exam anxiety?
elm () linear modelling
e model(x) =y (e.g. mean(3, 5, 6) =4.7)
e Im(outcome ~ predictor) (e.g. in mammals: Im(weight ~ sex)

100

fit.male<-1lm(Anxiety~Revise,data=exam.zc
fit.female<-lm(Anxiety~Revise,data=exan
abline((fit.male), col="red")

abline ((fit.female), col="black")

Gender
* Female ¢ Male

80

60

exam.anxiety$Anxiety

40
|
. /.
.'II;
/ .
.'II:
.
IJ
-
. . /

exam.anxiety$SRevise



Correlation: exam anxiety.dat

par (mfrow=c (2, 2))
plot (fit.male)

Residuals

Assumptions, outliers and influential cases
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Correlation: exam anxiety.dat

Assumptions, outliers and influential cases

plot (fit.female)

Residuals vs Fitted
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Correlation: exam anxiety.dat

-73.124 -2.900 2.221 6.750 16.600

S A . : —_ x H
s ,.'° . e summary (fit.male) AnXlety—84.19'0.53 Revise
<@ Female @ Male
2 ] call:
Im(formula = Anxiety ~ Revise, data = exam.anxiety[exam.anxjety$Gender ==
"Male", 1)

3 8
= Residuals:
- Min 1@ Median 3Q Max

40

Coefficients:

2 = td. Error t valuefPr(>|t|)
(Intercept)l 84.1941 2.6213 32,119\ < 2e-16 *¥
Revise -0.5353 0.1016 -5.267 I Sdaale""*

Signif. codes: 0 ‘***' 0,001 ‘**' 0.01 ‘*' 0.05 ‘." 0.1 * ' 1

, M M M M o Residual standard errg 33 on 50 degrees of freedom
Multiple R-squared: @ Adjusted R-squared: 0.344
Time revising F-statistic: 27.74 on ana’s0 DF, p-value: 2.937e-06

Anxiety=91.94-0.82*Revise

cor (exam.anxiety[exam.anxiety$Gender=="Male", summary (fit.female)
c("Exam", "Anxiety", "Revise")])
- ’ call:
Exam Anxiety Revise Im(formula = Anxiety ~ Revise, data = exam.anxiety[exam.anxiety$Gender ==
Exam 1.0000000 -0.5056874 0.3593981 "Female", 1)
Anxiety -0.5056874 1.0000000 -0.5973682
Revise 0.3593981 -0.5973682 1.0000000 Residga1s:
Min 1Q Median 3Q Max

, , -22.687 =-6.263 -1.204 4.197 38.628
cor (exam.anxiety[exam.anxiety$SGender == "Female",
c ("Exam", "Anxiety", "Revise")]) Coefficients:

mate Std. Error t value
P e — S—— (Intercept)/91.94181Y 2.27858  40.35
Exam 1.0000000 -0.3813845 0.4399865 Revise 0.82380/ 10.08173 -10.08

Anxiety -0.3813845 1.0000000 -0.8213698 Signif. codes: 0 ‘**#' 0.001 ‘*#* 0.01 ‘*’ 0.05 ‘.’ 0.1 * ' 1
Revise  0.4399865 -0.8213698 1.0000000

Residual standard erper=1Q.42 on 49 degrees of freedom
Multiple R-squared: ( 0.6746) Adjusted R-squared: 0.668
F-statistic: 101.6 o ad 49 DF, p-value: 1.544e-13



Correlation: exam anxiety.dat
Influential outliers (fit2)

exam.anxlety.filtered <- exam.anxietyl[c(-78,-87),]

= fit.male2 <- Tm{anxiety-Revise, data=exam.anxiety.filtered[exam.anxiety.filteredicender=="Male",]) > fit.female? <- Im(Anxiety~Revise, data=exam.anxiety.filtered[exam.anxiety.filterediGender=="Female",])
= summary(fit.male2) = summary (fit.femalez)
call: call:
ITm{formula = gnxiety ~ Revise, data = Exam_anxiety_fi1tered[exam_anxﬁety_fi]teredsﬁender = Tm(formula = Anxﬁety ~ Revise, data = exam.anxiety.fﬁ1tered[exam.anxiety.fi1tered$ﬁender ==
"Male"™, 1) "Female™, 1)
residuals: Residuals:
Min 1q Median 3q Max Min 1q Median 3qQ Max
-22.0296 -3.B704 0.5626 6.0786 14.2525 -1§8.7518 -5.7069 -0.7782 3.2117 18,5538

coefficients:

Estimate std. Error t value Pri=|tl) Estimate std. Error T wvalue Pri>|t|)
(Intercept) 86.97461 1.64755 52.790 <« 2e-16 #%¥% (Intercept) 92.24536 1.93591 47.65 <2e-16 ==
Revise -0.60752 0.06326 -9.603 7.59e-13 #=%* Revise -0. 87504 0.07033 -12.44 <2e-16 #w¥

Signif. codes: 0 f##=' 0,001 **' 0.01 *° 0.05 °.

Coefficients:

tp.1 ot 1 signif. codes: 0 “¥#%' 0,001 ***" 0.01 **' 0.05 *." 0.1 * " 1

Residual standard error: B.849 on 48 degrees of freedom
Multiple R-squared: 0.7633, Adjusted R-squared: 0.7584
F-statistic: 154.8 on 1 and 48 DF, p-value: < 2.2e-16

Residual standard error: £.213 on 49 degrees of freedom
Multiple R-squared: 0.653, Adjusted R-squared: 0.6459
F-statistic: 92.22 on 1 and 49 DF, p-value: 7.591e-13

Anxiety=86.97-0.61*Revise Anxiety=92.25-0.86*Revise

= cor (exam. anxiety. filtered[exam. anxiety.filterediGender="Male",c("Exam", "Anxiety", "Revise")}])
Exam Anxiety Revise

Exam 1. 0000000 -0.4653914 0.4028863

anxiety -0.4653914 1.0000000 -0.8080950

Revise 0.4028863 -0. 8080950 1. 0000000

= cor (exam. anxiety. filtered[exam. anxiety. filteredicender=="Female",c{"Exam”, "anxiety", "Revise")])
Exam Anxiety Revise
Exam 1.0000000 -0.4070663 0.4312691

Anxiety -0.4070663 1.0000000 -0.8736684
Revise 0.4312691 -0.E8736684 1.0000000



Correlation
without the outlier/influential case

plot (exam.anxiety$Revise, exam.anxiety$Anxiety,col=exam.anxiety$Gender,pch=16)

legend ("topright", title="Gender",inset=.05, c("Female","Male"), horiz=TRUE, pch=16,col=1:2)

(
abline((fit.male), col="red")
abline ((fit.female), col="black")
abline ((fit.male2), col="red"“, 1ty=3) o
o —
abline ((fit.female2), col="black",lty=3) - « * .
4 . o Gender
* . * Female * Male
2
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My email address if you need some help with GraphPad:

anne.segonds-pichon@babraham.ac.uk

Slides and manual available on:

https://www.bioinformatics.babraham.ac.uk/training.html
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