

Learning to Program with

Python

An introduction to the Python programming language for those who

haven’t programmed before

Version 2020-01

 Learning to program with Python

2

Licence
This manual is © 2020, Steven Wingett & Simon Andrews.

This manual is distributed under the creative commons Attribution-Non-Commercial-Share Alike 2.0

licence. This means that you are free:

 to copy, distribute, display, and perform the work

 to make derivative works

Under the following conditions:

 Attribution. You must give the original author credit.

 Non-Commercial. You may not use this work for commercial purposes.

 Share Alike. If you alter, transform, or build upon this work, you may distribute the resulting

work only under a licence identical to this one.

Please note that:

 For any reuse or distribution, you must make clear to others the licence terms of this work.

 Any of these conditions can be waived if you get permission from the copyright holder.

 Nothing in this license impairs or restricts the author's moral rights.

Full details of this licence can be found at

http://creativecommons.org/licenses/by-nc-sa/2.0/uk/legalcode

http://creativecommons.org/licenses/by-nc-sa/2.0/uk/legalcode

 Learning to program with Python

3

Table of Contents

Licence ... 2

Table of Contents .. 3

Introduction ... 6

Why learn Python? .. 6

What this course covers .. 6

Python 2 or Python 3? ... 7

A note about learning a programming language ... 7

Chapter 1: getting started with Python ... 8

How to install Python ... 8

On Linux/Unix/MacOSX etc. .. 8

On Windows ... 8

What do I use to write Python code? ... 9

Thonny ... 10

Hello World! and getting started with Python .. 11

Chapter 2: data types and expressions .. 12

Integers (int) .. 12

Floats ... 13

Booleans (bool) ... 14

Strings (str) .. 16

Operations on strings ... 17

Compound expressions ... 20

Chapter 3: names, functions and methods .. 21

Writing scripts using Thonny ... 21

Names ... 22

F-strings ... 24

Functions ... 25

Built-in functions ... 25

Functions and data types ... 27

Creating Functions ... 28

Methods ... 33

Chapter 4 – Collections .. 34

Sets.. 34

Sequences ... 36

Ranges ... 36

Tuples .. 37

Lists ... 38

Mappings ... 40

Dictionaries .. 40

Streams ... 42

 Learning to program with Python

4

Files .. 42

Generators ... 43

Copying Collections ... 43

Further points on manipulating collections with functions and methods ... 45

The key parameter ... 45

Key expressions ... 45

Anonymous functions (the lambda function).. 46

Chapter 5 – Conditionals, loops and iterations ... 47

Conditionals ... 47

Simple, one-alternative and multi-test conditionals ... 47

Loops ... 48

While Loops ... 48

Processing file input using a loop .. 50

Iterations .. 50

Simple Iteration .. 50

Iterating over a file ... 51

Iterating over a dictionary... 51

Enumerating iterations ... 51

Iterating over ranges .. 52

Nested iterations .. 52

Iterating over a string ... 52

Passing iterables to functions .. 53

Comprehensions ... 54

List Comprehensions ... 54

Set Comprehensions ... 54

Dictionary Comprehensions ... 55

Conditional Comprehensions ... 55

Generators ... 55

A note on scope ... 56

Chapter 6 – Exception handling .. 60

Chapter 7 – Object-oriented programming ... 63

The concepts of object-oriented programming .. 63

Defining classes .. 63

Instance Attributes ... 64

Access Methods .. 64

Predicate Methods ... 66

Initialisation Methods ... 67

String Methods .. 67

Modification Methods ... 68

Additional Methods .. 69

Class Attributes ... 69

Static methods ... 70

 Learning to program with Python

5

Inheritance ... 71

Inheritance and super() ... 72

A brief note on creating exceptions ... 73

Chapter 8 – Modules ... 74

Introducing modules .. 74

The datetime module ... 74

The math module ... 77

The sys module .. 77

The time module .. 78

The optparse module ... 78

The subprocess module .. 78

The os module ... 79

The tempfile module .. 79

The glob module .. 80

The textwrap module ... 80

The string module .. 82

The csv module .. 82

The zlib and gzip modules ... 82

Installing Modules and Packages .. 83

Installation .. 83

Installation locations .. 84

Virtual Environments ... 85

Biopython ... 85

Chapter 9 – Regular expressions .. 86

Introducing the re module .. 86

Simple String Matching with the re Module ... 86

Querying the match object .. 87

Metacharacters .. 88

Character classes .. 88

Start and ends .. 88

Groups ... 88

Backslash ... 89

Escaping Using Backslashes ... 90

Raw String Notation ... 90

Repetition ... 90

Greedy vs non-greedy matching .. 91

Compilation flags ... 92

Modifying Strings ... 93

Concluding remarks ... 94

 Learning to program with Python

6

Introduction

Why learn Python?
In recent years, the programming language Python has become ever more popular in the bioinformatics

and computational biology communities and indeed, learning this language marks many people’s first

introduction to writing code. This success of Python is due to a number of factors. Perhaps most

importantly for a beginner, Python is relatively easy to use, being what we term a “high-level”

programming language. Don’t let this terminology confuse you however: “high-level” simply means that

much of the computational tasks are managed for you, enabling you to write shorter and simpler code

to get your jobs done.

Since Python is widely used, there is a large community of people who will often give advice or co-

author code with you. Many people are familiar with the language and so if you write something in

Python, it is more likely to be used than if you wrote the same program in a more obscure language.

The wide adoption of Python also means there are add-ons that can be installed to increase the flexibility

of the language. For example, numerous mathematical and scientific Python packages can be used

for analysis and data presentation. There are also tools available – such as Jupyter – to help you

present and share your Python code along with your results, providing an excellent way to disseminate

your findings in a transparent and reproducible fashion. In addition, Python is a leader in the burgeoning

field of machine learning.

Although Python may be regarded as relatively easy to learn, that does not mean it is restricted to

simple scripts. The language also allows the user to write “object-orientated” programs – a style of

coding designed for larger and multifaceted applications. In addition to all these benefits, learning

Python will enable you to perform a variety of tasks outside of the field of bioinformatics. A common

use of Python is in the building of websites, using what are termed frameworks. Django or Flask are

the most noteworthy of these web creation tools.

So, to summarise, there are many reasons why Python is a good language to learn and use:

Good things about Python:

 It’s free

 It works on the vast majority of computers

 It’s relatively easy to write

 There is a large community of developers who may have already written a program you require,

or may be able to help you write your own code

 There are extensive scientific and numerical “add-ons” to Python to help you with your code

analysis. The field of Machine Learning is one area where a knowledge of Python is a distinct

advantage.

 It allows you to develop programs in a short amount of time

Bad things about Python

 Its flexibility means that, in some situations, it can be slower than other languages

What this course covers
This course introduces the basic features of Python. At the end you should be able to write moderately

complicated programs, and be aware of additional resources and wider capabilities of the language to

undertake more substantial projects. The course tries to provide a grounding in the basic theory you'll

need to write programs in any language as well as an appreciation of the right way to do things in

Python.

 Learning to program with Python

7

Python 2 or Python 3?
Python 3 was released in 2008 to supersede Python 2, which underwent its last update in 2018.

Although these versions of Python are very similar – essentially dialects of the same language – there

may be compatibility problems if trying to use the two interchangeably. Moving forwards, we will see

most new software being written in the newer version of Python, replacing many of the scripts and

modules written the previous language. This development was a major change in the short history of

Python, but pleasingly, no such major changes are planned for the future. We therefore recommend

learning Python 3, which is the version taught in this course.

A note about learning a programming language
While Python may be considered less demanding than some other programming languages, this does

NOT mean that learning Python is easy. In fact, beware of courses with dubious titles such as “Master

Python in 60 Seconds”. Learning a programming language is akin to learning a foreign language, and

while gaining useful skills may come quickly, a solid understanding of programming takes time and

commitment. That said, the most valued of skills are not easy to acquire, and demand effort and

dedication.

 Learning to program with Python

8

Chapter 1: getting started with Python

How to install Python

On Linux/Unix/MacOSX etc.

It may already be installed! Python is made available on many Unix-based operating systems. To

check whether Python is installed, go to the command line (open the “Terminal” on a Mac) and type:

python –version

Alternatively, on some systems, you may need to enter:

py --version

If Python is installed, you should then see a message stating the exact version of Python installed,

similar to that below:

Python 3.7.0

If Python 2 version is now displayed, then you may check whether Python3 is also installed with the

command:

python3 --version

The Python 3 version installed will now be reported, else your system will display an error message.

If Python is not installed, you will need to download it from The Python Software Foundation website at:

www.python.org.

When there, click on the “Downloads” link and you will be navigated to a page from which different

versions of Python may be downloaded. This webpage should automatically detect the operating

system you are running and display a button which, when pressed, will initiate the downloading process.

Should you wish to download another version of Python, simply click on the relevant operating system

and version you wish to download. For a variety of reasons (such as security and efficiency), we

recommend downloading the latest stable release of the software.

Once you have downloaded the software, follow the standard procedure you would follow on your

system for installing a program. Once finished, follow the steps above to check that Python is indeed

installed.

On Windows

If you’re not sure whether you have Python installed, you can easily find out by opening the Command

Prompt. Depending on your version of Windows, there are different ways to open the Command

Prompt:

1) Try right-clicking on your desktop and it’s probably listed as one of the options

2) Look in Start > Programs for an entry called “MS-DOS Prompt”

3) Look in Start > Programs > Accessories for an entry called “Command Prompt”

4) Go to Start > Run. In the box type “cmd” and press return

http://www.python.org/

 Learning to program with Python

9

One of these alternatives should get you a command prompt.

At the command prompt type in the command

python --version

If python is installed you should see something like this:

What do I use to write Python code?
Complete beginners to programming may be surprised to learn that Python programs are actually just

plain text files. Consequently, you can use any plain text editor to write Python code. On a PC for

example, you could create Python scripts with Notepad. While this is possible, you really don’t want to

write code this way. This is because there are text editors created specifically for the purpose of writing

code and boast a large number of features to make this process easier. For example, what is almost

immediately obvious when using such an editor for the first time is that the text is displayed in a variety

of different colours. Each of these colours will have a different meaning and well help you understand

at a glance the basic structure of a line of code. There are a variety of editors available and what you

end up using is often a result of personal taste and familiarity. We summarise below some of the most

frequently encountered text editors commonly used for writing Python.

Vi

The strength of this software is that it should be installed on almost all Unix/Linux distributions. So, if

you are working on such a system you should be able to start coding without downloading any additional

software. For this reason, and owing to its established history in computer science, this is a commonly

used program. However, we would advise those new to coding to start somewhere else. Vi is not the

most user-friendly environment (particularly to those only familiar with MS Windows). It uses a

command line interface and requires the user to learn a number of commands to run the program.

Emacs

 Learning to program with Python

10

This is well-known software to those familiar with Linux and while it is commonly used on this platform,

it can also be run on Windows and Mac OS. While it is powerful, many new users find the shortcuts a

little unintuitive (again, particularly with those familiar to Microsoft software). Emacs can be downloaded

from: https://www.gnu.org/software/emacs/

Notepad++

Is a popular free text editor and very easy to use for beginners and its numerous add-ons make it

powerful to use. However, it is only available for Windows. It may be downloaded from https://notepad-

plus-plus.org/downloads/

Sublime Text

Like Notepad++, this is a simple-to-use free application with a powerful choice of add-on tools. In

addition, it is also available for Windows, Mac and Linux.

Visual Code

This is another versatile text editor available for the three main types of operating system. Although

produced by Microsoft, this is a free piece of software.

PyCharm

PyCharm is popular with professional developers and is a good choice for coding more substantial

projects. Again, it is free and available for Windows, Mac and Linux. Furthermore, it is what is termed

an Integrated Development Environment (IDE) allowing the users to run their scripts directly using the

program. While it is a very good application, it is perhaps a little overwhelming for the complete novice.

For this course, we shall be using:

Thonny

It is similar to the tools mentioned previously in a variety of ways: being free and available for Mac,

Windows and Linux operating systems. It also has an IDE capability similar to PyCharm, but it has a

much simpler interface making it much friendlier for those new to coding. If you have ever used a

Raspberry Pi, you may have already come across Thonny.

Thonny
Thonny can be downloaded from its homepage at: https://thonny.org. Here, there should be links which

will commence the file transfer of the latest version of the software, as either a *.exe file for Windows

systems, or a *.dmg file for use with MacOS. After downloading, simply follow the usual method you

use to install such files (this typically involves double-clicking the files and then following the on-screen

instructions). Clicking the link for the Linux version of Thonny will display a pop-up giving instructions

on how to install the software via the command line. On Linux Ubuntu systems and its derivatives, the

download and installation process is achieved with the command:

sudo apt install thonny

After installing Thonny, double-click on the software icon (a graphical representation of a “Th”) to start

the program. After doing this, a window similar to that shown below should appear on your screen.

The functionality of Thonny is described in greater detail as the course progresses. All you need to

know at the moment is that the Thonny window has three components. At the top of the window there

is a panel of icons which are used for opening or saving files or for running new Python programs you

have created. Below this is a window into which you may type Python code. Text written here may be

saved as a file, in a similar fashion to how you would save any text file. The bottom panel also allows

https://www.gnu.org/software/emacs/
https://notepad-plus-plus.org/downloads/
https://notepad-plus-plus.org/downloads/
https://thonny.org./

 Learning to program with Python

11

you to enter Python commands. However, text entered here may not be saved, for this is an interactive

shell which displays to the screen the computer’s responses to your Python code. This is explained in

more detail in the next section, in which you will write your first Python commands.

Hello World! and getting started with Python
Now that you have Python installed, we shall get started with writing Python code. Traditionally, when

beginning a new language, the first program a beginner writes instructs the computer to display “Hello

World!” on the screen. Seeing no good reason to break this convention, we shall do the same.

For these early examples we shall use the interactive functionality of Thonny by typing into the bottom

panel of the window. Type in the following text and then press enter:

print("Hello World!")

You should now see “Hello World!” printed to the screen. Congratulations, you have now written your

first Python program! We shall now look some more at running simple one-line commands in this

interactive fashion as we learn about Python data types in the next section.

 Learning to program with Python

12

Chapter 2: data types and expressions
In this section we introduce four basic data types used by Python. The Integer and Float data types

store numbers, the Boolean data type stores logical values and String data type stores characters

(such as text). While we will encounter other data types later in the course we shall start with these

most basic of data types. (In computing terminology, such simple data types are known as Primitives.)

A programmer can manipulate these data types in Python using an operator. A command which

includes one or more data type and an operator is known as an expression – essentially a small

sentence telling the computer to do something. We shall start by looking at the integers.

Integers (int)
Integers in Python have the same meaning as in mathematics: these are whole numbers and can be

positive, negative or zero. For example: 10, 23 and -18 are all integers. In contrast: 1.5, -0.2 and √2

are not integers, since they have values after the decimal point.

If you type an integer in the Thonny interactive window, you will see that it will be displayed back to you

on the subsequent line. Try typing in 100:

>>> 100

100

Integers can be manipulated by operators. The addition and subtraction operators will be familiar to

you from basic maths. Enter the following in the Thonny interpreter window:

>>> 1 + 2

3

>>> 3 - 5

-2

When a data type is manipulated by an operator, the data type is referred to as an operand. In the 1

+ 2 example above, the values 1 and 2 are operands to the addition operator (+). Since plus and minus

take two operands, they are known as binary operators. (If you think about this a little more, the minus

operator can also take only one operand. For example: when entering -1, the minus operator is

modifying the positive integer to become negative. In this case the minus operator is known as a unary

operator.)

Python can also be instructed to perform multiplication. The multiplication symbol used by Python is

not the same as used in standard maths textbooks, for it is an asterisk (*). Try entering the following

in the Python interpreter in Thonny:

>>> 2 * 2

4

>>> 5 * 5

25

 Learning to program with Python

13

As you may expect, it is possible in Python to raise a number to a given power. This is denoted by a

double asterisk operator (**). Try the following to square a number:

>>> 5 ** 2

25

(Integers may also be represented in what is known as hexadecimal notation, which is base-16 instead

of base-10. The letters A…H represent 10…15. Hexadecimal notation begins with 0x. 0xB50 would

be represented in base-10 as 2896.)

After having covered addition, subtraction and multiplication, naturally the next operator to describe is

division. Before we do this, we need to introduce the Float.

Floats
Floats, or to use the full term: “floating point numbers”, represent numbers in a more complex way

than integers. Floats are used by computers to store non-integer numbers. You may never have

thought about this before, but there is a limit to how much precision a computer can store a non-integer

value. For example, one-third is represented as a decimal as 0.333 recurring. A computer obviously

cannot store an infinite number of 3s in memory, so the computer will need to round to an appropriate

level of precision.

Floats have two components: the significand and the exponent. The former stores the significant

numbers (these can be negative), while the exponent defines the position of the decimal place. For

example, the value 0.5 would have a significand of 5 and an exponent of -1. In fact, integer values may

be represented as floats, for example 1000 would have a significant of 1.0 and an exponent of 3, but

storing integers in this way uses more of the available memory.

Value Significand Exponent

0.5 5 -1

0.001 1 -3

-10.5 -10.5 1

Having said all this, you generally won’t notice any difference in the Thonny interactive window when

entering floats as compared to integer variables. One difference, however, is that floats may be entered

using scientific notation. Type the following in the bottom window in Thonny to show that scientific

notation is interpretable by Python.

>>> 3.0E10

30000000000.0

We started discussing floats because they are important for division. This is a result of the fact that

many division operations (even involving only integers) will return fractional values. Indeed, division

operations in Python always return the float type (even if the value returned is not fractional).

 Learning to program with Python

14

To divide In Python, use the forward slash (/) character:

>>> 1 / 3

0.3333333333333333

There are related operators in Python3, such as floor division (//), which performs a division and

subsequently returns the resulting integer, after the remainder removed. The modulo (%) operator

works in a similar fashion, but instead returns the remainder.

>>> 10 / 4

2.5

>>> 10 // 4

2

>>> 10 % 4

2

Just to reiterate: be aware that operations involving integer types and floats will always return

floats.

Booleans (bool)
The simplest Python data type is the Boolean, which has only two values: either True or False.

Boolean values are generated when performing tests using the comparison operators.

Comparison

Operator

Description

== If the values of two operands are equal, then the condition is True

!= If values of two operands are not equal, then condition is True

> If the value of left operand is greater than the value of right operand, then condition

is True

< If the value of left operand is less than the value of right operand, then condition is

True

>= If the value of left operand is greater than or equal to the value of right operand, then

condition is True

<= If the value of left operand is less than or equal to the value of right operand, then

condition is True

To demonstrate the use of these operators, please see the results below using the Thonny interactive

window.

>>> 1 == 1

True

>>> 1 == 0

False

>>> 2 > 5

False

 Learning to program with Python

15

(Please note that the comparison operator to check whether two values are equal is ‘==’ and not

the more familiar ‘=’, which has a different meaning in Python.)

These datatypes follow Boolean logic when used in expressions. Try entering the values below into

the Thonny interactive window:

>>> True

True

>>> False

False

As should be expected from previous examples using different data types, entering a value in the

window causes Thonny to return the same value on the next line.

Please note that True and False values are case sensitive:

>>> true

Traceback (most recent call last):

 File "<pyshell>", line 1, in <module>

NameError: name 'true' is not defined

Entering “true” instead of “True” has resulted in an error message, since ‘true’ is not recognised by the

Python interpreter.

The commonly used Boolean operators are: and/or/not. These binary operators make intuitive

sense when considering how we use these words in the English language:

>>> True and True

True

>>> True and False

False

In contrast, the or operator behaves differently:

>>> True or True

True

>>> True or False

True

The not operator converts True to False, and vice versa.

>>> not True

False

>>> not False

True

Maybe a little surprisingly, the and, or and not operators can take values other than True or False

as operands. Python considers almost everything as True, except for a few exceptions. The number

 Learning to program with Python

16

zero is such an exception, and consequently is considered as False. The following examples illustrate

this point. At first it may not be clear what is going on, but a logic is being followed to generate the

results. Firstly, it is worth noting that when using logical operators this way, an input argument is

returned, which may not necessarily be a Boolean value. When using the and operator in an

expression that evaluates to False, the first value corresponding to False will be returned. If there

are no False values, the last value will be returned. In contrast, when using the or operator, Python

will return the first value evaluating to True. Should no such value be present, the last value in the

expression will be returned.

>>> 1 and 0

0

>>> 1 and 2

2

>>> 1 or 0

1

>>> 1 or 2

1

There are non-numeric values that evaluate to False. One such example is a special data type referred

to as None. The data type essentially mean “nothing”. Enter it on the command line and you will see

nothing is returned.

>>> None

>>> 1 and None

>>> 1 or None

1

Another value that evaluates to False is an empty string datatype. But to understand this we shall

need to introduce strings.

Strings (str)
These store Unicode characters, whether that is a letter, number or a symbol of some kind.

Essentially, they constitute a “string” of characters – although a single character all on its own is allowed.

To create a string you will need to enclose your text within either single or double quotes.

>>> 'abcde12345'

'abcde12345'

>>> "abcde12345"

'abcde12345'

It is possible for a string to span multiple lines, but it will need to be enclosed within a pair of three

single quotes or a pair of 3 double quotes:

 Learning to program with Python

17

>>> print("""line1

line2""")

line1

line2

A more convenient way to do this is to include backslash n (\n) in the string:

>>> print("line1\nline2")

line1

line2

Placing a backslash before certain letters cause them to be interpreted differently by Python. As you

can see above, \n is interpreted as a new line, whereas \t is interpreted as a tab:

>>> print("line1\tline2")

line1 line2

You may be wondering whether it is possible to include quotation marks in a string. Well, the answer

is yes and the way to achieve this is to use different types of quotation marks (i.e. single vs double) to

denote the literal text as compared to the characters that should be included within the string. For

example, compare:

'You're gonna need a bigger boat'

"You're gonna need a bigger boat"

The first line will fail since the apostrophe in You’re will actually be interpreted as the end of the string.

In the second example, this will not happen since a double quotation mark (instead of a single) is used

to define the string’s contents.

An alternative way to achieve the same thing is to place a backslash before the speech marks or

apostrophe found within the string:

'You\'re going to need a bigger boat'

"You\'re going to need a bigger boat"

Both the above lines will generate the desired string. This use of the backslash may seem a little bit

odd at the moment, but its mode of action should become clear in a later chapter discussing regular

expression metacharacters – so please be patient until then.

Operations on strings

The plus (+) operator

Although you may think of as plus as solely to be used with numbers, in Python it can also be used to

concatenate (i.e. join) two strings.

>>> 'Love' + 'Marriage'

'LoveMarriage'

 Learning to program with Python

18

Multiplication (*) of strings

In a similar fashion, the multiplication operator can be used on strings. Multiplying a string by an integer

causes the string to be repeated.

>>> 'Go forth ' * 5

'Go forth Go forth Go forth Go forth Go forth '

The in operator

Strings may also be evaluated by operators. Two useful string functions are in and not. These check

for the presence (or absence) of a string (first operand) within another string (second operand), returning

the appropriate Boolean value.

>>> 'Needle' in 'HaystackHaystackNeedleHaystackHaystack'

True

>>> 'Elvis' not in 'Building'

True

In the first example, True is returned since the text contains the string ‘Needle’. Notice in the second

example that the presence of not reverses the result.

Be aware that this string lookup function is case sensitive:

>>> 'NEEDLE' in 'HaystackHaystackNeedleHaystackHaystackHaystackHaystack'

False

Subscription and slicing

Parts of a string may be retrieved by specifying the position within the string that is required. This is

achieved by placing square brackets after the string and entering within them the numerical value of

the desired position. For example, suppose you wanted the first character from a string:

>>> 'Babraham'[1]

'a'

Hmmm, that didn’t work since the second letter was returned. That was because numbering strings

begins actually begins at 0! This may seem a little odd, but this numbering convention is used on

multiple occasions in Python and in countless other programming languages. So then, try this instead:

>>> 'Babraham'[0]

'B'

Similarly, the third character can be retrieved with:

>>> 'Babraham'[2]

'b'

 Learning to program with Python

19

That worked, but watch out for this numbering convention in future since it catches out many

who are new to Python.

The numbering system described above works in a left-to-right direction, but it is also possible to

number in a right-to-left direction by using negative values in the square brackets:

>>> 'Babraham'[-1]

'm'

>>> 'Babraham'[-3]

'h'

(Somewhat confusingly, to return the right-most character requires [-1], whereas [0] is used to retrieve

the left-most character.)

Numerical operations can be performed within the square brackets:

>>> 'Babraham'[100 - 99]

'a'

The numerical calculation is performed first, returning a value of 0, and then consequently the Python

interpreter returns the first character of the input string. If you were to specify beyond the end of the

string, the interpreter would return an error message.

It is also possible to extract multiple characters from a string, known as a slice. To extract a slice,

simply type the range of positions you wish to extract in the square brackets, separating the start and

end positions with a colon:

>>> 'Babraham'[1:4]

'abr'

You will see that the slice does indeed begin at position 1 (the second character in the string). However,

the string goes up to, but does not include the end position.

As you may expect, you can enter negative values in the splice:

>>> 'Babraham'[-4:-2]

'ah'

Or a mixture of negative and positive values:

>>> 'Babraham'[2:-2]

'brah'

A shortcut is to leave the space before or after the colon empty. The space is an instruction to retrieve

values from the start of the string, or up until the end of the string, respectively.

>>> 'Babraham'[:3]

 Learning to program with Python

20

'Bab'

>>> 'Babraham'[5:]

'ham'

>>> 'Babraham'[:]

'Babraham'

It is also possible to specify a third value between the square brackets, which gives instructions on the

step size to employ:

>>> 'Babraham'[::3]

'Bra'

In the above example, the start and end position are missing, which instructs every character. However,

the 3 instructs Python to only return every third character.

It is also worth noting that “impossible” splices will return empty strings:

>>> 'Babraham'[2:1]

''

Compound expressions
All the expressions so far listed involve one operator and one value, but a single expression may contain

many values and expressions. Here is a simple example involving only integers:

>>> 5 + 5 * 3

20

Simple…but wait, shouldn’t the answer be 30 and not 20? Well, Python follows orders of precedence

and will perform the multiplication before the addition. Thus, 5 * 3 = 15. Then add 5, which makes 20.

You could of course learn the rules of precedence and write code accordingly, but virtually no

programmer does this. The way around this extra complexity is to use parentheses in your code. The

expression inside is the parentheses is evaluated first and then this passed to values outside the

parentheses. Python also allows nested parentheses (brackets within brackets), useful in complex

expressions. Don’t worry about using multiple parentheses in your code; in fact, their inclusion should

help make your code easier to read.

Consequently, you could re-write the above expression above as:

 >>> (5 + 5) * 3

30

Which now gives the expected answer.

 Learning to program with Python

21

Chapter 3: names, functions and methods

Writing scripts using Thonny
So far in this course we have been writing single-line expressions and running them in the Thonny

interactive window. While this is fine, it is not the best way to handle more complex pieces of code.

Although in this section we shall not be writing any particularly complex code, this is nevertheless a

good place to introduce Python scripts.

Python scripts are text documents in which code is stored. Writing code to a script makes it easier to

navigate and edit the particular line in your code you wish to edit, as compared to the interactive mode.

Moreover, code written into a script can be saved for use at a later date.

Open Thonny and type into the top window the Hello World! Python code:

print("Hello World!")

Now you need to save the code as a script. To do this, in the top navigation bar, click on File -> Save

as… A pop-up window should now appear. In the “Save As” text file, type “hello_world.py”, which will

be the name of your script. Get into the habit of using the “.py” file extension for Python scripts. Now

click “Save”. You should now see that this file has been saved on your PC.

Once you have done this, close the window tab containing Hello World! Script and then close Thonny.

Now, open Thonny and go to File -> Open. Use the pop-up window that appears to open the Hello

World! script you just created. If this has worked, you should see your code displayed in the top window.

You can now run this script by going to Run -> Run current script in the top window menu bar. This

should result in the text below being displayed in interactive Shell window:

>>> %Run hello_world.py

Hello World!

 Learning to program with Python

22

You should have noticed that when writing code, Thonny kindly colours the text for you. This is not an

aesthetic exercise, for writing components of Python code in different colours should help you

comprehend code more quickly. You will notice that in your Hello World! script that the print command

is written in magenta, while the text to print to screen is written in green and the brackets are coloured

in black. If you move the cursor next to one of the brackets you should notice that the pair of brackets

are then highlighted using a blue font. We shan’t go into detail on how this colour scheme works since

it should become familiar to you with usage (also the colour scheme followed may vary from text editor

to text editor). The more you use Thonny, the more helpful you should find this way of presenting code.

To illustrate the point, open the hello_word.py script in a simple text editor (such as Notepad on

Windows systems). You can imagine how hundreds or even thousands of lines of code are easier to

read with consistent and intelligent colouring.

Incidentally, you could run the same script using the command line via the Windows Dos prompt, the

MacOS Terminal or a Linux Shell. Simply open the interactive window found on your operating system,

navigate to your script and type:

python3 hello_world.py

(If you have python2 installed on your system, simply typing “python” may run this older version of the

language. Specifying the version number, as done here with python3, can help prevent this confusion.)

Names
You are probably already aware that in algebra, letters are used to represent numbers. This idea is a

central concept of Python and is achieved using an assignment statement. For example:

 Learning to program with Python

23

>>> a = 1

This assigns the name ‘a’ to the value ‘1’. Names can be assigned to integers, strings and other data

types. As you may expect, when assigning to a string you will need to surround your string with

quotation marks:

>>> b = 'MyString'

Try doing this in your interactive window in Thonny, but before you start typing, open the “Variables”

window (View -> Variables).

When you type in the text and press enter you should notice two things. Firstly, nothing is displayed on

the line after your input text. This is because what you have entered is a statement, which unlike

expressions in the previous section, do not return values. What you should also notice is that the names

appear in the Variables window, along with their associated values

If you now type a or b in the interactive window, you will see the value of that name is returned:

>>> b

'MyString'

It is possible to assign a name to an existing name

>>> c = b

>>> c

'MyString'

It is also possible to assign multiple names to the same value in a single statement:

>>> d = e = f = 'ManyToOne'

>>> e

'ManyToOne'

 Learning to program with Python

24

Another useful feature of Python is that it is possible to assign a name to value as it is being calculated:

>>> g = 10 * 5

>>> g

50

This is an important concept in programming languages, for it now means that names may be

manipulated as one would manipulate the values to which they are assigned. For example:

>>> a = 1

>>> b = 2

>>> c = a + b

>>> c

3

In this example, the value of c is deduced to be 2, since it is the sum of a and b (which have been

assigned the values 1 and 2 respectively). Also note that you do not have to put quotation marks around

the names since they are not strings, although of course they may represent strings.

F-strings
Now that we have introduced the concept of names, this marks a good point to discuss f-strings. F-

strings provide a simple yet powerful way to format strings, making life easier for those reading the text

or numbers displayed on the screen.

The syntax for f-string formatting requires a lower- or uppercase f, followed immediately by some text

or expression encapsulated by quotation marks. For example:

f"Hi {user}"

The f before the quotation marks denotes that we are generating an f-string. The text in the quotation

marks forms the literal part of the f-string, while anything in the curly brackets is the expression part

of the string. The expression component may be thought of as a placeholder for what will appear when

the code executes. Let’s elaborate on the example to illustrate this:

>>> user = 'Octavian'

>>> f"Hi {user}"

'Hi Octavian'

The string 'Octavian' is assigned to the name user, which is rendered in the f-string.

It is not simply names that may be rendered between these curly brackets, since they are essentially

expressions. Calculations for example may be performed here:

>>> F'Two plus two is {2 + 2}'

'Two plus two is 4'

 Learning to program with Python

25

Similarly,

>>> f'I have £{1000 * 1000}!'

'I have £1000000!'

That’s nice, but it would be even nicer if we could format these large numbers. Well, with f-strings you

can! To add commas to separate the thousands, add a colon and a comma:

>>> f'I have £{1000 * 1000:,}!'

'I have £1,000,000!'

You could also add the pennies by specifying the number of decimal places to display with .2f. The

.2f means “two decimal places, fixed” (never any more or less than two decimal places).

>>> f'I have £{1000 * 1000:,.2f}!'

'I have £1,000,000.00!'

In a similar fashion, f-strings allow you to manipulate percentages. In the example below, the .1% is

an instruction to convert the value to a percentage and display one decimal place.

>>> vat = 0.2

>>> f'VAT rate: {vat:.1%}'

'VAT rate: 20.0%'

It is also possible to control the width and alignment of f-strings. If you look at the f-string below, you

will see the number after the colon fixes the width of the string, while the characters <, > and ^ denote

left-, right- and centre-aligned formatting, respectively.

>>> pointer = '<->'

>>> f'Left-aligned{pointer:<50}'

'Left-aligned<-> '

>>> f'Right-aligned{pointer:>50}'

'Right-aligned <->'

>>> f'Centre-aligned{pointer:^50}'

'Centre-aligned <-> '

F-strings may also encompass multiple lines, as per regular strings.

Functions

Built-in functions

Previously in this manual we ran a line of code that printed “Hello World!” to the screen:

print("Hello World!")

 Learning to program with Python

26

This is an example of a function. A function comprises several components: firstly, every function has

a name, which in this case is print. Following the function name comes a pair of brackets. There

may be nothing between these brackets, or alternatively there may be a list of one or more items termed

arguments. In this example the argument passed to the print function is the “Hello World!” string. If

there is more than one argument, they are separated from one another using commas. Every function

returns a value and so consequently a function is a type of expression. More specifically, a function is

a type of expression known as a call (another type of call is a method, which we shall meet later).

Notice what happens when printing a name using this function:

>>> forPrinting = 'Print Me!'

>>> print(forPrinting)

Print Me!

The string ‘Print Me!’ is assigned to the name ‘forPrinting’. Calling the function print with the argument

‘forPrinting’ causes the value associated with that name to be printed.

The print function is one of Python’s built-in functions. There many other built-in functions:

len(arg) – returns the length characters in a string:

>>> len('Supercalifragilisticexpialidocious')

34

min(arg…) – returns the minimum value of a list of numerical arguments:

>>> min(2, 4, 100, 205.3, -4)

-4

max(arg…) – returns the maximum value of a list of numerical arguments:

>>> max(2, 4, 100, 205.3, -4)

205.3

The table below shows the full list of Python built-in functions. Another built-in function that is worth

knowing about at this stage is help(). If you type this function on the command line, an interactive

help dialog box will start. Alternative, you can pass to the help function the name of a function or value

as an argument, and that will result in information on that argument being printed to the screen.

 Learning to program with Python

27

abs() delattr() hash() memoryview() set()

all() dict() help() min() setattr()

any() dir() hex() next() slice()

ascii() divmod() id() object() sorted()

bin() enumerate() input() oct() staticmethod()

bool() eval() int() open() str()

breakpoint() exec() isinstance() ord() sum()

bytearray() filter() issubclass() pow() super()

bytes() float() iter() print() tuple()

callable() format() len() property() type()

chr() frozenset() list() range() vars()

classmethod() getattr() locals() repr() zip()

compile() globals() map() reversed() __import__()

complex() hasattr() max() round()

Functions and data types

We have discussed already that there are different datatypes in Python (i.e. int, float, str,…). Up

until now we have not been able to ascertain directly the data type of a given object. However, this is

possible using the type() function.

>>> type(378163771)

<class 'int'>

>>> type('Hello World!')

<class 'str'>

>>> type('378163771')

<class 'str'>

That may be all well and good, but should we really care how Python is storing these values? Well the

answer is yes. Suppose we have the integer 378163771 stored as a string. Any numerical calculations

we want to do with this will then fail. To get around this we would need to convert a string to a number

and then perform our numerical operations. This process of converting one data type to another is

called casting.

>>> int('378163771') - 1

378163770

In this example we have converted a string to an integer, but we could have course converted to a float.

Casting in python is therefore done using constructor functions:

 Learning to program with Python

28

int() - constructs an integer number from an integer literal, a float literal (by rounding down to the

previous whole number), or a string literal (providing the string represents a whole number)

float() - constructs a float number from an integer literal, a float literal or a string literal (providing the

string represents a float or an integer)

str() - constructs a string from a wide variety of data types, including strings, integer literals and float

literals

Creating Functions

In addition to using Python’s built-in functions, it is possible to build your own functions. In fact, the

ability to write your own functions is highly advised for all but the most basic programs.

The function definition statement has the following general structure:

def function_name (parameters list):

 function code….

 ….

 ….

The def command in Python means you are defining a new function. You then specify in brackets the

parameters that the function takes, although some functions may take no parameters. There is then a

colon followed by the code that constitutes the working part of the function on the adjacent lines

immediately beneath the function definition. (Just to clarify, a parameter is a name in a function

definition. When a function is called, the arguments are the data you pass into the function’s

parameters.)

You will also notice that the function code is indented as compared to the line above. The

indentation is a key concept in Python. Indenting code in this way tells the Python interpreter

that this indented code is part of the same function. When indenting code, use 4 spaces for

each indentation (do not use tabs). We shall revisit this concept of creating code blocks to scope

your code again and again in this course.

We shall now learn more about functions using a series of different examples.

Example 1

def minimalist():

 pass

minimalist()

The code defines a function called “minimalist”. It is passed no arguments and when run, returns

nothing. The command pass is an instruction for the function to end and return nothing. Although this

function is far from useful in a practical sense, it illustrates the minimal requirements of a function.

You will notice there is a line below the function, using the left-most indentation once again, on which

is entered “minimalist ()”. This is how functions are called i.e. the function name followed by a pair of

brackets, just like built-in functions. Should a function take arguments, then these arguments will be

entered between the brackets.

 Learning to program with Python

29

Example 2

def HelloWorld():

 print ("Hello World!")

HelloWorld()

>>> %Run functions.py

Hello World!

This second example takes no arguments; however the function does a little more by printing “Hello

World!” to the screen once the function is called.

Example 3 – passing arguments

def HelloUser(name):

 print ("Hello " + name)

HelloUser("Bob")

>>> %Run functions.py

Hello Bob

This third example is a slight modification of the previous function. Here the function also prints to the

screen, but rather than simply printing a fixed message the function prints the argument it receives an

argument and then prints its value to the screen. So, when the function is called and the string “Bob”

is passed as an argument, the function subsequently prints out “Hello Bob”.

Example 4 – returning values

def percentageCalculator(value, total):

 percentage = (100 * value / total)

 return(percentage)

score = percentageCalculator(9, 18)

print(score)

>>> %Run functions.py

50.0

In this example we define a percentage calculator. The function is intended to take two arguments,

both numbers. On running, the function calculates the percentage value of the first number as

compared to the second number. The function is then called and calculates what percentage 9 is of

18. Rather than printing to the screen, the function returns the percentage value, which is then assigned

to the name “score”. The value of score is then printed to the screen.

 Learning to program with Python

30

Example 5 – documenting functions

#We could write a comment here describing

#our function, but it is more useful to

#enter this information in the docstring

def percentageCalculator(value, total):

 """Takes a value and a total and

 returns the percentage value"""

 return(100 * value / total)

help(percentageCalculator)

>>> %Run functions.py

Help on function percentageCalculator in module __main__:

percentageCalculator(value, total)

 Takes a value and a total and

 returns the percentage value

Documenting code is good practice and will save you from all sorts of future problems, especially for

larger projects. Documentation entails interleaving your code with descriptions written in intelligible

English (or your language of choice). Try to give as much detail as possible, providing an overview of

what the code does, the purpose of each function and clarify points in the code which may not be

obvious as to their intent. Doing this will not only help other people who may try to run or build upon

your code, but more often than not it will be your future self who is the main beneficiary as you try to

decipher what you were trying to achieve many months ago.

A simple way to document code, which is common in many languages, is to incorporate comments

prefixed with a hash symbol. Python, being a very stylish language, has a better way to document

functions. Immediately after declaring a function, write a comment between a pair of triple speech

marks. Writing comments this way will allow users to read more about a particular function when

running the help function.

(You may have noticed a modification in the above example, as compared to the previous function.

Here, a percentage object was not created in the function itself and the result of the “100 * value / total”

is returned directly. Either option is valid. As you begin to write code you will often have to decide what

is the appropriate trade-off between brevity and clarity.)

 Learning to program with Python

31

Example 6 – Default parameter values

def calculateVAT(initial, rate=20):

 """Calculates the cost of an item after Value Added Tax.

 The function takes an initial value (integer/float) as

 input and an optional VAT percentage rate (integer/float),

 else defaults to 20%."""

 vat = initial / 100 * rate

 new_cost = initial + vat

 return(new_cost)

print(calculateVAT(500, 10))

print(calculateVAT(500))

This time the function is a simple VAT calculator to determine the amount of tax to add to a given value.

As mentioned in the documentation, the first argument passed to the function is the value to which VAT

should be added, while the second argument is the VAT percentage rate. The function is then called

twice, with the result printed directly to the screen:

>>> %Run functions.py

550.0

600.0

In the first example a value of 550 is returned, which makes sense since adding 10% to 500 will make

550. However, for the second call 600 is printed to the screen, but no rate parameter was specified.

How was the calculation made without this necessary piece of information? The answer lies in the

function itself; in the first line of the function you will see rate parameter is assigned the value 20. This

tells the function that if no argument is specified for this parameter, then the rate should default to 20.

Reassuringly, adding 20% to 500 does make indeed 600.

Example 7 – assertions

def HelloUser(name):

 """Says hello to the named user. Takes a

 string as input."""

 assert isinstance(name, str), 'The input needs to be a

 string'

 print ("Hello " + name)

HelloUser(1)

>>> %Run functions.py

Traceback (most recent call last):

 File "/Users/wingetts/functions.py", line 25, in <module>

 HelloUser(1)

 File "/Users/wingetts/functions.py", line 22, in HelloUser

 Learning to program with Python

32

 assert isinstance(name, str), 'The input needs to be a string'

AssertionError: The input needs to be a string

So far, we have passed the expected arguments to a function. But you may have already wondered as

to what would happen if we pass something incorrect to the function. Well, the function may simply fail,

causing the program to terminate. This is not ideal, but not as bad as if the function is passed something

that carries on working but results in the wrong value being returned by the function. While we cannot

always check for every potential problem, we can check that arguments passed to a function meet pre-

specified criteria by using assertions.

After encountering an assertion, the Python interpreter will check whether the following statement is

true. For example:

assert 0==1

Will evaluate to False, resulting in an error message. These error message will begin with the word

“Traceback” and provide further details of why the program failed, including the line number of the code

that returned the error. It is also possible to add text after the assertion statement that will be included

in the traceback message:

assert 0==1, 'Zero is not the same as one!'

In Example 7, the assertion is followed by the built-in function isinstance(). This checks the

datatype of a value. In this case, for the function to evaluate to true, the “name” variable will have to be

a string (str). However, we pass the integer 1 to the new HelloUser function, the assertion will fail

resulting in the traceback error message shown. By doing this, we have forced the HelloUser function

to only accept string input.

Example 8 – passing multiple arguments to a function

It is possible to pass multiple arguments to a function, simply use the syntax:

def function_name(*args).

This will create a tuple named args containing the passed arguments, as demonstrated in the example

below. Note that in the example the script passes to the function four integers as well as a list. This

generates a tuple comprising five elements: one for each integer and a final element containing the

whole list.

def accept_multiple_argments(*args):

 print(type(args))

 print(args)

my_list =['a', 'b', 'c']

accept_multiple_argments(1,2,3,4, my_list)

>>>

<class 'tuple'>

(1, 2, 3, 4, ['a', 'b', 'c'])

 Learning to program with Python

33

Methods
Methods are very similar to functions. Specific data types in Python have the capability to run different

methods. To call the method, simply place a dot after the name of the datatype and then enter the

method name. Similar to functions, methods may also take arguments. For example:

>>> 'abracadabra'.count('a')

5

>>> magic = 'abracadabra'

>>> magic.count('a')

5

In the example above, we have used the count method of the string datatype to count the number of

times the character ‘a’ occurs in the word abracadabra. In the first example the method is run directly

on the string; in the second the method is run on the name assigned to ‘abracadabra’. As for functions,

Python has a large number of built-in methods for its datatypes. Listed below are the commonly used

string methods. These are by no means all the methods available, just this relatively small list allows a

programmer to substantially increase their ability to manipulate strings.

Method Purpose

capitalize() Converts the first character to upper case

count() Returns the number of times a specified value occurs in a string

find() Searches the string for a specified value and returns the position of where it was

found

isalnum() Returns True if all characters in the string are alphanumeric

isalpha() Returns True if all characters in the string are in the alphabet

isdecimal() Returns True if all characters in the string are decimals

join() Joins the elements of an iterable to the end of the string

lower() Converts a string into lower case

replace() Returns a string where a specified value is replaced with a specified value

split() Splits the string at the specified separator, and returns a list

splitlines() Splits the string at line breaks and returns a list

strip() Returns a trimmed version of the string

title() Converts the first character of each word to upper case

upper() Converts a string into upper case

 Learning to program with Python

34

Chapter 4 – Collections
We previously discussed the primitive data types found in Python which are useful in a wide number of

situations. These simple data types, however, are not adequate for the more complex tasks performed

by software. This section describes the compound data types that contain multiple objects in

structures called collections or containers. Each object in a collection is referred to as an element or

item. There are three groups of collections in Python, namely sets, sequences and mappings.

Becoming familiar with their usage will enable you to dramatically increase the range of tasks to which

you can code solutions.

Sets
A set is a collection of unordered unique elements. Sets can be created in a couple of ways. Firstly,

a string can be passed to a keyword to create a set:

>>> set('ABBA')

{'B', 'A'}

You will see that passing the string ‘ABBA’ results in a set containing only ‘A’ and ‘B”, i.e. the string has

been deduplicated at the character level. Also, don’t make any assumptions about the order in which

the individual characters are returned since they need not correspond to the ordered in which they were

entered.

Another way to create a set is to use curly brackets:

>>> beatles = {'John', 'Paul', 'George', 'Pete'}

>>>

>>> beatles

{'Paul', 'John', 'Pete', 'George'}

Here we have assigned the set to the name ‘beatles’. Notice that this time the input is not broken down

to individual characters, but instead this method of declaration preserves to the individual strings

between the speech marks.

It is possible to add elements to existing sets:

>>> beatles.add('Ringo')

>>> beatles

{'Ringo', 'Pete', 'John', 'Paul', 'George'}

And remove items:

>>> beatles.remove('Pete')

>>> beatles

{'Ringo', 'John', 'Paul', 'George'}

Using ‘remove’ to delete an entry not found in a set will generate an error:

 Learning to program with Python

35

>>> beatles.remove('Stuart')

Traceback (most recent call last):

 File "<pyshell>", line 1, in <module>

KeyError: 'Stuart'

However, using discard will not:

>>> beatles.discard('Stuart')

Choose ‘remove’ or ‘discard’ as appropriate. In some situations you may want to be informed if an item

expected in a set turns out not to be present, since this suggests some kind of logical error in your code.

Conversely, in other situations you may not be able to predict the elements of a set, and so no error

should be returned if trying to delete a non-existent element.

Python sets can be combined or compared in ways that may be familiar to people who have worked

with sets in mathematics. For example, when considering 2 sets:

>>> beatles = {'John', 'Paul', 'George', 'Ringo'}

>>> wilburys = {'Bob', 'George', 'Jeff', 'Roy', 'Tom'}

The following set calculations can be performed, either by i) using an operator; or ii) by using a method

call:

Union (identify elements found in either set)

>>> beatles | wilburys

{'Ringo', 'Roy', 'Bob', 'John', 'Jeff', 'Paul', 'Tom', 'George'}

>>> beatles.union(wilburys)

{'Ringo', 'Roy', 'Bob', 'John', 'Jeff', 'Paul', 'Tom', 'George'}

Intersection (identify elements common to both sets)

>>> beatles & wilburys

{'George'}

>>> beatles.intersection(wilburys)

{'George'}

Difference (identify items present in set one, but not set two)

>>> beatles - wilburys

{'Paul', 'John', 'Ringo'}

>>> beatles.difference(wilburys)

{'Paul', 'John', 'Ringo'}

 Learning to program with Python

36

Symmetric Difference (items present that are not common to both sets)

>>> beatles ^ wilburys

{'Paul', 'Roy', 'Tom', 'Bob', 'John', 'Ringo', 'Jeff'}

>>> beatles.symmetric_difference(wilburys)

{'Paul', 'Roy', 'Tom', 'Bob', 'John', 'Ringo', 'Jeff'}

Also, please note to create an empty set you may only use the syntax using the keyword set (i.e. you

cannot simply use the curly brackets):

empty = set()

Sequences
Sequences in Python are an ordered list of elements and, unlike sets, may contain duplicate

elements.

Ranges

Ranges contain an ordered list of integers. You may create a range in a number of ways, of which the

simplest is to specify the stop value. This will create a range from 0 to, but not including, that stop

value. If you try in the Thonny interactive window you should see:

>>> range(3)

range(0, 3)

The returned value will show that a range has been created and also display the start and stop

values. If we pass this range to a set, you shall see that the values of the range are 0, 1, and 2 but not

3:

>>> set(range(3))

{0, 1, 2}

If you wish the range so start at a value other that 0, then simply add this before the stop value:

>>> set(range(100, 111))

{100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110}

You may also pass a third argument when creating a range, namely a step value which sets the number

by which the range should be incremented until it reaches the stop value

>>> set(range(2, 10, 2))

{8, 2, 4, 6}

 Learning to program with Python

37

If you choose an end value equal or less than the start value then the range will but empty, but if you

choose a negative step value, then stop will need to be less than then start:

>>> set(range(3, -3, -1))

{0, 1, 2, 3, -2, -1}

Tuples

Tuples are sequences that contain any type of element and may contain duplicates. Tuples are

ordered and immutable (meaning that when they have been created they cannot be adjusted). To

create a tuple, simply specify a comma-separated list of the elements of the tuple:

>>> (1, 2, 3)

(1, 2, 3)

When assigning a comma separated list to a name, omitting the round brackets will still lead to a tuple

being created. Creating a tuple from such a list is known as tuple packing.

>>> turtles = 'Leonardo', 'Michelangelo', 'Donatello', 'Raphael'

>>> turtles

('Leonardo', 'Michelangelo', 'Donatello', 'Raphael')

You can declare an empty tuple simply with placing nothing between the brackets:

>>> nothing = ()

>>> nothing

()

But you will need to add a trailing comma to a one-element tuple:

>>> alone = ('Crusoe',)

>>> alone

('Crusoe',)

This avoids ambiguity between tuples and mathematical operations. For example:

>>> ambiguous = (10 * 10)

Are we creating an integer or a tuple? Well, we are actually creating an integer of value 100. Please

contrast with the line of code below:

>>> not_ambiguous = (10 * 10,)

Now we are definitely making a tuple!

On a related note, it is possible to assign multiple values to multiple names is a single expression using

comma-separated lists:

 Learning to program with Python

38

>>> batman, robin = 'Bruce', 'Dick'

>>> batman

'Bruce'

>>> robin

'Dick'

Here, the first element in the right-hand side comma-separated list is assigned the value of the first

value in the left-hand side of the comma-separated list. This assignment carries on for all elements of

the two lists either side of the assignment operator (=), so long as the two lists are of equal length. This

trick can help you write more succinct code.

As you may have already predicted, you may also create tuples using the tuple function:

>>> tuple('Leonardo')

('L', 'e', 'o', 'n', 'a', 'r', 'd', 'o')

In a similar fashion to sets, using the function causes the individual characters to be considered

separate elements of the tuple (in contrast to above, where ‘Leonardo’ would form a single element of

a tuple).

Similar to strings, tuples have built-in methods, but whereas string have a multiplicity of methods, tuples

have only 2.

Method Purpose

count() Returns the number of times a specified value occurs in a tuple

index() Searches the tuple for a specified value and returns the position of where it

was found

Lists
Lists are in many ways similar to tuples, for they constitute a sequence of any type of element. Unlike

tuples, however, lists are mutable. Lists can be created in a similar fashion to tuples, only using square

brackets instead of rounds brackets. The code below illustrates this point:

>>> a = (1, 2, 3)

>>> type(a)

<class 'tuple'>

>>> b = [1, 2, 3]

>>> type(b)

<class 'list'>

>>> b

[1, 2, 3]

 Learning to program with Python

39

Since lists may be changed after they have been created, there are assignment expressions or methods

that may be used to modify a list. In fact there are actually a wide of ways to modify a list, a small

subset of these possible options is shown below.

Replacing an element in a list:

>>> beatles = ['John', 'Paul', 'George', 'Pete']

>>> beatles[3] = 'Ringo'

>>> beatles

['John', 'Paul', 'George', 'Ringo']

Here the element at position 3 (the fourth value in the list) is changed from Pete to Ringo. Alternatively,

it is possible to replace multiple elements in a list with multiple elements from another type of collection

Replacing elements in a list using another collection:

>>> temps = ('Jimmy', 'Eric')

>>> beatles[3:4] = temps

>>> beatles

['John', 'Paul', 'George', 'Jimmy', 'Eric']

Here we have replaced the George and Ringo in the list beatles with elements from the tuple temps.

As mentioned before, there are many related ways lists may be modified. Looking at the Python

documentation or detailed cheat sheet is a good way to get an overview of these. We shall not discuss

all these ways in detail, since they are largely variations on the same idea. We shall, however, allow

you to become familiar with these ideas by trying out several examples in the exercises.

As for other types of collections, we can modify lists using methods. For example, to reverse the list

use the method ‘reverse’:

Using methods on lists:

Lists may be modified using a method call.

>>> beatles.reverse()

>>> beatles

['Eric', 'Jimmy', 'George', 'Paul', 'John']

The developers of Python wisely chose intuitive names for the built-in methods:

>>> beatles.sort()

>>> beatles

['Eric', 'George', 'Jimmy', 'John', 'Paul']

Note that calling the desired method in the above example modifies the list immediately and the list

does not have to be re-assigned to itself i.e. we do not do the following

beatles = beatles.sort()

 Learning to program with Python

40

Method Purpose

append() Adds an element at the end of the list

clear() Removes all the elements from the list

copy() Returns a copy of the list

count() Returns the number of elements with the specified value

extend() Add the elements of a list (or any iterable), to the end of the current list

index() Returns the index of the first element with the specified value

insert() Adds an element at the specified position

pop() Removes the element at the specified position

remove() Removes the item with the specified value

reverse() Reverses the order of the list

sort() Sorts the list

Mappings
Mapping are mutable structures that store data in what is known as “key/value” pairs. Conceptually,

you may think of these data types as a chest of drawers, in which each drawer is labelled. Into each

drawer may be placed one – and not more than one – item. The drawer label corresponds to the key

and the item in the drawer corresponds to the value. Such data structures are unordered and the keys

must be unique.

Dictionaries

The only mapping datatype encountered in Python is known as a dictionary (dict), which is an

intuitive name: the key serves as the dictionary word to look-up, and the value serves as the definition

of that word. To declare a dictionary, use the following syntax:

>>> a_team = {'Hannibal': 'Lieutenant Colonel John Hannibal Smith', 'Face':

'Lieutenant Templeton Arthur Peck', 'BA': 'Sergeant Bosco Albert Baracus',

'Murdock': 'Captain H.M. Murdock'}

You may have noticed that declaring a dictionary using curly brackets is similar to creating sets, only

when making dictionaries there are colons to separate the keys and elements. You may wonder,

therefore, what happens if we use this naming system and place nothing between the brackets: do we

create a set or a dictionary? Well, we actually create a dictionary:

>>> type({})

<class 'dict'>

This form of declaration uses colons to separate the key/value pairs, while different entries are

separated from one another by commas.

As for other datatypes, there is an alternative way to create dictionaries:

 Learning to program with Python

41

>>> a_team = dict((('Hannibal', 'Lieutenant Colonel John Hannibal Smith'),

 ('Face', 'Lieutenant Templeton Arthur Peck'),

 ('BA', 'Sergeant Bosco Albert Baracus'),

 ('Murdock', 'Captain H.M. Murdock')

))

Values maybe retrieved entering the dictionary name and then entering the sought key between square

brackets:

>>> a_team['Face']

'Lieutenant Templeton Arthur Peck'

Entering a key that does not exist will result in an error:

 >>> a_team['Jaffo']

Traceback (most recent call last):

 File "<pyshell>", line 1, in <module>

KeyError: 'Jaffo'

You may add a new entry to a dictionary as follows:

>>> a_team['Amy'] = 'Amy Allen'

>>> a_team

{'Hannibal': 'Lieutenant Colonel John Hannibal Smith', 'Face': 'Lieutenant

Templeton Arthur Peck', 'BA': 'Sergeant Bosco Albert Baracus', 'Murdock':

'Captain H.M. Murdock', 'Amy': 'Amy Allen'}

The same method is also used to edit an existing value:

a_team['Murdock'] = 'Captain Murdock'

To delete an entry from the dictionary, use the del command:

>>> del a_team['BA']

>>> a_team

{'Hannibal': 'Lieutenant Colonel John Hannibal Smith', 'Face': 'Lieutenant

Templeton Arthur Peck', 'Murdock': 'Captain Murdock', 'Amy': 'Amy Allen'}

Once again, as for other datatypes, it is possible to modify dictionaries using built-in object methods.

>>> a_team.get('Face')

'Lieutenant Templeton Arthur Peck'

 Learning to program with Python

42

Be aware that using this method on a non-existent key returns the None type, rather than an error

message.

Look at the table below of Python built-in dictionary methods to appreciate how these data structures

may be manipulated.

Method Purpose

clear() Removes all the elements from the dictionary

copy() Returns a copy of the dictionary

fromkeys() Returns a dictionary with the specified keys and values

get() Returns the value of the specified key

items() Returns a list containing a tuple for each key value pair

keys() Returns a list containing the dictionary's keys

pop() Removes the element with the specified key

popitem() Removes the last inserted key-value pair

setdefault() Returns the value of the specified key. If the key does not exist: insert the key,

with the specified value

update() Updates the dictionary with the specified key-value pairs

values() Returns a list of all the values in the dictionary

Streams
Obviously, the term stream does not refer to the flow of water, but instead refers to the flow of data.

Despite this, comparing data processing to the flow of water is actually a good analogy. In both

examples the flowing ‘material’ moves from a source to a sink. In a house water flows from a source

(a tap) to a sink (the, erm, sink). In data terms, the source could be a file that is opened and read, a

network connection or a specialised Python data structure termed a generator.

Files

To read a file, you will need to write code to create a Python object representing the file to be processed.

The two lines of code below will open a file named ‘Poetry.txt’ and then write the output to the screen.

with open('/Users/wingetts/Desktop/Poetry.txt', 'r') as anthology:

 print(anthology.readlines())

The command open serves as an instruction to open a specified file. Where necessary the path to the

file should be specified i.e. the location of the file on the computer running the script. In this example,

the file Poetry.txt sits on the Desktop, which in turn is found in the wingetts folder, and so on. After the

path to the file is the letter r. This is an instruction to read the file (w in contrast would be an instruction

to write to a named file). By default, this command is expecting the file of interest to contain text. If this

were not the case, and the file contained binary data, then the following open function should be passed

rb. The with function is not necessary, but is desirable since its inclusion ensures the file is closed in

the event of an error (it is bad practice to leave files open unnecessarily and can potentially lead to

problems.) The as anthology tells Python to create an object named anthology to represent this file.

On the subsequent line the method readlines() is called on the anthology object, which causes all

the text in the file to be read. This is then printed to the screen with the print command.

 Learning to program with Python

43

There are many different method calls that can be run on a file object, depending on what is required.

For example, anthology.readline(10)would return the first 10 characters of the first lines of the

file.

Conversely, if we were writing to the file, we could pass the writelines() method a collection in

which every element is a string.

Generators

A generator is a Python object that creates, or indeed generates, a stream of values. The generator

can keep making new values de novo as many times as is required. (In many situations this is

preferable to an alternative strategy of keeping a very large list in memory, and then selecting a value

from the list as necessary.) We shall discuss generators in more detail later in the course.

Copying Collections
Up until now, when dealing with primitive data types, we have seen that the assignment operator can

be used to make an independent copy of a name. If you look the example below, string1 and

string2 have final vales of A and B respectively. The name string1 always had the value A,

whereas string2 was initialised with the same value as string1 (i.e. A), but this was subsequently

updated to B.

string1 = 'A'

string2 = string1

string2 = 'B'

print(string1)

print(string2)

>>>

A

B

This is all well and good, but the situation is different for collections:

list1 = ['A', 'B', 'C']

list2 = list1

print(list1)

print(list2)

print()

list2.append('D')

print(list1)

print(list2)

 Learning to program with Python

44

>>>

['A', 'B', 'C']

['A', 'B', 'C']

['A', 'B', 'C', 'D']

['A', 'B', 'C', 'D']

Unlike for primitive datatypes, modifying list2 will also modify list1. This is because we have

actually created 2 different names referencing the same data structure. Changing list1 will therefore

modify list2, and vice versa. You may want this functionality in your code, or you may not. If you

don’t, the way around this is to use the copy() method of a collection:

list1 = ['A', 'B', 'C']

list2 = list1

list3 = list1.copy()

print(list1)

print(list2)

print(list3)

print()

list2.append('D')

list3.append('E')

print(list1)

print(list2)

print(list3)

>>> %Run mypy.py

['A', 'B', 'C']

['A', 'B', 'C']

['A', 'B', 'C']

['A', 'B', 'C', 'D']

['A', 'B', 'C', 'D']

['A', 'B', 'C', 'E']

You will see in the above code, appending E to list3 has not resulted in this character being appended

to list1.

As an aside, we can illustrate this point further with the id() built-in function. The function accepts a

single parameter and returns the identity of that object. This identity will be unique and constant during

 Learning to program with Python

45

the “lifetime” of the object. (Although two objects with non-overlapping lifetimes may have the same

id() value.) You can see below you will see that list1 and list2 actually reference the same

object, while in contrast list3 is a separate entity.

print(id(list1))

print(id(list2))

print(id(list3))

>>>

60937640

60937640

65185072

Further points on manipulating collections with functions and

methods

The key parameter

Now that we are familiar with Python collections, this marks a good place to return once more to

functions to discuss a slightly more complex mode of their action. Let’s consider this with an example

in which we want to sort a list of names alphabetically:

managers = ['Ferguson', 'Wenger', 'de Boer', 'Ancelotti']

managers.sort() #Sorts the list in place

print(managers)

>>>

['Ancelotti', 'Ferguson', 'Wenger', 'de Boer']

That’s not quite what we wanted, for ‘de Boer’ was positioned at the end of the list. Why was that?

Well the answer is that the sort() method uses ASCII character values to perform the sort, and

while these are arranged alphabetically, all the lowercase letters come after all the uppercase letters.

(More information on ASCII is found at: https://en.wikipedia.org/wiki/ASCII.)

Key expressions

This is an appropriate point to mention that methods or functions can be passed other functions as

arguments. This may sound strange, so let’s look at our example some more:

managers = ['Ferguson', 'Wenger', 'de Boer', 'Ancelotti']

managers.sort(key=len) #Sorts the list in place

print(managers)

>>> %Run misc.py

['Wenger', 'de Boer', 'Ferguson', 'Ancelotti']

We have modified the sort() method via the key parameter, which is used to pass len as an

argument to the function (i.e. key=len). You may have guessed already, but len in the built-in

Python function that determines the length of a string. By using this key parameter, the sort()

https://en.wikipedia.org/wiki/ASCII

 Learning to program with Python

46

method will use the function len as the basis to sort the list managers i.e. the lengths of the strings

are used to sort the list, but the original values in the list are returned.

So, how does this help us with our original task? Well, let’s define a function that converts strings to

lowercase (only functions may be passed via the key parameter and although there is a built-in

method to conver strings to lowercase, there is not a built-in function

def to_lowercase(my_string):

 return my_string.lower()

managers = ['Ferguson', 'Wenger', 'de Boer', 'Ancelotti']

managers.sort(key=to_lowercase)

print(managers)

>>> %Run misc.py

['Ancelotti', 'de Boer', 'Ferguson', 'Wenger']

The sort method now converts the names to lowercase, sorts these values, and then returns the

original values of the sorted list. We have now solved our original problem.

Anonymous functions (the lambda function)

It is possible in Python to declare functions with no name i.e. they are anonymous. (These anonymous

functions are sometimes also known as lambda functions.)

The syntax required for declaring a lambda function is:

lambda arguments : expression

Here is the previous code re-written using the more concise lambda function notation:

managers = ['Ferguson', 'Wenger', 'de Boer', 'Ancelotti']

managers.sort(key=lambda s: s.lower())

print(managers)

>>> %Run misc.py

['Ancelotti', 'de Boer', 'Ferguson', 'Wenger']

 Learning to program with Python

47

Chapter 5 – Conditionals, loops and iterations

Conditionals
Simple, one-alternative and multi-test conditionals

A central concept in computing is the capability to evaluate a particular value, or set of values, and then

make a “decision” based on this input. In Python, such conditional statements are created using the

if keyword. The example below is a simple conditional expression:

if 1==1:

 print('One is equal to one')

One is equal to one

You can think of the if keyword much the same as the English language equivalent, for it asks the

question: “is the following true?” In the example, the expression that follows asks whether one is equal

to one – which of course it is. The statement evaluating to True causes the code on the next line to be

executed, whereas conversely False would cause the next line to be ignored. Notice at this point that

the indentation scheme we encountered before. The conditional expression ends with a colon and the

print statement that may be performed depending of the outcome of the if statement, is indented by

4 spaces.

Let’s illustrate the structure once again, but this time with a one-alternative conditional:

if (2 + 2 == 5):

 print('Two plus two is five')

else:

 print('Two plus two is not equal to five')

Two plus two is not equal to five

In this example the condition expression evaluates to false. As before, this will cause the statement

after the if keyword to be ignored, but the statement after the else keyword will be printed to the

screen. This should make intuitive sense: if true do this, else do that. On many occasions, clear Python

can almost be read as instructions written in the English language.

Building on the two previous examples, there may be occasions when you need to test many different

conditional expressions. Such type of code is known as a multi-test conditional.

ball = 22

if(ball == 13):

 print('Unlucky for some')

elif(ball == 14):

 print('Lawnmower')

elif(ball == 22):

 print('Two little ducks!')

 Learning to program with Python

48

else:

 print(ball)

Two little ducks!

For instructional purposes, we work our way through the code as the Python interpreter would do when

executing the program. The name “ball’ was assigned the integer 22. The if statement checks

whether the value of the ball as a value of 1. Since it does not, we move to the elif keyword on the

next line. This keyword is an abbreviation for “else if”, i.e. the previous expression evaluated to false,

but does this expression evaluate to true? Well, the ball does not have a value of 4, and so we move

to the next elif statement which checks whether the ball has a value of 22. Since the ball is equal to

22, the program prints “Two little ducks!” to the screen. We now exit this code block and so we never

reach the final else keyword.

Loops
Loops are a central concept in many programming languages. They cause the same block of code to

be repeated (i.e. looping) until a fixed number of repetitions has been achieved, or some other criterion

is has been satisfied. There are many different types of loops in Python, each one suited to slightly

different situations.

While Loops

As alluded to previously in this course, with much of the Python code it is possible for a beginner to

make a reasonable guess at what a statement does simply from the meaning of the words in English.

The while loop is another such example, and in simple terms the statement means: keep looping while

this is true. For example:

x = 1

while(x < 5):

 print(x)

 x += 1

Is this code, x is assigned the value 1. We then proceed to the loop which will be carried out for so long

as x is less than 5. At the end of this line of code we have the typical colon followed by the four-space

line indentation on the next line. This indented code will be performed for each loop. The print

statement will display the value of x on the screen, and then the value of x is incremented by 1. This

will cause the values 1 to 4 (not 5, since x need to be less than 5) to be printed to the screen. It is worth

pointing out that if the increment statement had not been included, x would have the value of 1 and the

loop would be repeated forever; we would have created an infinite loop. Watch out for these when

writing your code. If a program or operation has not terminated after a much longer time than expected,

re-check that you have not inadvertently created an infinite loop.

You may append an else statement to your while loop which will be executed when the loop condition

evaluates to false:

 Learning to program with Python

49

x = 1

while(x < 5):

 print(x)

 x += 1

else:

 print("Not less than 5")

1

2

3

4

Not less than 5

These while loops can be structured in a different way. See the code below which also prints 1 to 4

to the screen, but is structured quite differently from before:

x = 1

while(1):

 print(x)

 x += 1

 if(x >= 5):

 break

Again, x is set to 1. Now, however, we enter a while loop that runs while 1 is true. But all numbers

other than 0 evaluate to True and 1 does not change its value, so we have created an infinite loop!

This will indeed go on forever unless we break out, which is exactly what we do if x is greater than

equal to 5. This break command is very useful when working with loops.

There is a related command to break named continue, which causes the code program to continue

to the next loop, but importantly does not break out of the loop. Look at the code below

x = 0

while(x < 10):

 x += 1

 if x % 2:

 continue

 print(x)

2

4

6

8

10

 Learning to program with Python

50

This causes the even numbers present in the range 1 to 10 to be printed to the screen. In this example,

the integer x is initialised to 0 and is then incremented by 1 in a while loop, which recurs while x is

less than 10. There is a conditional expression in the loop which results in a continue command if x

is assigned to an odd integer (i.e. x % 2 returns a remainder other than 0). The continue command

causes a new loop starts, and consequently the value of x is not printed to the screen. If, however, x

has an even value, then that value will be printed to the screen.

Processing file input using a loop

Loops are also useful to evaluate data received when reading a file (or produced by a generator). See

the example below, in which a text file listing the integers from 1 to 100 on separate lines, is read one

line at a time. However, only the line numbers divisible by 10 (e.g. 10, 20, 30 etc) are subsequently

printed to the screen by the Python script.

with open(filename) as file:

 line = file.readline()

 count = 1

 while line:

 count += 1

 line = file.readline()

 if (count % 10 == 0):

 print(line)

Most of the code should look familiar, but please not the code while line:. This is a conditional

while loop requiring the value of “line” to evaluate to true. Any line in a file (even an empty line – which

is actually represented by \n) will correspond to true in such an evaluation, as consequently the loop

will continue until the end of the file. Using this trick, you may read and process an input file on a line-

by-line basis.

Iterations

Iterations are conceptually very similar to loops and indeed the terms are often used interchangeably.

Loops run so long as the obligatory while statement evaluates to true. Iterations in contrast take

place, by definition, on collection objects using the for keyword. The next few paragraphs give

examples of how iterations are used on different containers or in different contexts.

(Please note that in many places the term iteration is used interchangeably with “loop”, or “for loops”.)

Simple Iteration

The example below shows how to iterate over a collection object:

people = ['Adam', 'Bob', 'Charlie']

for person in people:

 print(person)

>>>

Adam

Bob

Charlie

 Learning to program with Python

51

The for keyword tells the Python interpreter to iterate over the list ‘people’ (this need not be a list and

could be another type of container object). The first element of ‘people is then assigned to the name

‘person’. The script then executes the block of indented code, printing the name of the person (i.e.

‘Adam’) to the screen. The iteration then continues with the second element of the list.

Iterating over a file

Iterating over a file object has a similar syntax, as shown in the example below which prints all lines in

a file to the screen.

filename = '/Users/wingetts/Desktop/one_hundred_lines.txt'

with open(filename) as file:

 for line in file:

 print(line)

Iterating over a dictionary

When iterating over a dictionary, it is possible to process either the keys, values or both. In the example

below we have used the “a_team” dictionary from earlier in the course. The code iterates through the

dictionary, assigning the keys to the alias name and the dictionary values to the name person. The

code then prints these to the screen sequentially.

 a_team = dict((('Hannibal', 'Lieutenant Colonel John Hannibal Smith'),

 ('Face', 'Lieutenant Templeton Arthur Peck'),

 ('BA', 'Sergeant Bosco Albert Baracus'),

 ('Murdock', 'Captain H.M. Murdock')

))

for alias, person in a_team.items():

 print(alias + "\n" + person)

Enumerating iterations

A nice feature of Python is that it is easy to count the number of iterations performed using the

enumerate function:

people = ['Adam', 'Bob', 'Charlie']

for n, person in enumerate(people):

 print(n)

 print (person)

>>>

0

Adam

1

Bob

2

Charlie

 Learning to program with Python

52

The above code iterates over the list “people” as before, but in addition to assigning “Adam”, “Bob”,

“Charlie” to “person”, the iteration number (starting at 0) is assigned to “n”.

Iterating over ranges

It is also possible to iterate over a range. In the example below, the range function generates integers

0 to 3. The resulting range may be iterated over using the for command, and the results are printed

to the screen.

for n in (range(3)):

 print(n)

>>>

0

1

2

Nested iterations

A nested iteration is an iteration within an iteration. It is quite common to see nested iterations in Python

code for they provide an excellent way to combine values to create permutations of those values. For

example, the nested iteration below generates the 16 di-nucleotide permutations of the 4 DNA

nucleotide bases.

base_list = ['A', 'G', 'C', 'T']

for base1 in base_list:

 for base2 in base_list:

 print(base1 + base2)

>>>

AA

AG

AC

AT

.

.

Iterating over a string

While strings are primitive data types, in some ways they may be thought of as more complex data

structures comprising multiple different elements (i.e. a string of components). Owing to this, it is

possible to iterate across a string in a similar fashion to a collection. See how we iterate across the

string of eight letters in the example printed below.

 Learning to program with Python

53

my_string = 'ABCDEFGH'

for element in my_string:

 print(element)

>>> %Run misc.py

A

B

C

D

E

F

G

H

Passing iterables to functions

It is possible in Python to pass iterables to a function. Consider this code that defines and uses a

function to convert to uppercase every string in a list:

def list_upper(original_list=[]):

 upper_list = []

 for element in original_list:

 element = upper_list.append(element.upper())

 return upper_list

my_list = ['a', 'b', 'c', 'd']

capitalised_list = list_upper(my_list)

print(capitalised_list)

The code should be understandable at this point: we have passed a list to a function, which

subsequently iterates over the list while converting each element of the list to uppercase. Importantly,

Python does not allow for a function to edit the original list, so we have to append the edited elements

to a new list declared within the function. The function then returns the new edited list.

As an aside, it is worth noting that in the first line of the function definition we have specified an empty

string as the default argument. This is a good idea, since if an iterable is not passed to the function

from the main body of the script, then setting an empty list to the default value will prevent the function

call from failing.

 Learning to program with Python

54

Comprehensions
We have now introduced conditional expressions, loops and the closely related iterations. When used

together these key components of the Python language prove extremely versatile when it comes to

modifying data. In addition, Python has an elegant way achieving these same tasks but in single lines

of code in what are known as comprehensions. These comprehensions can be used to create sets,

lists or dictionaries from using a collection as a starting point. It is worth taking the time to become

familiar with the syntax of comprehensions, since by using them you should be able to write more

succinct elegant code.

List Comprehensions

List comprehensions generate lists as output and have the following template syntax:

[expression for item in collection]

That is to say, this comprehension will perform the specified expression on every item in the collection.

To illustrate this point, look at the next example in which we generate square numbers using 0 to 10 as

the root values. Sure, we could use a loop to achieve the same task, but a one-line list comprehension

is a succinct Pythonic way to manipulate collections.

S = [x**2 for x in range(11)]

print(S)

>>>

[0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100]

We created a collection object with the term range(11), and we iterated over this range, assigning

each element to x. Each value of x is subsequently squared and added to the list generated by the

comprehension. This list is then assigned to the name S.

Set Comprehensions

Set comprehensions are similar to list comprehensions and have a similar syntax, but are enclosed

in curly brackets rather than round brackets. As their name suggests, they generate sets as output.

{expression for item in collection}

It is worth bearing in mind that sets only contain unique items, and so you cannot be sure that the output

will have the same number of elements as the input. We see in the following example a list containing

duplicates of the letter ‘C’. Using the set comprehension, every value from the list (assigned the name

x) is allocated to the newly generated set. The set has no duplicate values.

my_list = ['A', 'B', 'C', 'C', 'C']

my_set = {x for x in my_list}

print(my_set)

print(type(my_set))

>>>

{'B', 'C', 'A'}

 Learning to program with Python

55

<class 'set'>

Dictionary Comprehensions

Essentially the same rules apply to dictionary comprehensions as for set comprehensions, but of

course dictionaries are produced as output. Dictionary comprehensions have the template:

{key-expression: value-expression for key, value in collection}

Consider the code below that transposes dictionary keys for values.

my_dict = {1:"Red", 2:"Green", 3:"Blue"}

print(my_dict)

print({value:key for key, value in my_dict.items()})

>>>

{1: 'Red', 2: 'Green', 3: 'Blue'}

{'Red': 1, 'Green': 2, 'Blue': 3}

Conditional Comprehensions

Conditional comprehensions are an excellent way to filter a comprehension. These comprehensions

have the code structure:

[expression for element in collection if test]

In the example below a range of integers from 0 to 9 is generated, but only those with values less than

3 are printed to the screen, owing to the conditional comprehension.

print([x for x in range(10) if x < 3])

>>>[0, 1, 2]

Generators
We previously alluded briefly to the Python object known as a generator, which produces a stream of

data. In many cases this is preferable to an alternative strategy of keeping a very large list in memory,

and then selecting a value from the list as required. The syntax for making a generator is almost

identical to that of declaring a function, except that code defining a generator ends with the keyword

yield instead of return. The keyword next instigates each iteration of the generator.

In the following example we create a generator that produces even numbers. Each time the next

command is run in the loop, the generator yields the next even number in the sequence. Importantly,

notice that once we leave the loop, but call the generator once more, we produce the next even number

in the sequence (i.e. the generator keeps track of “where it has got to”).

 Learning to program with Python

56

def all_even():

 n = 0

 while True:

 yield n

 n += 2

even_number_generator = all_even()

for i in range(5):

 even_number = next(even_number_generator)

 print(even_number)

print("And again...")

print(next(even_number_generator))

>>>

0

2

4

6

8

And again...

10

Generators don’t have to produce an infinite number of values. We could specify some a limit to the

number of values that can be returned. Once this is reached, further iteration will not be possible and

a StopIteration error will occur.

So to recap, generators constitute a clear and concise way to make data. They are memory efficient

as compared to regular functions that need to create an entire sequence in memory before returning

the result. Owing to these reduced memory overheads, generators are generally more efficient in such

instances. Generators may also be joined to one another (i.e. the output of one taken as input by

another), making data pipelines.

A note on scope
We have discussed that assigning names to values and then using these values in subsequent

calculations and manipulations. However, just because we have created a name, it does not mean it

is accessible to every part of a script. We list some example of how scoping works in Python. These

may be particularly interesting for people familiar with other languages (such as Perl) who may get

caught out by Python’s behaviour.

Variables created in out outer bloc of code will be accessible to the inner bloc of code

You can see below that h is in scope inside the for loop, since it is successfully added to the value of

i and then printed to the screen.

 Learning to program with Python

57

h = 10

for i in range(2):

 print(h+i)

>>> %Run mypy.py

1

10

11

Likewise, variables declared outside a function are available within that function:

def test_function():

 print(x)

x = 1

test_function()

>>> %Run mypy.py

1

Loops can modify variables “external” variables, but functions cannot

You see in the example below that, as expected, the toplevel name x is accessible within a loop and

a function. However, these control structures have different behaviour with regards to modifying x.

x = 1

for i in range(2):

 x = x + 1

print(x)

>>> %Run mypy.py

3

def test_function():

 x = x + 1

 print(x)

x = 1

test_function()

>>>

Traceback (most recent call last):

 Learning to program with Python

58

 File "C:\Users\wingetts\Desktop\mypy.py", line 8, in <module>

 test_function()

 File "C:\Users\wingetts\Desktop\mypy.py", line 5, in test_function

 x = x + 1

UnboundLocalError: local variable 'x' referenced before assignment

Variables created within a function will not be accessible outside that function

In the two examples below, the code prints the names x or y, which have been declared within a

function. In both cases an error is generated.

def add_one(x):

 return(x + 1)

print(add_one(1))

print(x)

>>>

2

Traceback (most recent call last):

 File "C:\Users\wingetts\Desktop\mypy.py", line 5, in <module>

 print(x)

NameError: name 'x' is not defined

def add_one(x):

 y = x + 1

 return(y)

print(add_one(1))

print(y)

2

Traceback (most recent call last):

 File "C:\Users\wingetts\Desktop\mypy.py", line 6, in <module>

 print(y)

NameError: name 'y' is not defined

Variables created in a loop will be accessible outside that loop

In the example below, the names i, j and k are declared within a loop (or a pair of nested loops).

Despite this, all these names are accessible to the toplevel coding area.

 Learning to program with Python

59

for i in (range(1)):

 for j in (range(10, 11)):

 print(i)

 print(j)

 k = i + j

 print(k)

 print()

print("Outside loop i:" + str(i))

print("Outside loop j:" + str(j))

print("Outside loop k:" + str(k))

>>> %Run mypy.py

0

10

10

Outside loop i:0

Outside loop j:10

Outside loop k:10

Just to make you aware that there is a keyword global that can modify Python scoping, but we shall

not discuss this further in this course.

 Learning to program with Python

60

Chapter 6 – Exception handling
No doubt by now when trying to run code you have written, the Python interpreter will have responded

by outputting to the screen a traceback message of some kind, meaning that there is some kind of

error in your code. It is worth pointing out that taking the time to read the traceback message is certainly

worthwhile, as the output gives an explanation why the code failed. Although it not always obvious

what the output means, with time and experience the traceback message should help you identify most

bugs (coding errors) in a relatively short amount of time. Despite any initial misgivings you may have,

you will soon find out that the traceback message is the Python coders’ friend.

Even if you write perfect code, however, there are events which will be entirely beyond a programmer’s

control. Suppose you write a script that takes input from a file, but unfortunately, for whatever reason,

that file was deleted from the computer running the Python script and so when the program tries to open

the file, an error will result. When using a script you have written, or moreover using a script someone

else has written, there are countless ways in which the script could fail. However, a good programmer

will plan for those eventualities and although you cannot stop your script failing, when it does fail, you

can ensure it fails as gracefully as possible.

Errors can be categorised into different types: trying to open a file that is not on your system you would

generate an IOError. In contrast, a NameError would result if trying to use a name that had not yet

been declared within your script.

Fortunately, Python has a feature available to a programmer to deal with such unexpected errors. This

capability is known as exception handling, and enables a programmer to provide instructions to the

script to be on the “look out” for certain types of error, and provides a “contingency plan” of what to do

if such an error is encountered. So, an exception is an error that is handled by the Python code,

and will be dealt with in a pre-specified manner. Unhandled exceptions are errors and will result in a

traceback message.

The basic way to deal with errors is to use a try statement followed by an except clause. Listed

below is a standard template for handling exceptions:

try:

 statements we try to run

except ErrorClass:

 what to do if an error of this class is encountered

Let’s illustrate this with an example:

my_list = ['A', 'B', 'C']

print(my_list[2])

>>>

Traceback (most recent call last):

 File "C:\Users\wingetts\Desktop\thonny.py", line 4, in <module>

 print(my_list[3])

IndexError: list index out of range

 Learning to program with Python

61

We have generated a “list index out of range error” by trying to get the value at index 3 from my_list.

Although my_list has 3 elements, the numbering of indices starts at 0, so there is no value at position

3 in our list. We could write an exception handler for this:

try:

 my_list[3]

except IndexError:

 print("That index is outside the list!")

>>>

That index is outside the list!

Now, thanks to the exception handler, the code does not terminate with a traceback, but rather prints

to the screen a user-friendly description of what went wrong. Furthermore, if this code were part of a

larger program, the program should carry on running while conversely, without the exception handler,

the program would terminate abruptly.

Many error handlers are more complex than the example above, catching many different types of errors,

and potentially handling each type of error differently. Look at the following template:

try:

 statements we try to run

except ErrorClass1:

 what to do if an error of class 1 is encountered

except ErrorClass2:

 what to do if an error of class 2 is encountered

except (ErrorClass3, ErrorClass4):

 what to do if an error of class 3/class 4 is encountered

except ErrorClass5 as err:

 what to do if an error of class 5 is encountered

except:

 statement to execute if error occurs

finally:

 statement carried out if exception is/is not made

The above template shows that the error handling reporting process can be tailored to the type of error

generated, for example ErrorClass1 and ErrorClass2 will result in different responses.

ErrorClass3 and ErrorClass4 will generate the same response. The response to ErrorClass5

generates an error object called err using the as keyword. This object may then be processed by the

script as required. The statement following the last except, in which the error type is not defined, will

be performed if an error takes place, but has not been specified previously in the error handling block

of code. The finally statement will be carried our regardless, irrespective of the type of error, or

indeed if any error, has occurred. To illustrate a more complex error handling process, look at the code

below:

 Learning to program with Python

62

my_dict = {"Aardvark":1, "Baboon":2, "Cougar":3}

try:

 value = my_dict["Dandelion"]

except IndexError:

 print("This index does not exist!")

except KeyError:

 print("This key is not in the dictionary!")

except:

 print("Some other error occurred!")

finally:

 print("Let's carry on")

>>>

This key is not in the dictionary!

Let's carry on

The code creates a dictionary containing three values which are animals, but then tries to retrieve a

value (i.e. “Dandelion”) not in the dictionary. This returns a KeyError leading to message “This key is

not in the dictionary!” being printed to the screen. The finally clause is then executed after the rest

of the code.

It is also possible to write code to create an exception object, which may be returned should an error

occur. But to do that, you first need to understand more about Python objects and classes, and indeed

become familiar with object-orientated programming. The next section discusses these topics.

 Learning to program with Python

63

Chapter 7 – Object-oriented programming

The concepts of object-oriented programming
A strength of Python and a feature that makes this language attractive to so many, is that Python is

what is known as an object-oriented programming language (OOP). (You may occasionally see this

written as “orientated” in British English.)

The alternative programming style is procedural, which may be thought of as a set of ordered

instructions. Giving someone geographical directions makes a good analogy to procedural instructions:

e.g. 1) take the second right, 2) go straight on at the roundabout and 3) turn left at the lights. This style

is what most people think of by the term programming and indeed, this is how we have approached

programming up until now in this course, since it is a simple and effective way to complete tasks of

basic-to-intermediate complexity. As you build more complex programs, however, you may find it

becomes ever more difficult to keep track in your own mind as to what is going on. What does a

particular function or variable do? How should I arrange my many pages of code? Should I make a

value accessible to all parts of my code? These questions you may ask yourself as your codebase

increases in size.

OOP is easier for humans to understand, particular as a program increases with size, because it models

our everyday world. That is to say, it categorises its components into objects, which may be thought of

as self-contained entities that have their own properties. Different objects may interact with one another

and related objects constitute groups know as classes.

In reality, the distinction between an OOP language and a procedural language is somewhat blurred.

Perl (previously the most popular bioinformatics language) for example has an OOP component, but it

is quite common for even experienced aficionados to hardly ever use this aspect of the language. The

statistical programming language R is similar in this regard, but many users will only explicitly deal with

R objects when processing the output from external modules. In contrast, Java was designed as OOP

from the ground up, and learners will be introduced to these concepts right from the start. Python falls

between Perl and Java in that it is quite possible for programmers to write code with only a passing

familiarity with objects, such as when executing methods on particular objects. However, with a little

bit more experience it is quite possible to build complex object-orientated software in a style more typical

to Java.

Defining classes
As mentioned before, classes are groups of related objects. For example, a particular dog is an

instance but of the dog class. If we wanted to create a dog in our program, we would define the dog

class, and then make a specific dog from that class. Each dog would constitute a separate Python

object, modelling the real world. (Technically speaking, in Python even the abstract concept of a class

is an object in its own right, but nevertheless you should get the idea that when using this programming

style we create discrete data structures analogous to physical objects.)

So, we would define our dog class using the keyword class, as shown in the simple example below:

class dog:

 pass

All the dog class contains is the keyword pass, the placeholder value that allows a block of code to do

nothing, without generating an error. If you were now to type dog() into the interpreter, you should see

a message similar to this:

 Learning to program with Python

64

<__main__.dog object at 0x0341D7B0>

The text “__main__” is the name of the module to which the dog class belongs (main is the Python

interpreter). Next is the name of the class followed by an internal memory address (written in

hexadecimal).

To make an instance of the dog class, simply call the class as you would a function:

snoopy = dog()

This instance of the dog class is named snoopy. You may view its memory location as well:

>>> dog

<__main__.dog object at 0x0410D7F0>

Instance Attributes
Instances of a class may have methods (such as already seen with built-in objects) and store

information in what is known as fields. Collectively, methods and fields are known as attributes. Both

of these may be accessed using the dot notation.

Suppose we wanted to set a field for our dog, snoopy, we would do the following:

snoopy.colour = 'White'

print(snoopy.colour)

All other instances of the dog class will not have a colour field; only snoopy will be changed by this

statement. Although this is a simple and quick way to edit the snoopy instance, there are better ways

to do this. We shall now work through the commonly used attributes of an instance, building our dog

class as we go.

Access Methods
This type of method returns values based on the fields of an instance. The code below re-writes the

dog class so that now instead of simply the pass keyword, the class now has a method named

get_colour. To define a method within a class, use the def keyword which we encountered when

creating functions. You can see that calling this method returns the value self.colour. But where

does self.colour come from? Well, self refers to the current instance of a class, and so the return

statement is in effect saying “return the value of colour associated with this instance (i.e. snoopy) of

the dog class”.

class dog:

 def get_colour(self):

 return self.colour

>>> snoopy.get_colour()

'White'

 Learning to program with Python

65

You may be wondering as to the point of writing such a method. Wouldn’t it be easier simply to type

the following?

>>> snoopy.colour

'White'

And you would be correct, this is easier and quicker to do and will return the correct answer. Suppose,

however, that at a later date you, or someone else, changes how the dog colour values are stored within

a class. Maybe you decide to store all useful variables in a dictionary. This will mean that code that

interacted directly with the colour name will no longer work. Having methods to enable your class

instance to interact with the outside world enables programmers to modify the internal structure of such

an object, while still allowing the object to function correctly.

While access methods retrieve values based on the current state of an instance of a class, these

methods do not simply have to return a value. They may, for example, perform a test of some kind

before returning a value. In the code printed below, we have modified the dog class once more to

include an action method that will evaluate the mood of the dog and return a different string response

depending on that mood. Consequently, when snoopy is happy he wags his tail, but when he is angry

you need to watch out, because he will bite!

class dog:

 def get_colour(self):

 return self.colour

 def action(self):

 if self.mood == 'Happy':

 return('Wag Tail')

 elif self.mood == 'Angry':

 return('Bite')

 else:

 return('Bark')

snoopy = dog()

snoopy.mood = "Happy"

print((snoopy.action()))

snoopy.mood = "Angry"

print((snoopy.action()))

>>>

Wag Tail

Bite

 Learning to program with Python

66

Predicate Methods
A predicate method returns either a True or False value. By convention, such methods begin with

an is_ prefix (or sometimes has_, depending on the grammatical context of the method name).

In the example below, we have modified the dog class to contain a predicate method that reports

whether a dog is hungry (for brevity, we have removed the other methods from the class). The degree

to which the dog’s stomach is full is associated with the name stomach_full_percentage. If this

value drops below 30, the is_hungry predicate method will return true.

class dog:

 stomach_full_percentage = 20

 def is_hungry(self):

 if(self.stomach_full_percentage < 30):

 return True

 else:

 return False

snoopy = dog()

print(snoopy.is_hungry())

An import method to add to a class is the ability to sort instances when compared to one other. By

convention, a way to do this is to contract an _lt__ method, which evaluates whether one class is less

than another class. We have added this method to the new version of the dog class. The method takes

as arguments: itself and another object of the same type (it then checks whether the arguments passed

are indeed of the same type). The method sorts dogs by their ages. We create two dogs, to which we

allocate ages and then sort using the __lt__ method. Running the script confirms that snoopy is older

than scooby.

class dog:

 def get_age(self):

 return self.age

 def __lt__(self, other):

 if type(self) != type(other):

 raise Exception(

 'Incompatible argument to __lt__:' +

 str(other))

 return self.get_age() < other.get_age()

snoopy = dog()

snoopy.age = 9

scooby = dog()

scooby.age = 6

 Learning to program with Python

67

print(snoopy.__lt__(scooby))

>>>

False

Initialisation Methods
When creating a new class, it is often useful to set (or initialise) its variables at time of creation. This

is done using a special initialisation method: __init__. This is the usual way to assign values to all

fields in the class (even if they are assigned to None). By convention and ease of use, the __init__

method should be at the top of the code in a class.

You will see we have rewritten the dog class below, but now with an __init__ method that sets the

dog’s age. As you can see, we then create an instance of a dog called snoopy with an age initialised

to 10 years old.

class dog:

 def __init__(self, data):

 self.age = data

 def get_age(self):

 return self.age

snoopy = dog(10)

print(snoopy.get_age())

>>>

10

String Methods
Sometimes it is useful to be able to print a class to the screen to read its contents. To be able to do

this, you need to write a method that defines how the output should be displayed on printing. There are

special Python methods named __str__ and __repr__ explicitly for this purpose. The __str__ will

be returned after calling print, whereas __repr__ would be returned by the interpreter.

If you look at the new version of the dog class printed below, in which the name of the dog is set during

the initialisation step. Passing the instance of the class (dog1) to the interpreter – or indeed printing

the class – causes the memory location to be returned.

 Learning to program with Python

68

class dog:

 def __init__(self, data):

 self.name = data

dog1 = dog("Snoopy")

print(dog1)

>>> dog1

<__main__.dog object at 0x0405D6B0>

>>> print(dog1)

<__main__.dog object at 0x0405D6B0>

>>>

However, after adding _init__ and __str__, a human-readable name printed to the screen, which

is defined within the class.

class dog:

 def __init__(self, data):

 self.name = data

 def __str__(self):

 return 'Dog:' + self.name

 def __repr__(self):

 return self.name

>>> dog1

Snoopy

>>> print(dog1)

Dog:Snoopy

Modification Methods
So, we have methods that access fields within a class. We also have methods that can modify fields

within a class. In the example below the dog’s mood by default is set to “Sad”. However, the

modification method set_mood will adjust the mood of the dog. In this example, we change the mood

of the dog from “Sad” to “Happy” by using the modification method.

 Learning to program with Python

69

class dog:

 def __init__(self):

 self.mood = "Sad"

 def get_mood(self):

 return self.mood

 def set_mood(self, data):

 self.mood = data

dog1 = dog()

print(dog1.get_mood())

dog1.set_mood("Happy")

print(dog1.get_mood())

Additional Methods
In addition to the methods described above, there are action methods, which will exert some kind of

effect outside their class. There are also support methods that are used internally within the class, to

assist methods that interact with code outside that class. The code is subdivided in this way for

readability and preventing the re-use of the same chunks of code. Remember earlier in the course we

mentioned how it is often useful to break down large functions into several smaller functions. Well, the

same is true of class methods.

Class Attributes
Up until now we have looked at attributes that work at the level of each instance of a class. Their impact

is restricted to their own instance and do not affect the other instances of the same class. In contrast,

there are attributes whose scope, or namespace, operate at the wider level of the whole class.

It is quite common and simple need for class attributes is in the recording of the number of instances of

a class. Of course, the wider program could keep track of this, but it is much neater if the class itself

records this value. The code below (generating a sheep class this time) does just this task.

You will notice there is a top-level field called Counter. Fields declared here work at the class-level

and by convention begin with a capital letter. Having made a class field, we now need a class method

to modify it. To make class methods, simply follow the standard way of making an instance method but

place the special indicator @classmethod on the line immediately above the definition. The class

method AddOne simply increments the Counter value by one after being called.

The first sheep instantiated is dolly. The initialisation method calls the AddOne class method and then

assigns the value of the Counter to the instance field id. Consequently, the id of dolly will be set to

1. Repeating this process for flossy further increment the class field Counter, and consequently flossy

will have an id of 2.

 Learning to program with Python

70

class sheep:

 Counter = 0

 @classmethod

 def AddOne(self):

 self.Counter += 1

 def __init__(self):

 self.AddOne()

 self.id = self.Counter

 def get_id(self):

 return self.id

dolly = sheep()

flossy = sheep()

print(dolly.get_id())

print(flossy.get_id())

>>>

1

2

Static methods
It is just worth briefly mentioning static methods. These methods are different in that they can be called

directly from a class, without the need for creating an instance of that class. This is illustrated in the

code below. Similar to before, to make a static method place the special indicator @staticmethod

on the line immediately above the definition.

class Utilities:

 @staticmethod

 def miles_to_km(miles):

 return(miles * 1.60934)

journey = 10

journey_km = Utilities.miles_to_km(journey)

print(journey_km)

>>> %Run mypy.py

16.0934

 Learning to program with Python

71

Static methods are useful when we need to make use of a class’s functionality but we will not need that

class at any other point in the code. When (or indeed whether) to use a static method is often a case

of coding style, but they do help to simplify code.

Inheritance
The concept of inheritance is central to object orientated programming and allows programmers to

write code much more efficiently. The rationale owes much to the phenomenon of the same name

observed in biology, in which organisms with a certain set of traits produce offspring with largely the

same characteristics. In OOP, once we have defined a class, we can easily define a subclass that

automatically “inherits” the code of its parent class (now referred to as the superclass). We can then

change the properties of the subclass, so while it resembles the superclass in many ways, it also has

its own distinct functionality.

This ability of OOP is advantageous as it allows coders to produce objects (remember, all classes are

objects) with a wide range of functions with a much-reduced code base. It also prevents duplication of

code, which is good since if we subsequently need to make changes, we should only have to make the

modification in one place and not in many different locations. The process of inheritances may take

place over many generations i.e. it is possible to make a subclass and then make a subclass of that.

To illustrate this idea, let’s revisit one of the dog classes we generated previously in the section:

class dog:

 def __init__(self):

 self.mood = "Sad"

 def get_mood(self):

 return self.mood

 def set_mood(self, data):

 self.mood = data

The class dog contains the field mood which may be set by the method get_mood, or may be modified

by the method set_mood. The initial value is set to “Sad”. As we have seen before, running the

following code:

dog1 = dog()

print(dog1.get_mood())

Will return the results:

>>>

Sad

Now, let’s suppose we want to create a subclass of dog. To illustrate this concept of inheritance, let’s

suppose we want to create a breed of dog, for example a Rottwieler. The code to do this is actually

quite simple and entails using the class keyword, followed by the new class name to be made, followed

in parentheses by the superclass.

 Learning to program with Python

72

class rottweiler(dog):

 pass

So, we have now generated the rottweiler subclass (for the code to function correctly, we need to

place the keyword pass after the indentation, since the contents of the subclass cannot be left empty).

The subclass rottweiler has inherited the properties of the superclass dog.

rottweiler1 = rottweiler()

print(rottweiler1.get_mood())

>>>

Sad

Inheritance and super()
The previous example with the dog and rottweiler demonstrates how to make a subclass, but at

this stage the benefits of this may not seem apparent. We have simply created a class that, for all

intents of purposes, is identical to the parent class. Why not simply instantiate a new member of the

dog class? Well, we shall now illustrate some of the power of class inheritance.

The Rectangle class represents rectangles that we may encounter in the everyday world, or in

mathematics. Everything in the code should look familiar. The __init__ method allows the user to

specify the length and width of the rectangle, which is all that is needed to define this shape. Having

instantiated a rectangle, there are a couple of methods at our disposal to report the area and perimeter

of any given rectangle.

class Rectangle:

 def __init__(self, length, width):

 self.length = length

 self.width = width

 def area(self):

 return self.length * self.width

 def perimeter(self):

 return 2 * self.length + 2 * self.width

This is all well and good, but what about the special case where the length and width of a rectangle are

equal? The above code may work fine in such eventualities, but it is probably easier to have a separate

Square class to deal with these shapes. Not only does a Square class make the code easier to read

(since it will be obvious we are working with a square and rectangle), such classes should be easier to

instantiate, since we only need to know one side length for a square (as opposed to two side lengths

for a rectangle). We could write a separate Square class from scratch, but a more parsimonious

strategy is to create a Square subclass of Rectangle:

 Learning to program with Python

73

class Square(Rectangle):

 def __init__(self, length):

 super().__init__(length, length)

The first line of code generates the Square class and specifies that this will inherit its properties from

the Rectangle class. On the second line we now need a new initialisation method, since we only

need to specify the length of one side of a square. The block of code within the initialisation method

comprises one line, where we introduce the keyword super. As the name suggests, this is used to

refer to the superclass. So this line of code references the __init__ method in the superclass of

Square (which is Rectangle). We then pass length twice to this initialisation method, which is

exactly what we want to do, for if we define a rectangle in which the length was the same as the width,

we will have defined a square. This process of taking a generalised class and then creating more

specific subclass from it is a central concept in object oriented programming.

You will see that we have an __init__ method in our subclass as well as our superclass. If we require

a method in the child (sub) class to do something different from the parent, simply define the method in

the child class. The method defined in the child class will take priority over the parent class, and this

feature of object orientated programming – known as overriding – applies to any method.

OOP is a huge area in computing, and although to become an expert there is still a great deal to learn,

this chapter and the accompanying examples should make you familiar with the main concepts of this

programming schema.

A brief note on creating exceptions
In the exception handling chapter we discussed how to deal with errors and enable programs to fail

gracefully. While Python has a wide range of built-in errors, when developing more complex code there

may be times when you need to define custom errors. We shall not cover this in detail in this course,

but if you ever do this, you will need to understand OOP. Exceptions in Python are instances of the

built-in class Errors. To create your own error, you would need to import that class and then define

your custom error as a subclass.

 Learning to program with Python

74

Chapter 8 – Modules

Introducing modules
By using the Python techniques already described in this course, and by making use of the language’s

built-in functions and methods, it is possible to perform a wide variety of calculations and manipulations

with a small amount of code. This capability is extended substantially by making use of modules.

Modules make available to the user a much greater range of data types, functions, and methods. Under

the hood, modules are actually files placed in a library directory during Python installation. Modules

can also be obtained from external sources and added to Python’s library. There are also a wide variety

of bioinformatics modules available that can be installed to assist with your data analysis. To import a

module, use the import command:

>>> import os

This will import the os module, which allows Python to communicate with your operating system. Now

the os module is installed it is possible to run functions within this module:

>>> os.getcwd()

'/Users/wingetts'

The getcwd()function returns the user’s current working directory. To call a function within a module,

enter the module name (e.g. os), followed by a dot, then the required function’s name (e.g. getcwd)

and then a pair of round brackets as above.

Sometimes you may want to just import specific names from a module, rather than everything found

within that module. The following example shows how to import only getcwd from the os module. Use

this syntax for other importing specific names from other modules.

from os import getcwd

Importing only what you need often makes more sense as it can be overkill to import a whole module

simply for one function, or similar. Importing in this way means you can refer to getcwd directly, rather

than by using os.getcwd. Anyway, don’t worry about this distinction, the take home message is that

there are many modules available that can be imported by a script to instantly extend the functionality

of that script. This chapter discusses some of these modules and once you have become familiar with

these, you should be able to use a wide variety of additional modules. Some of these modules have

bioinformatics functionality, while others are linked solely computational in nature, extending the

capabilities of a Python script, or how it interacts with your computer.

The datetime module

Some programs may need to retrieve the current time and date information, or they may need to

manipulate times and dates in some way. The datetime module was written specifically for such

tasks. Suppose then that you wanted to use this datetime module, how would you go about using it?

Well, in the first place you should check the documentation for the module, which can be found at:

https://docs.python.org/3/library/datetime.html

The documentation is quite technical and there will undoubtedly be parts that you don’t understand, but

with growing familiarity and practice you will be able to understand much of what is being described and

https://docs.python.org/3/library/datetime.html

 Learning to program with Python

75

extract from the document all that is required to write your own code. The text below is taken from the

documentation (for Python 3.2). The text lists the classes contained within the datetime module.

Available Types

class datetime.date

An idealized naive date, assuming the current Gregorian calendar always was, and always will be, in

effect. Attributes: year, month, and day.

class datetime.time

An idealized time, independent of any particular day, assuming that every day has exactly 24*60*60

seconds. (There is no notion of “leap seconds” here.) Attributes: hour, minute, second, microsecond,

and tzinfo.

class datetime.datetime

A combination of a date and a time. Attributes: year, month, day, hour, minute, second, microsecond,

and tzinfo.

class datetime.timedelta

A duration expressing the difference between two date, time, or datetime instances to microsecond

resolution.

class datetime.tzinfo

An abstract base class for time zone information objects. These are used by the datetime and time

classes to provide a customizable notion of time adjustment (for example, to account for time zone

and/or daylight saving time).

class datetime.timezone

A class that implements the tzinfo abstract base class as a fixed offset from the UTC.

The module is versatile and enables the user to perform a wide variety of calculations. Here are some

examples of how to use the module to achieve some commonplace date/time-related tasks. In this first

example we have imported the datetime module, we then instantiate a datetime object using the

current time as time stored by the object. This value is then printed to the screen as a single-line

timestamp, using the print function.

import datetime

my_datetime_object = datetime.datetime.now()

print(my_datetime_object)

>>>

2019-12-16 17:40:35.218147

It is worth pointing out the all the attributes of a module can be achieved using the dir function. You

should see that the resulting list of attributes corresponds to that listed in the documentation

 Learning to program with Python

76

import datetime

print(dir(datetime))

>>>

['MAXYEAR', 'MINYEAR', '__builtins__', '__cached__', '__doc__', '__file__',

'__loader__', '__name__', '__package__', '__spec__', 'date', 'datetime',

'datetime_CAPI', 'sys', 'time', 'timedelta', 'timezone', 'tzinfo']

It is also possible to create a date object that corresponds to a user specified date:

import datetime

my_date = datetime.date(1966, 7, 30)

print(my_date)

>>>

1966-07-30

In addition, the module can be used to add or subtract dates to determine the amounts of time

accumulated in different situations. In the example below, we import the datetime and date classes.

We then create to date objects, set to dates of our choosing. Then, by simply using the minus operator,

we are able to deduce the length of time between them.

from datetime import datetime, date

my_start = date(year = 2016, month = 7, day = 12)

my_end = date(year = 2019, month = 7, day = 24)

my_term = my_end - my_start

print(my_term)

>>>

1107 days, 0:00:00

As mentioned before, when you want to perform a task with an additional module, there is often

some degree of research involved. Firstly, you may need to find out if a module that meets your

programming requirements actually exists. Typically, programmers will refer to modules they have used

previously to see if their required functionality is available. If that proves not to be the case, it is common

then to search the Python documentation or using Google (or another favourite search engine) to find

a module that appears suitable. Next will be the phase of reading the module’s documentation to see

how that particular module works, and then finally trying the module out and incorporating it into the

codebase.

The exercises for this chapter were designed to help you go through this process yourself. The rest of

the chapter briefly discusses other useful modules and how they are typically used. We shall not go

into detail with regards to their implementation, since this will be handled as part of the exercises.

 Learning to program with Python

77

The math module

As the name implies, this module provides many trigonometric and hyperbolic functions, powers and

logarithms, angular conversions and well as mathematical constants such as pi and e. Further

information on this module can be found at: https://docs.python.org/3/library/math.html. This module

should be your starting point if you wish to perform some kind of mathematical operation beyond that

available to you in standard Python. With what you know already, much of the syntax of the module

should be relatively straight forward to pick up, such as the following code used to calculate the base-

10 logarithm of 1000.

import math

print(math.log10(1000))

>>> %Run test.py

3.0

The sys module

The sys module contains information pertaining to the Python implementation being used. Below is a

list of commonly used values and examples of the output you would expect to see if you print them to

the screen.

sys.argv

Description: this name is a list of strings containing the elements of the command line used to run the

script. As we might expect, the first element of sys.argv (sys.argv[0]) reports the name of the

script being run.

Printing to the screen:

['thonny.py']

sys.modules

Description: This is a dictionary in which the keys name the currently loaded modules.

Printing to the screen:

thonny.py ('_abc', '_ast', '_bisect', '_blake2', '_codecs', '_codecs_cn',

'_codecs_hk', '_codecs_iso2022', '_codecs_jp', '_codecs_kr', '_codecs_tw',

'_collections', '_csv',…

The first part, thonny.py, is the name of the script and then the modules are listed between the brackets.

sys.path

Description: A list of the directories into which Python looks for modules following the import

command in a script.

https://docs.python.org/3/library/math.html

 Learning to program with Python

78

Printing to the screen:

['C:\\Users\\wingetts\\Desktop',

'C:\\Users\\wingetts\\AppData\\Local\\Programs\\Thonny\\python37.zip',

'C:\\Users\\wingetts\\AppData\\Local\\Programs\\Thonny\\DLLs',

'C:\\Users\\wingetts\\AppData\\Local\\Programs\\Thonny\\lib',

'C:\\Users\\wingetts\\AppData\\Local\\Programs\\Thonny',

'C:\\Users\\wingetts\\AppData\\Local\\Programs\\Thonny\\lib\\site-

packages']

sys.exit()

This is a function that will cause a Python program to exit. It is the standard practice to pass the

argument 0 if the program exits without error. Numerical values other than 0 signify some kind or error.

The time module

Although the time module contains many time-related functions, you are most likely to encounter the

function: time.sleep(). This instructs the Python script to wait for the specified number of seconds

passed as an argument to the function. Why would you want to do this? Well, sometimes slowing

down a program is a useful way to check output written to the screen at a pace that is readable by a

human. In addition, sometimes we may add a delay to a script to ensure some other process has

finished before we run the next part of the script.

The optparse module

Maybe you have seen already when running scripts on the command line that they may take as input a

series of options, each one prefixed by one or two hyphens. Python scripts may also be passed options

this way, and this is made possible by using the optparse module. The module enables the user to

specify what flags may be used be a script, what (if any) argument these flags take, and the type of

arguments associated with each flag. For example, the flag --length may only take integers while

the flag --mode may take a string. What is more, the optparse module will automatically generate

instructions regarding the script and its options, which can be viewed by specifying --help (or -h)

when running the script.

python3 myPythonScript.py --length 500 --mode fast file1.txt file2.txt

file3.txt

The subprocess module

The command line is a versatile and convenient environment in which to manipulate your system and

run scripts and software. Since pipeline development (the joining separate processes into a single

workflow) is a common use of Python for bioinformaticians, it would be useful to incorporate some of

the functionality of the command line into a Python script. The subprocess module makes this

possible by allowing a shell command to be executed directly from a Python script.

For example, the following Python script could be run directly from the command line, and will print

“Hello World” as output.

 Learning to program with Python

79

import subprocess

print(subprocess.getoutput('echo "Hello World!"'))

user$ python3 subprocess_example.py

Hello World!

The os module
The os module is an operating system interface and is most commonly used in Python scripts for

interacting with files and directories in the filesystem. The selected example below illustrates how the

os module may be used to interact with your filesystem.

os.chdir(path)

Sets path to the working directory

os.getcwd()

Lists the current working directory

os.mkdir(path)

Creates a directory at specified location

os.mkdirs(path)

Creates all the directories in the path specified

os.rmdir(path)

Removes the specified directory

os.removedirs(path)

Removes all the directories in the path specified

os.remove(path)

Delete the specified file

os.rename(sourcepath, destpath)

Rename the file at sourcepath to destpath

os.path.dirname(path) Return the directory name of pathname path. So, if path =

'/home/User/Desktop/myfile.py', then '/home/User/Desktop' would be returned.

os.path.basename(path) Returns the basename of the path. So, if path =

'/home/User/Desktop/myfile.py', then ‘myfile.py’ would be returned.

The tempfile module

In the future you may write a script that during processing writes out a temporary file to a specified

directory. This may sound straightforward, but what happens if you are running multiple instances of

the same script? There is a danger that one instance of the script could overwrite a temporary file

 Learning to program with Python

80

created by another instance of the script. The solution may seem simple, such as numbering the

temporary output files. However, in reality, these solutions that may seem logical can fail and

guaranteeing that output files from one process are not overwritten by another process is not a trivial

process. Fortunately, the tempfile module handles this all for you.

The glob module

Suppose there is a file or a list of files on your computer that needs processing in some way.

Unfortunately, however, you don’t know the names of the files in advance (you may only know, for

example, that the files are found in a certain folder). You will therefore need some way for your script

to search the filesystem, return the relevant filenames and process these. The glob module allows

you to do this.

To use glob, simply specify the pattern you wish to match:

glob.glob(pattern)

The operation of the pattern matching is similar to using the command line in that it also allows

wildcards:

* match 0 or more characters

? match a single character

[agct] match multiple characters

[0-9] match a number range

[a-z], [A-Z], [a-Z] match an alphabet range

In the simple example below, the script will identify all files is the current working directory, and then all

text files in that folder. The glob.glob command generates a list, which is then printed to the screen.

import glob

all_files = glob.glob('*')

text_files = glob.glob('*.txt')

print(all_files)

print(text_files)

>>>

[''make a better figure.pptx', 'one_hundred_lines.txt',

'subprocess_example.py']

['one_hundred_lines.txt']

The textwrap module

Writing code to format text in a consistent, neat and logical manner is surprisingly difficult, but once

again Python modules come to the rescue. The textwrap module does just that, providing a list of

functions to format text in a variety of ways.

Perhaps the most commonly used components of the textwrap module are the textwrap.wrap and

the textwrap.fill functions that serve as convenient ways to handle, format and print out long

strings, such as encountered in FASTA files. In the example below you will see how a lengthy string

 Learning to program with Python

81

may be converted into a list by textwrap.wrap, which may be subsequently printed out using a for

loop. In contrast, the input may be formatted into a new string using textwrap.fill. Both these

functions take optional integer arguments specifying the maximum character length of each line.

import textwrap

quote = """It was the best of times, it was the worst of times, it was the

age of wisdom, it was the age of foolishness, it was the epoch of belief,

it was the epoch of incredulity, it was the season of Light, it was the

season of Darkness, it was the spring of hope, it was the winter of

despair, we had everything before us, we had nothing before us, we were all

going direct to Heaven, we were all going direct the other way – in short,

the period was so far like the present period, that some of its noisiest

authorities insisted on its being received, for good or for evil, in the

superlative degree of comparison only."""

formatted_quote = textwrap.wrap(quote, 50)

for line in formatted_quote:

 print(line)

print("\n")

print(textwrap.fill(quote , 70))

>>> %Run subprocess_example.py

It was the best of times, it was the worst of

times, it was the age of wisdom, it was the age of

foolishness, it was the epoch of belief, it was

the epoch of incredulity, it was the season of

Light, it was the season of Darkness, it was the

spring of hope, it was the winter of despair, we

had everything before us, we had nothing before

us, we were all going direct to Heaven, we were

all going direct the other way – in short, the

period was so far like the present period, that

some of its noisiest authorities insisted on its

being received, for good or for evil, in the

superlative degree of comparison only.

It was the best of times, it was the

worst of times, it was the age of

 Learning to program with Python

82

wisdom, it was the age of foolishness,

it was the epoch of belief, it was the

epoch of incredulity, it was the season

of Light, it was the season of Darkness,

it was the spring of hope, it was the

winter of despair, we had everything

before us, we had nothing before us, we

were all going direct to Heaven, we were

all going direct the other way – in

short, the period was so far like the

present period, that some of its

noisiest authorities insisted on its

being received, for good or for evil, in

the superlative degree of comparison

only.

The string module

The string module (not to be confused with the str data type) contains a range of useful values and

functions. For example, it contains all the upper- and lowercase letters in the names

string.ascii_uppercase and string.ascii_lowercase respectively. There are also names

representing digits, punctuation and a range of other string values.

The csv module

If you have ever worked with data file storing text values, the chances are you will have encountered

the comma-separated values (CSV). This format stores a table or matrix (with layout similar to that

of MS Excel), only it uses commas to separate columns. (As may be expected, rows are separated by

newlines.) A very similar format uses tabs instead of commas to separate columns; this is known as

tab-separated values (or tab-delimited) format. The csv module enables a Python script to read

from or write to these types of file.

The zlib and gzip modules

Modern life science data files are often are very large. To assist with their storage, they are often

compressed as either zip or gzip files. The zlib and gzip modules are available for reading from or

writing to these file types, respectively. The syntax for their usage is generally similar to that for opening

a regular file. One important difference is that data returned from the file will be a sequence of bytes

(note the b before the quotation mark when printing to the screen in the example below.) The bytes

datatype can be decoded to a string with the decode method decode('utf-8'). UTF-8 is the type

of Unicode format to which the bytes should be decoded.

 Learning to program with Python

83

import gzip

with gzip.open('test_file.txt.gz', 'rb') as f:

 file_content = f.read()

print(type(file_content))

print(file_content)

print()

file_content_string = file_content.decode('utf-8')

print(type(file_content_string))

print(file_content_string)

<class 'bytes'>

b'Hello.\nI am a compressed file.\n'

<class 'str'>

Hello.

I am a compressed file.

Installing Modules and Packages
Up until now the modules discussed are distributed with Python and so can be simply be made

accessible via the import command. There are many modules, however, particularly in the fields of

bioinformatics or some other specialist area of biology, that require downloading and installation. If all

goes well, this process should be quite simple thanks to the pip installer program, which is included by

default with Python binary installers since version 3.4.

Installation

The following command shows how to use pip to install the latest version of a package (a collection of

modules) and its dependencies:

python3 -m pip install SomePackage

If you have Python2 installed, you may need to type “python3” instead of “python” to clarify the version

of python that should be used; we used python3 here for clarity. The flag -m instructs the python to run

the module install. After running this command, and if everything proceeds successfully, you should

see a message similar to: “Successfully installed SomePackage-1.2.3”. (It is possible to install

packages using the pip3 command directly, but we shall use the methods described above.)

It is possible to specify an exact or minimum version directly on the command line. To install a specific

version (say 1.1.2) try:

python3 -m pip install SomePackage==1.1.2

To specify a minimum version (say, 1.0.2), try:

 Learning to program with Python

84

python3 -m pip install "SomePackage>=1.0.2"

(Don’t forget the double quotes as the character “>” may cause unintended behaviour when run on the

command line.)

Should the desired module be already installed, attempting to install it again will have no effect.

Upgrading existing modules must be requested explicitly:

python3 -m pip install --upgrade SomePackage

It is worth bearing in mind that up-to-date copies of the setuptools and wheel projects are useful to

ensure you can also install from source archives. To update these, run the command below:

python3 -m pip install --upgrade pip setuptools wheel

Installation locations

So, where are Python packages installed? Well, to find this out, type the command:

python3 -m site

This should return information, similar to that listed below:

sys.path = [

 '/Users/wingetts',

 '/Library/Frameworks/Python.framework/Versions/3.8/lib/python38.zip',

 '/Library/Frameworks/Python.framework/Versions/3.8/lib/python3.8',

 '/Library/Frameworks/Python.framework/Versions/3.8/lib/python3.8/lib-

dynload',

 '/Users/wingetts/Library/Python/3.8/lib/python/site-packages',

 '/Library/Frameworks/Python.framework/Versions/3.8/lib/python3.8/site-

packages',

]

USER_BASE: '/Users/wingetts/Library/Python/3.8' (exists)

USER_SITE: '/Users/wingetts/Library/Python/3.8/lib/python/site-packages'

(exists)

ENABLE_USER_SITE: True

The Python packages will be stored in the sys.path section, in the path ending site-packages. If

you take a look in that folder, you should see your installed packages.

It is quite likely, however, that on the system you are using, you will not have administration rights to

install the package you desire i.e. you may not write to the site-packages folder listed above. Not

to worry, you should be able to install packages that are isolated for you by adding the --user flag:

python3 -m pip install SomePackage --user

 Learning to program with Python

85

This package will now be installed in the site-packages folder, to which you will have access, listed

in the USER_SITE: section.

Using pip is the most common way to install modules and should work in most instances. However,

when this does not work, the module required should give instructions on to how it should be installed.

Virtual Environments
Although not described in this course in detail, you should be aware of Python virtual environments

that allow Python packages to be installed in an isolated location for a particular application, rather than

being installed globally. This means that you can install Python packages expressly for one (or several)

particular applications without changing the global setup of your system. You then simply start the

virtual environment when trying the application of interest, and then exit when done.

Biopython
Biopython is a set of freely available Python tools for biological computation and as such provides a

useful resource for the life sciences community. This may be one of the packages that are not

distributed with Python that you will need to install to help you complete some computational task. Of

course, with your new-found skills in Python you may be able to write the necessary application yourself,

but there is no point re-inventing the wheel and if what you require is already available using Biopython,

then this should be a good starting point for your analysis. The Biopython homepage is found at:

https://biopython.org/

As you might expect, to install the package, enter on the command line one of the following commands

(in accordance with your administration privileges):

python3 -m pip install biopython

python3 -m pip install biopython --user

Below is an example given in the Biopython documentation, which shows how the SeqIO standard

Sequence Input/Output interface for Biopython may be used to parse a Genbank format file into a

FASTA file. In a relatively small amount of code a useful task can be accomplished, highlighting how

Python and its large, active community of developers can be harnessed so you can achieve tasks much

more efficiently than if you were starting writing code from scratch.

from Bio import SeqIO

with open("cor6_6.gb", "rU") as input_handle:

 with open("cor6_6.fasta", "w") as output_handle:

 sequences = SeqIO.parse(input_handle, "genbank")

 count = SeqIO.write(sequences, output_handle, "fasta")

print("Converted %i records" % count)

https://biopython.org/

 Learning to program with Python

86

Chapter 9 – Regular expressions
Sequence data – whether that is derived from DNA, RNA or protein samples – constitutes an ever more

important and burgeoning area of research. Identifying, extracting or modifying specific sequences

from the vast pools of data that is commonly generated in modern experiments is no trivial task.

Fortunately, the world of computer science has already developed a toolkit with the pattern matching

capabilities suited to this formidable challenge. These tools, which constitute a language in their own

right, are known as regular expressions (or more familiarly known as regexes or REs). There is a

substantial amount of new and dense material to cover in this chapter, so this section may take some

effort and practice to become confident at pattern matching. But do take heart, even though regexes

may first appear to be impenetrable lines of hieroglyphics, once you can use them, they will form a

powerful and succinct way to scrutinise sequences. Moreover, the same ideas and notation are used

in different programming languages (e.g. R, Perl and Java), allowing you to also build skills outside of

Python.

Introducing the re module
The Python re module provides an interface with the regular expression engine, allowing you to

compile regexes and then perform matching operations. The commands listed in the table below allow

you to convert string to pattern objects and then perform the desired matching operation.

Method/Attribute Purpose

match() Determine if the regex matches at the beginning of the string.

search() Scan through a string, looking for any location where this regex matches.

findall() Find all substrings where the regex matches, and returns them as a list.

finditer() Find all substrings where the regex matches, and returns them as an iterator

(whose values may returned element by element in a for loop)

As you may expect, to use the re module, simply enter import re towards the top of your Python

script.

Simple String Matching with the re Module

So now we have introduced the re module, let’s try some simple pattern matching of strings. Take a

look at the code below in which we intend to identify the HindIII restriction enzyme cut site (AAGCTT)

in three different sequences.

import re

pattern = 'AAGCTT'

p = re.compile(pattern)

seq1 = 'AAGCTTNNAAGCTT'

seq2 = 'GGGGGG'

seq3 = 'NNAAGCTT'

print(p.match(seq1))

print(p.match(seq2))

print(p.match(seq3))

 Learning to program with Python

87

print(p.search(seq3))

>>>

<re.Match object; span=(0, 6), match='AAGCTT'>

None

None

<re.Match object; span=(2, 8), match='AAGCTT'>

We firstly import the re module. After that, we then compile the regular expression (the pattern we wish

to identify) into a complied pattern object (named p). We now run the match method on this object,

taking seq1, seq2 and then seq3 as arguments. The first time we do this (with seq1), we achieve a

match and a match object is returned. We can tell this has happened by printing out this newly

generated object, for we can now see displayed the match string and the position of the match. In

contrast, no match was achieved for seq2 and seq3, resulting in None being retuned. It is quite clear

that seq2 does not contain the HindIII site, but seq3 does – so why wasn’t a match object returned?

Well, the method match only matches at the start of sequence. In contrast, the search method allows

matches anywhere in the sequence, and so the match was successful.

Querying the match object
The match object returned after a successful match has methods which may be executed to retrieve

useful information, as listed in the following table.

Method/Attribute Purpose

group() Return the string matched by the RE

start() Return the starting position of the match

end() Return the ending position of the match

span() Return a tuple containing the (start, end) positions of the match

The code printed below illustrates this ability to query the match object with these methods. The code

is a modification of the previous example, and here we use search to identify a HindIII site within our

DNA sequence. We then print matched sequences, the start position of the match, the end position of

the match by retrieving this information from the match object.

import re

pattern = 'AAGCTT'

p = re.compile(pattern)

seq = 'NNAAGCTT'

m = p.search(seq)

print(m.group())

print(m.start())

print(m.end())

 Learning to program with Python

88

>>>

AAGCTT

2

8

You may be wondering at this point as to the usefulness of being able to print the matched sequence;

after all we already know the identity of our sequence, since we passed this to our regular expression

object to achieve the match. Well, that is true for this simple example, but often we will not know the

exact sequence that will be matched in advance since we may be trying to match a range of different

sequences. In the next sections we shall describe how to construct these more complex regex look-up

terms.

Metacharacters
There are special characters, termed metacharacters, in regular expressions that represent other

types of characters. The list of metacharacters is:

. ^ $ * + ? { } [] \ | ()

We shall now provide an overview of how these are used.

Character classes

The metacharacters [and] are used to define classes of characters. For example [abc] means

match the letters a, b or c. The character class [a-c] will achieve the goal. Similarly, you may match

against all lowercase characters with the class [a-z]. Metacharacters generally lose their special

properties inside the square brackets and instead become literal representations of themselves.

The caret character ^ is used to complement the set. So, for example, [^7], will match any character

except 7.

On a related note, the pipe character (|) essentially means ‘or’ within a regex. The pattern a|b

therefore will constitute a match on either a or b.

Start and ends

When found outside of the character class, the caret (^) denotes the start of the string. Similarly, the

dollar symbol ($) denotes the end of a string. So, for example, the regex ^ABC$ would mean a matching

pattern should contain ABC and have nothing either side (i.e. the start character is A, and the end

character is B). Or for example, the regex ^pi would match pi, pike, and pill, but not spill. This

is because a successful match requires the string to start with a p.

Groups

Suppose we want to capture individual components (i.e. groups) of a pattern. For example, let’s

imagine that a particular identifier comprises a word, then a numerical value and then another word.

Well we can do this by creating groups within the regex using round brackets. See the code below:

 Learning to program with Python

89

import re

pattern= '^([A-z]+)(\d+)([A-z]+)$'

p = re.compile(pattern)

seq = 'The6Hundred'

m = p.search(seq)

print(m)

print(m.group(0))

print(m.group(1))

print(m.group(2))

print(m.group(3))

>>>

<re.Match object; span=(0, 11), match='The6Hundred'>

The6Hundred

The

6

We have developed a more complex regex than encountered before, but once you break it down, it is

quite intelligible. The first component of our serial are letters, as represented by the character class

[A-z]. Since there will be at least one of these letters, we suffix the character class with a +. Then

we have 1 or more digits, represented by \d+. Finally, we end with [A-z]+ once more, representing

another word. Since there should be nothing else within our serial number we ensure that only this

pattern was retrieved (i.e. there is nothing either side) by delimiting the regex with ^ and $. We now

define our groups by surrounding [A-z]+ and \d+ with rounds brackets.

To retrieve the value associated with each of the three groups, use the group method of the match

object. The value at position 0 will be the whole matched term (i.e. The6Hundred), while values 1-3

correspond to each of the predefined groups, proceeding in order, from left to right of the regex.

Backslash

The backslash is commonly used in regular expressions and serves multiple purposes. Firstly, the

backslash is often followed by a letter character, and together those two characters represent a whole

range of different characters. As seen before, the character pair \d represents numerical (base-10)

digits. The table below describes the backslash letter pairs.

 Learning to program with Python

90

Backslash Letter Meaning

\d Matches any decimal digit; this is equivalent to the class [0-9]

\D Matches any non-digit character; this is equivalent to the class [^0-9]

\s Matches any whitespace character; this is equivalent to the class [\t\n\r\f\v]

\S Matches any non-whitespace character; this is equivalent to the class [^

\t\n\r\f\v]

\w

Matches any alphanumeric character; this is equivalent to the class [a-zA-Z0-

9_]

\W Matches any non-alphanumeric character; this is equivalent to the class [^a-

zA-Z0-9_]

The above pattern matches may be used inside character classes to increase their power.

Another very useful metacharacter is the dot (.), which matches any character, except newline

characters.

Escaping Using Backslashes

You may have noticed a problem with the regular expression we have introduced so far. One such

problem involves using the dot (.) as a metacharacter. While this is undoubtedly useful, what happens

if we want to explicitly match a full stop (or period)? We can’t use this character itself, since it will match

everything. The solution is a technique known as escaping. Preceding a metacharacter with backslash

will cause it to be interpreted literally, rather than as a metacharacter. For example:

pattern1 = '.'

pattern2 = '\.'

The regular expression pattern1 will match everything except new line character, while pattern2

matches full stops. This “escaping” technique may be used for other metacharacters, even the

backslash itself, as shown that pattern3 matches the backslash character itself.

pattern3 = '\\'

Raw String Notation

An alternative to escaping characters (which may become very difficult to read) is to use raw string

notation. This is quite easy to implement and all that one needs to do is place the character r before

the string for it be interpreted literally.

For example, to read the text \\matchme literally, use the notation: r"\\matchme".

Repetition

Regular expressions allow the user to denote that a phrase needs to be repeated a specified number

of times for a match to occur. Specifically, the metacharacters asterisk (*), plus (+) and question

mark (?) achieve this in closely related, but slightly different ways (see the table below).

Metacharacter Action

* The preceding character should be occur zero or more times

+ that the preceding character should be occur one or more times

? The preceding character should be occur zero or one times

 Learning to program with Python

91

The small sample code below should illustrate this functionality. The code creates a regular expression

to match the pattern CAR*T. As should be expected, matching against the letters CART will generate a

successful match. Essentially the required pattern is CART, although the letter R may be “present” zero

or more times. In the second pattern match we test whether the word CAT matches the specified criteria.

It does, since the asterisk means the R may be omitted. Removing the letter R from CART makes CAT,

and so we create a match object.

import re

pattern = 'CAR*T'

p = re.compile(pattern)

letters1 = 'CART'

letters2 = 'CAT'

m1 = p.search(letters1)

m2 = p.search(letters2)

print(m1)

print(m2)

>>> %Run regext.py

<re.Match object; span=(0, 4), match='CART'>

<re.Match object; span=(0, 3), match='CAT'>

Another method to denote repetition involves placing two integers between curly brackets: {m,n}. This

repeat qualifier means there must be at least m repetitions, and at most n of the preceding character.

For example, a/{1,3}b will match a/b, a//b, and a///b. It won’t match ab, which has no slashes,

nor a////b, which has four. (Note that \a is not a metacharacter and so the backslash will be

interpreted literally as a backslash.). In fact, you don’t need both the m and n, since by default omitting

m is interpreted as a lower limit of 0, while omitting n results in an upper bound of infinity.

So, we have at our disposal different techniques to denote the repetition of individual characters. But

these techniques are even more powerful, since they may used to denote repetition of character

classes (rather than simply individual characters).

Greedy vs non-greedy matching

In addition to the techniques of specifying repetition, there are a set of related techniques that work in

the same way, except these perform non-greedy matching as opposed to greedy matching. The non-

greedy qualifiers are the same as those for greedy matching (described previously), except that they

are followed by a question mark:

*?

+?

??

{m,n}?

 Learning to program with Python

92

Greedy matching matches as many characters and possible, while nongreedy matching matches the

fewest allowed characters. Please review the code below to see how adding the qualifier ? to the

pattern Pneu.*s modifies its matching behaviour.

import re

pattern_greedy = 'Pneu.*s'

pattern_nongreedy = 'Pneu.*?s'

p_greedy = re.compile(pattern_greedy)

p_nongreedy = re.compile(pattern_nongreedy)

word = 'Pneumonoultramicroscopicsilicovolcanoconiosis'

m_greedy = p_greedy.search(word)

m_nongreedy = p_nongreedy.search(word)

print(m_greedy)

print(m_nongreedy)

>>>

<re.Match object; span=(0, 45),

match='Pneumonoultramicroscopicsilicovolcanoconiosis'>

<re.Match object; span=(0, 19), match='Pneumonoultramicros'>

Compilation flags

Compilation flags allow you to modify how certain aspects of a regular expression works. The more

commonly used flags are IGNORECASE (I) and MULTILINE (M). The former causes the regular

expression to perform case-insensitive matches on text characters. The latter flag modifies the mode

of action of the metacharaters ^ and $. The caret (^) now matches at the beginning of the string and

at the beginning of each line within the string, immediately following each newline. In a similar fashion,

the $ metacharacter matches either at the end of a string and at the end of each line. Add the

appropriate flag when creating the regular expression, for example:

import re

pattern= 'AAGCTT'

p = re.compile(pattern)

p_ignore_case = re.compile(pattern, re.IGNORECASE)

seq = 'aagctt'

m = p.search(seq)

 Learning to program with Python

93

m_ignore_case = p_ignore_case.search(seq)

print(m)

print(m_ignore_case)

>>> %Run regext.py

None

<re.Match object; span=(0, 6), match='aagctt'>

You can see how applying the IGNORECASE has modified the action of the regular expression, causing

aagctt to match AAGCTT.

Modifying Strings

Regular expressions can also be used to modify strings in a variety of ways. Perhaps the two most

commonly used methods to perform such a modification are split() and sub().

The split() method splits a string into a list, subdividing it wherever the regex matches. If capturing

parentheses are used in the RE, then their contents will also be returned as part of the resulting list.

The regex may also be given a maxsplit value, which limits the number of components returned by

the splitting process.

Another task is to find all the matches for a pattern, and replace them with a different string. The sub()

method takes a replacement value – which can be either a string or a function – and the string to be

processed. Similar to the split() method, an optional argument count may be passed in the regex

specifying the maximum number of pattern occurrences to be replaced.

If you look at the example below you will see code that modifies the last word in our serial ID (from

before) into Thousand. The regex identifies the last word in the string. We then perform the sub()

method on the pattern object, passing the replacement value as well. This will replace Hundred to

Thousand in the string.

import re

pattern= '[A-z]+$'

p = re.compile(pattern)

seq = 'The6Hundred'

m = p.sub('Thousand', seq)

print(m)

>>>

The6Thousand

 Learning to program with Python

94

Concluding remarks
Well, that brings the course to an end. We have covered a lot of material, taking you from the absolute

basics of learning a programming language to being able to write quite complex code in Python. You

should now be familiar with the Python datatypes, understand concepts such as functions and methods

and how programs are controlled using loops and conditional operators. In addition, you now have an

understanding of object orientated programming for writing more complex software.

Now that these new skills are fresh in your mind, we strongly recommend that you go out of your way

to find reasons to write code over the next few weeks. If you don’t build upon your current knowledge,

as the weeks turn into months, you will become less familiar with what you have learned over the past

few days. Maybe there is some analysis that you could now perform with Python? Even if it is easier

to do the tasks in, say, MS Excel, reinforcing your new-found skills now will pay dividends in the future.

As mentioned previously, learning Python is akin to learning a foreign language. There is a great deal

to take in and becoming fluent takes practice, practice, practice.

We would like to bring to your attention the following resources that may help you in your future Python

career:

www.python.org – the homepage of Python. This should often be your first port of call for Python-

related queries.

www.jupyter.org – many bioinformaticians and computational biologist are adopting Jupyter notebooks

to write code and share results in a structured and reproducible fashion.

www.matplotlib.org – a popular resource for using Python to produce graphs and charts.

www.biopython.org – a set of freely available tools for biological computation.

Also, don’t forget the Babraham Bioinformatics pages listing available courses and providing training
materials: https://www.bioinformatics.babraham.ac.uk/training

Happy coding!

The Babraham Bioinformatics Team

http://www.python.org/
http://www.jupyter.org/
http://www.matplotlib.org/
http://www.biopython.org/
https://www.bioinformatics.babraham.ac.uk/training.html

