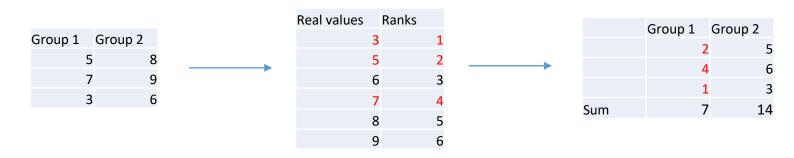


Analysis of Quantitative data Non-Parametric data


Anne Segonds-Pichon v2020-12

Comparison between 2 groups Non-Parametric data

Non-parametric test: Mann-Whitney = Wilcoxon rank test

- Non-parametric equivalent of the *t*-test (and not).
- Not meeting the assumptions for parametric tests is not enough to switch to a non-parametric approach.
 - Like always, data exploration is key.
 - The outcome is a rank or a score with limited amount of possible values: non-parametric approach.
- How does the Mann-Whitney test work?

- Statistic of the Mann-Whitney test: U (W)
 U₁ = 7-6 = 1 and U₂ = 14-6 = 8
 - Smallest of the 2 Us: U_1 + sample size \rightarrow **p-value**
- R:wilcox_test()

$$U_1 = R_1 - \frac{n_1(n_1 + 1)}{2}$$
$$U_2 = R_2 - \frac{n_2(n_2 + 1)}{2}$$

Where:

•R = sum of ranks •n = sample size.

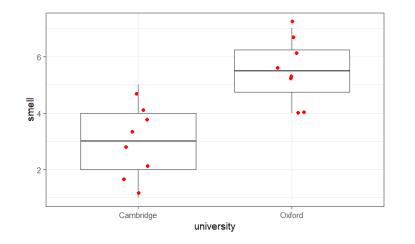
Non-parametric test: Wilcoxon's signed-rank

- Non-parametric equivalent of the paired *t*-test (ish).
- How does the test work?

2+3=5/2=2.5: average rank

efore	After	Dif	fferences	Abs. Diff.	Ranking	Ranks			Negative ranks	
	9	3	-6	,	^					
	7	4	-3	(. /			-2.5	
1	0	4	-6	-	1		1		-2.5	
	8	5	-3	 3	3	2 2			-4.5	
	5	6	1	3	3	3 2	.5		-4.5	
	8	2	-6	Į.	5	4 4	.5		-7	
	7	7	0	ŗ.	5	5 4	.5		-7	
	9	4	-5	6	6	6	7		-7	
1	0	5	-5	6	6	7	7	Course		
				(6	8	7	Sum	-35	

- Statistic of the Wilcoxon's signed-rank test: Sum of signed ranks = W
 - Here: W = -35 + 1 = -34
 - Statistic W + sample size **p-value**
- R:wilcox_test(paired = TRUE)


Exercise 13: Independent test smelly.teeshirt.csv

- Hypothesis: Group body odour is less disgusting when associated with an in-group member versus an out-group member. Two groups of Cambridge University students are presented with one of two smelly, worn t-shirts with university logos.
- <u>Question</u>: are Cambridge students more disgusted by worn smelly T-shirts from Oxford or Cambridge? Disgust score: 1 to 7, with 7 the most disgusting
 - Load smelly.teeshirt.csv
 - Explore the data with an appropriate combination of 2 graphs
 - Answer the question with a non-parametric approach

Exercise 13: smelly.teeshirt. csv

- **Question**: are Cambridge students more disgusted by worn smelly T-shirts from Oxford or Cambridge?
 - Disgust score: 1 to 7, with 7 the most disgusting


```
read_csv("smelly.teeshirt.csv") -> smelly.teeshirt
smelly.teeshirt %>%
ggplot(aes(x=university, y=smell))+
geom_boxplot()+
geom_jitter(height=0, width=0.1, size=2, colour="red")
```

smelly.teeshirt %>% wilcox test(smell~university)

.y. <chr></chr>	group1	group2	n1 <int></int>	n2 <int></int>	statistic _dbl>	p <dbl></dbl>
smell	Cambridge	Oxford	8	8	5	0.00479

Answer: T-shirts from Oxford are significantly more disgusting than the ones from Cambridge (W=5,p=0.0047).

What do you think of the design??

Exercise 14: Dependent test

botulinum.long.csv

A group of 9 disabled children with muscle spasticity (or extreme muscle tightness limiting movement) in their right upper limb underwent a course of injections with botulinum toxin to reduce spasticity levels. A neurologist (blinded) assessed levels of spasticity pre- and post-treatment for all 9 children using a 10-point

ordinal scale.

Higher ratings indicated higher levels of spasticity.

- **Question**: do botulinum toxin injections reduce muscle spasticity levels?
 - Score: 1 to 10, with 10 the highest spasticity
 - Load **botulinum.long.csv**
 - Plot the data
 - Answer the question with a non-parametric approach
 - Work out and plot the difference (after before)

Exercise 14: Dependent test - botulinum.csv

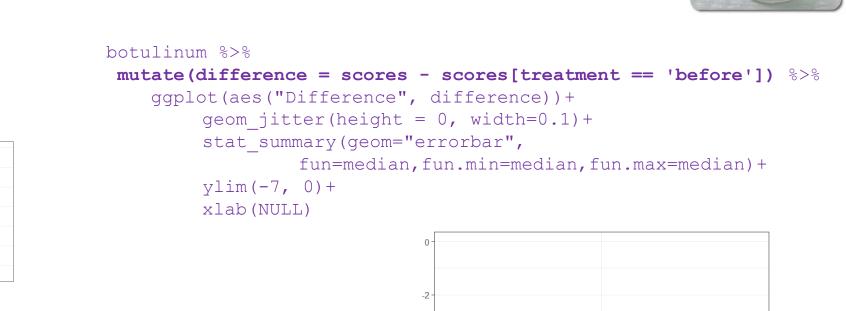
read_csv("botulinum.long.csv") -> botulinum

gqplot(aes(x=treatment, y=score))+

geom jitter(height=0, width=0.1)

7.5

2.5


after

treatment

score 50

botulinum %>%

geom boxplot() +

<pre>botulinum.long %>% wilcox_test(score~treatment, paired = TRUE)</pre>								
.y. <chr> score</chr>	group1 <chr> after</chr>	group2	n1 ⊲int⊳ 9	n2 ⊲int⊳ 9	statistic <dbl> 0</dbl>	p ⊲dbl> 0.00826		

hefore

-2--2--6-Difference

Answer: There was a significant difference pre- and post- treatment in ratings of muscle spasticity (p=0.008). Note: T=V

Comparison between more than 2 groups One factor Non-Parametric data

Kruskal-Wallis and Friedman tests

- Non-parametric equivalents of the One-Way ANOVA
 - Also based on ranks
 - Kruskal-Wallis: independent measures
 - Friedman: repeated measures
- Statistic associated with Kruskal-Wallis is H
- Statistic associated with **Friedman** is **Q** or **T1** or **FM**
- The statistics have a Chi² distribution
 - Kruskal-Wallis H = Friedman statistic = One-Way ANOVA F
- Post-hoc test associated with Kruskal-Wallis and Friedman: **Dunn's test**
 - The Dunn's test works pretty much like the Mann-Whitney test.

Kruskal-Wallis test: Example

- Creatine, a supplement popular among body builders
- Three groups: No creatine; Once a day; and Twice a day.
- <u>Question</u>: does the average weight gain depend on the creatine group to which people were assigned?

Kruskal-Wallis

Example: creatine.csv

Actual values Ranks Twice No Once No Once Twice 2239 7.5 63 0 10 171 -261 -652 2 1 3 -153 4724 40 15 5 -13 -2 1395 6 965 12 7.5 0 -86 4

$$H = \left[\frac{12}{n(n+1)}\sum_{j=1}^{c}\frac{T_{j}^{2}}{n_{j}}\right] - 3(n+1)$$

$$\mathbf{H} = \left[\frac{12}{15(15+1)} \left(\frac{32^2}{5} + \frac{41^2}{6} + \frac{47^2}{4}\right)\right] - 3(15+1) = \mathbf{3.868}$$

41

32

14

11

9

13

47

Where:

•n = sum of sample sizes for all samples,

- •c = number of samples,
- •T_j = sum of ranks in the jth sample,
 •n_j = size of the jth sample.

Friedman test: Example

- An auction house is putting three violins, A, B, and C, up for bidding. Ten violinists are blindfolded are asked to rate the instruments and each player plays the violins in a randomly determined sequence (BCA, ACB, etc.).
- After each violin is played, the violinist rates the instrument on a 10-point scale of overall excellence (1=lowest, 10=highest).
- **Question**: which violin is the best according to the 10 violinists?

Friedman test Example: violin.csv

Actual values

Violinists	Violin A	Violin B	Violin C
1	9	7	6
2	9.5	6.5	8
3	5	7	4
4	7.5	7.5	6
5	9.5	5	7
6	7.5	8	6.5
7	8	6	6
8	7	6.5	4
9	8.5	7	6.5
10	6	7	3

<u>Ranks</u>

Violinists	Violin A	Violin B	Violin C
1	3	2	1
2	3	1	2
3	2	3	1
4	2.5	2.5	1
5	3	1	2
6	2	3	1
7	3	1.5	1.5
8	3	2	1
9	3	2	1
10	2	3	1
Sum	77.5	67.5	57

Q or T1 or FM =
$$\frac{n(k-1)\left[\sum_{i=1}^{k} \frac{R_i^2}{n} - C_F\right]}{\sum r_{ij}^2 - C_F}$$

$$C_F = \left(\frac{1}{4}\right)nk(k+1)^2$$

Where:

•n = sum of sample sizes for all samples,

•k = number of samples,

• R_j = sum of ranks in the jth sample,

• r_{ij} = rank i of the jth sample.

Kruskal-Wallis and Friedman tests

Exercise 15: creatine.csv

 <u>Question</u>: does the average weight gain depend on the creatine group to which people were assigned?

Have a go !

kruskal_test(y~x) produces omnibus part of the analysis

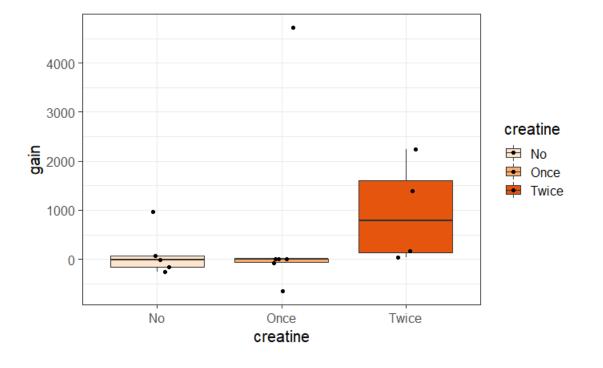
dunn_test(y~x) produces pairwise comparisons results

Exercise 16: violin.csv

• **Question**: which violin is the best according to the 10 violinists?

friedman_test(y~x|id)

wilcox_test(y~x, paired = TRUE, p.adjust.method = "bonferroni")


Exercise 15: creatine.csv

- Creatine, a supplement popular among body builders
- Three groups: No creatine; Once a day; and Twice a day.
- <u>Question</u>: does the average weight gain depend on the creatine group to which people were assigned?

```
read_csv("creatine.csv") -> creatine
creatine %>%
ggplot(aes(creatine, gain, fill=creatine))+
  geom_boxplot(outlier.shape = NA)+
  geom_jitter(height = 0, width=0.1)+
  scale_fill_brewer(palette="Oranges")
```

```
creatine %>%
group_by(creatine) %>%
summarise(sd=sd(gain))
```

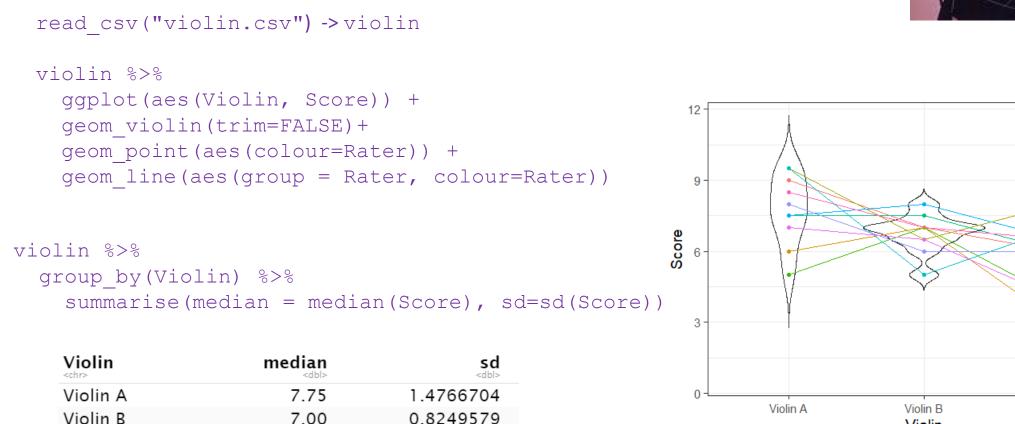
creatine <chr></chr>	sd <dbl></dbl>
No	488.5317
Once	2005.1585
Twice	1047.8519

Exercise 15: creatine.csv

creatine %>%
kruskal_test(gain~creatine)

.y. <chr></chr>	n <int></int>	statistic _dbl>	df ⊲int>	q <dbl></dbl>	enterna de la contra de la cont		
gain	15	3.86774	2	0.145	5 Kruskal-Wallis		
crea dunn	eded here						
.y. <chr></chr>	group1	group2	n1 <int></int>	n2 ⊲int>	statistic <dbl></dbl>	q <db></db>	p.adj p.adj.signif
1 gain	No	Once	5	6	0.160162	0.87275346	0.8727535 ns
2 gain	No	Twice	5	4	1.784928	0.07427304	0.2228191 ns
3 gain	Once	Twice	6	4	1.704706	0.08824926	0.2228191 ns

Answer: this study did not demonstrate any effect from creatine (χ^2 = 3.87, p = 0.14).


Exercise 16: violin.csv

• 3 violins, each tested by 10 violinists.

6.00

Violin C

• **Question**: which violin is the best according to the 10 violinists?

1.5491933

Violin C

Violin

Rater

🗕 -- s1

← s10 ← s2

🛨 s3

+ s4 + s5

🛨 s6

🔸 s7

→ s8 → s9

Exercise 16: violin.csv

violin %>%
friedman_test(Score ~ Violin|Rater)

.y.	n	statistic	df	d	method
<chr></chr>	<int></int>	<dbl></dbl>	<dbl></dbl>	<ldb></ldb>	<chr></chr>
1 Score	10	10.47368	2	0.005317021	Friedman test

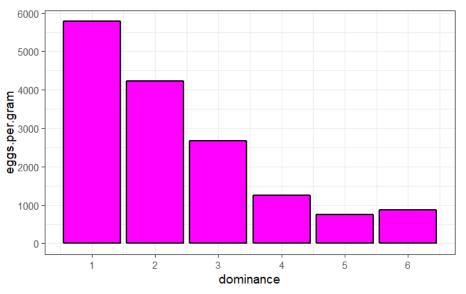
violin %>%

wilcox_test(Score ~ Violin, paired = TRUE, p.adjust.method = "bonferroni")

.y. <chr></chr>	group1	group2	n1 <int></int>	n2 <int></int>	statistic _ <dbl></dbl>	p <dbl></dbl>	p.adj p.adj.signif
1 Score	Violin A	Violin B	10	10	34.5	0.171	0.513 ns
2 Score	Violin A	Violin C	10	10	55.0	0.006	0.017 *
3 Score	Violin B	Violin C	10	10	35.0	0.154	0.462 ns

Answer: Violin A seems to be the best one.

Non-Parametric:


Spearman Correlation Coefficient

- Only really useful for ranks (either one or both variables)
 ρ (rho) is the equivalent of r and calculated in a similar way
- Example: dominance.csv
- Six male colobus monkeys ranked for dominance
- Question: is social dominance associated with parasitism?
 - Eggs of *Trichirus* nematode per gram of monkey faeces

```
dominance %>%
ggplot(aes(rank, eggs.per.gram))+
  geom_col(fill="Magenta", colour="black", size=1)+
  scale_x_continuous(breaks=seq(1:6))+
  scale_y_continuous(breaks = seq(0, 6000, 1000))
```

read_csv("dominance.csv") -> dominance

monkey	rank	eggs.per.gram
Erroll	1	5777
Milo	2	4225
Fraiser	3	2674
Fergus	4	1249
Kabul	5	749
Норе	6	870

Non-Parametric: Spearman Correlation Coefficient

• Example: dominance.csv

dominance %>%
 cor_test(rank,eggs.per.gram, method = "spearman")

var1	var2 <chr></chr>	cor <dbl></dbl>	statistic	p <dbl></dbl>	method <chr></chr>
rank	eggs.per.gram	-0.94	68	0.0167	Spearman

• **Answer**: the relationship between dominance and parasitism is significant ($\rho = -0.94$, p = 0.017) with high ranking males harbouring a heavier burden.