
Using R Notebooks

Simon Andrews

v2022-03

Code

Comments

Text output Graphical output

Problems with conventional scripts

• Only the code is generally distributed
• Output not included – users have to run it again

• No collation of output
• Can’t see which bit of code generated what output

• No automated saving of results

• Limited commenting
• Text comments, no formatting or structure

R Notebooks

• Alternative document format to conventional scripts

• Collates into a single document
• Code

• Formatted commentary

• Output (text and graphical)

• Exported to HTML, PDF or Word

Code

Output

Notebook Structure

• Single overall text document, split
into sections

• Header (mostly preferences)

• Body
• Commentary (default)

• R Code

• Output (graphical and text)

Header (global preferences)

Code Block1

Code Block 1 Output

Formatted Text

Code Block1

Code Block 1 Output

Formatted Text

Creating a Notebook in RStudio

• You may need to install some packages
(Rstudio will prompt you if you do)

• Opens a default template which you
can then edit

Notebook sections
Header

Commentary

Code

Sections are marked by special quotes

--- for header

```{r}

``` for R code

Default for unquoted text is commentary

Notebook workflow

• Create new notebook document

• Save it straight away (use a .Rmd extension)

• Add commentary in Markdown format

• Add R sections using Insert > R

• Run code blocks to generate output

• Knit document to HTML / PDF / Word

Be careful not to delete any of the section markers added by ‘insert’ or the header

Running R code in a notebook

• Control + Return runs one line
• Output goes below

• Output replaces any previous block output

• Control + Shift + Return runs the block
• Multiple outputs put into clickable windows

• Will be interspersed in compiled document

• Can also press the ‘play’ button at top right

Exercise 1

Using Markdown

Commentary sections use ‘Markdown’

• Simple markup language

• Designed to be nicely readable as plain text

• Compiles to properly formatted text

• Simple syntax

Markdown basics

• Headings
Heading1

Heading 2

Heading 3 etc.

Heading 1

=========

Heading 2

• Lists (need a blank line first)

* Bullet 1

* Sub-bullet 1

* Bullet 2

1. Numbered 1

2. Numbered 2

[Tab]

Headings also give you navigation for your document, so they’re worth using!

Markdown basics

• Emphasis
italics

italics

bold

__bold__

bold italics

___bold italics___

vol=width*depth*height

• Other formatting

```fixed width code etc```

> quoted text

super^script^

sub~script~

********* or -------- page break
NOT bold (escaped)

Needs blank line above and below



Markdown basics

• Tables

| Name     | Quest                      | Success      |

| :------- | :------------------------: | ------------: |

| Simon    | To teach R                 | Sometimes     |

| Emma     | To teach the world to sing | Always        |

| Libby    | To pass her GCSEs          | Unknown       |

:--- Left Justified
:--: Centred
---: Right Justified



Markdown basics

• Markdown supports Latex equations. 
• $equation$ is inline with text

• $$equation$$ is as a separate block
$\sum_{i=1}^n X_i$

$F_{i,j}$

$e=mc^2$

$\sqrt{x^2 - 5y}$

$\sum_{i=1}^{n}\left( \frac{X_i}{Y_i} \right)$



Exercise 2



R code block details



Working directories

• Working directories
• Working directory is automatically set to directory with Rmd file

• That’s why we immediately save

• Designed so that data and code all go together

• Can run setwd but get a warning, and only lasts for 1 block



Good code block practices

• Break code into short chunks

• All chunks are part of the same session

• Stop the block as soon as any output is 
generated



Good code block practices

• Name your chunks

• Name appears in the navigation 
along with headings you’ve created

Names are cool

--------------

```{r "create data"}

tibble(x=1:5) -> some.data

some.data

```

```{r "calculate mean"}

some.data %>% pull(x) %>% mean()

```



Displaying tibbles

• By default you don’t see the 
text form of 
tibbles/dataframes

• You get a nice interactive 
table
• Not in all output formats

• Buttons to see more 
columns/rows



Displaying tibbles

• Although you only see 10 rows, all of 
the data goes into your document

• When rendered to HTML / PDF this 
can make your document BIG

• Use the head() function to only 
show a few example rows



Controlling warnings / errors / messages



Controlling warnings / errors / messages

• Can select which output you want to see using the block header

```{r "Block name", warnings=FALSE}

• Can remove
• Warnings {r warnings=FALSE}

• Errors {r error=TRUE} means that script doesn’t stop on error

• Messages {r message=FALSE}

• Code {r echo=FALSE}

• Code + output {r include=FALSE}

Changing graphics options
• You can change the way that figures / graphs are displayed by

changing R code block options

• Change the file format (default is PNG)
```{r dev="svg"}

• Change the size
```{r fig.height=5, fig.width=8}

• Change the alignment (only affected compiled document)
```{r fig.align="center"}

• Add a legend
```{r fig.cap="This is a great picture"}


Exercise 3

Changing document appearance

Table of Contents
• If you have used headings in your document then you can auto-create

a table of contents

• This can be a fixed set of links at the top of your document, or a
floating table on the left

• This is set in the header section ---

title: "Example Notebook"

output:

html_document:

df_print: paged

toc: yes

toc_float: yes

Document themes

• HTML documents are based on the
bootswatch theme collection
(https://bootswatch.com)

• You can change the theme by
adding to the header

title: "Themes"

output:

html_document:

df_print: paged

toc: true

toc_float: true

theme: yeti

highlight: kate

https://bootswatch.com/

Document themes

(there are more than this)

Highlighting themes

• Similarly to the document themes
you can also change the colouring /
style used to highlight R code in
your document

title: "Themes"

output:

html_document:

df_print: paged

toc: true

toc_float: true

theme: yeti

highlight: kate

Highlighting themes

Tibble / DataFrame display options

• Rather than text output you see an interactive HTML version of
tibbles
• This will vary by output document type

• A few options exist for how they are displayed these are set in the
header, and are specific to the HTML output type:

html_document:

df_print: paged

Tibble / DataFrame display options

This is the default

Only works on
data frames

Tibble / DataFrame display options

Tibble Kable Paged

Automating Notebook Rendering

Generating a notebook programatically

Rscript -e "rmarkdown::render('example.Rmd')"

Adding notebook parameters

title: My Document

output: html_document

params:

year: 2018

region: Europe

printcode: TRUE

data: "file.csv"

Parameters are collected
in a list called params

print(params$year)

[1] 2018

Parameters can be R code

title: My Document

output: html_document

params:

date: !r Sys.Date()

today: !r lubridate::today()

You can use code from packages but need to supply the full function name,
including package name

Parameters can be supplied at runtime

Rscript -e "rmarkdown::render(

'example.Rmd',

params=list(data="data.csv")

)"

title: My Document

output: html_document

params:

year: 2018

printcode: TRUE

data: "file.csv"

read_csv(params$data)

Parameters can also be used in Markdown

Rscript -e "rmarkdown::render(

'example.Rmd',

params=list(data="data.csv")

)"

output:

html_document:

df_print: paged

params:

file: "test.csv"

date: !r Sys.Date()

title: `r params$date`

```{r results='asis', echo=FALSE}

cat("# Processing file ",params$file)

```


Exercise 4

