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Systems Biology models ODE models

 → Reconstruction of state variable evolution 
      from process descriptions:

 Processes can be combined in ODEs (for deterministic simulations); 
transformed in propensities (for stochastic simulations)

 Systems can be reconfigured quickly by adding or removing a process
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ATP is consumed by processes 1 and 3, and produced by processes 7 and 10
(for 1 reactions 1 and 3, there are 2 reactions 7 and 10)
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Chemical kinetics and fluxes

S1

S2

E

P



Bioinformatics for the neuroscientist, 28 September 2015

 
Introduction to modelling in biology, Babraham Institute, 24 November 2016

Statistical physics and chemical reaction
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Statistical physics and chemical reaction

Probability to find an
object in a container
within an interval of time
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Law of Mass Action

Waage and Guldberg (1864)
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Law of Mass Action

Waage and Guldberg (1864)
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Evolution of a reactant

 Velocity multiplied by stoichiometry

 negative if consumption, positive if production

 Example of a unimolecular reaction 
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Evolution of a reactant

 Velocity multiplied by stoichiometry

 negative if consumption, positive if production

 Example of a unimolecular reaction 
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Reversible reaction

                  is equivalent to   
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Example of an enzymatic reaction
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Example of an enzymatic reaction
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t

[x]

Not feasible in general

                   Numerical integration

Example of an enzymatic reaction
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Euler method:

Numerical integration (only for info. Not needed)
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Euler method:

Numerical integration (only for info. Not needed)

t

[x]

Dt

t

[x]
[x]

t+Dt
 – [x]

t 

t

[x]

Dt

 4th order Runge-Kutta:
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Choose the right formalism
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Choose the right formalism

 irreversible catalysis
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Choose the right formalism

 irreversible catalysis

product escapes before rebinding
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Choose the right formalism

 irreversible catalysis

product escapes before rebinding

quasi-steady-state
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Enzyme kinetics

Victor Henri (1903) Lois Générales de l'Action 
des Diastases. Paris, Hermann.

Leonor Michaelis, Maud Menten (1913). Die 
Kinetik der Invertinwirkung, Biochem. Z. 49:333-
369

George Edward Briggs and John Burdon 
Sanderson Haldane (1925) A note on the 
kinetics of enzyme action, Biochem. J., 19: 338-
339
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Briggs-Haldane on Henri-Michaelis-Menten
 (only for info. Not needed)

[E]=[E
0
]-[ES]
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[E]=[E
0
]-[ES]

steady-state!!!

Briggs-Haldane on Henri-Michaelis-Menten
 (only for info. Not needed)
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Generalisation: activators

x y
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Generalisation: activators
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Generalisation: activators
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(NB: You can derive that as the fraction 
of target bound to the activator)
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Phenomenological ultrasensitivity
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The Hill function

Hill (1910) J Physiol 40: iv-vii.
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Hill (1910) J Physiol 40: iv-vii.
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The Hill function
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Generalisation: inhibitors

d[y]/dt

log[i]
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x y

(NB: You can derive that as the fraction 
of target not bound to the inhibitor)
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Mathematics are beautiful
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Generalisation: activators and inhibitors

log [a]log [i]
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absolute Vs relative activators
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absolute Vs relative activators
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1 compartment
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2 compartments
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2 compartments

A B

Per unit of time
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2 compartments … with different volumes

A
B
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2 compartments … with different volumes

A
B

Per unit of time

Stoichiometries 
(concentration change per 
Reaction events) are in fact
scaling with volumes:
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Homeostasis

How can-we maintain 
a stable level with a 
dynamic system?

Ø Øx



Bioinformatics for the neuroscientist, 28 September 2015

 
Introduction to modelling in biology, Babraham Institute, 24 November 2016

Homeostasis

How can-we maintain 
a stable level with a 
dynamic system?

Ø Øx



Bioinformatics for the neuroscientist, 28 September 2015

 
Introduction to modelling in biology, Babraham Institute, 24 November 2016

Homeostasis

How can-we maintain 
a stable level with a 
dynamic system?

Ø Ø

[x]

time

x



Bioinformatics for the neuroscientist, 28 September 2015

 
Introduction to modelling in biology, Babraham Institute, 24 November 2016

Homeostasis

How can-we maintain 
a stable level with a 
dynamic system?

Ø Ø

[x]

time

0

x



Bioinformatics for the neuroscientist, 28 September 2015

 
Introduction to modelling in biology, Babraham Institute, 24 November 2016

Homeostasis

How can-we maintain 
a stable level with a 
dynamic system?

Ø Ø

[x]

time

0

1

x



Bioinformatics for the neuroscientist, 28 September 2015

 
Introduction to modelling in biology, Babraham Institute, 24 November 2016

Homeostasis

How can-we maintain 
a stable level with a 
dynamic system?
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Questions?
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Conformational equilibrium
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Binding equilibrium
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How does a ligand activate its target? 
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How does a ligand activate its target? 
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How does a ligand activate its target? 

hint: K
1
>1
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Add energies

Multiply constants

+1 quantum energy  = constant divided by 10

Explore constants exponentially:

Parameter space

-2.3 -4.6 -6.9 -9.2 -11.5 -13.8 -16.1

...
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