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Agenda for the day

• What is machine learning
• Different types of machine learning model
• [Exercise] Running different models

• How to evaluate models
• [Exercise] Evaluating Models

• Preparing Input Data

• Running Models with tidymodels
• [Exercise] Building your first model

• Automation with Recipes and Workflows
• [Optimising models]



What is Machine Learning?



Data Analysis Workflow

Raw Data

Collection Preparation Formalisation Outcome

Visualisation
Exploration

Prediction

ReportingStatistics

Modelling

Filtering 
Cleaning



Machine Learning Builds a Model to make 
Predictions

Model PredictionData

Sample Weight Age Sex

A 27 4.5 Male

B 28 2 Female

C 19 6.7 Female

Sample Healthy

A No

B Yes

C No

Classification

Sample Height

A 18

B 22

C 12

Regression



Biological Examples

Input: DNA Methylation from genomic CpGs
Output: Estimated biological age



Biological Examples

Input: DAPI stained cell images
Output: Predicted Cell Cycle Stage



Biological Examples

Input: Histopathology slide images
Output: Cancer likelihood score



Steps in Machine Learning

Generate data for 
samples where the 
outcome is known

Pick a modelling 
method and build a 

model
Evaluate the model

Make predictions 
where the 

outcome is not 
known

Test the predictions

Refine the model



Different machine learning models



Model Name Model Type

Linear Regression Regression

Logistic Regression Regression or Classification

K-nearest neigbours Regression or Classification

Naïve Bayes Classification

Decision Tree Classification

Random Forest Classification

Support Vector Machine Regression or Classification

Neural Networks Regression or Classification



Differences between models

• Outcome type
– Regression models for quantitative predictions

– Classification models for categorical predictions

– Some model types can do both

• Input type
– Some models require all of their variables to be numeric

– May need to convert categorical values to numbers

– Expected behaviour of input data

– Variation in the number of viable measures



K-Nearest Neighbours (KNN) models



K-nearest neighbours

• Add a new point

• Find the K (5 in this case) 
closest points

• Count the categories in the 
closest points

• The highest vote wins

= 3 votes
= 1 vote



Distance Measures

• Euclidean Distance

• Manhattan Distance

• Hamming Distance

• Jaccard Distance

• …

Manhattan

Euclidean

A B C D E F

Sample 1

Sample 2

Hamming = 2 differences



Group 2Group 1

Support Vector Machines

• Projects data into a multi-dimensional space

• Divides the space into areas representing different categories

"Hyperplane"

Margin

"Support Vectors"



Group 2Group 1

Clever Support Vector Machines

Group 1

Hyperplane positions generated after multiple runs with 
different subsets to optimise positions



Clever Support Vector Machines



Naïve Bayes Models



Naïve Bayesian

Bayes' Theorem states that the conditional probability of an event, based on the occurrence of 

another event, is equal to the likelihood of the second event given the first event multiplied by 

the probability of the first event.

Gene Length GC Chromsome Disease Linked

A 1kb 40 1 Yes

B 5kb 50 2 No

C 2kb 50 2 No

D 3kb 20 X Yes

E 10kb 30 X No

We calculate a set of probabilities for each variable, based on the "Disease Linked Classification"



Categorical Probabilities

p Chr1 | Disease = 5 / 8 = 0.625
p Chr2 | Disease = 2 / 8 = 0.250
p ChrX | Disease = 1 / 8 = 0.125

p Chr1 | Non Disease =   6 / 76 = 0.079
p Chr2 | Non Disease = 20 / 76 = 0.263
p ChrX | Non Disease = 50 / 76 = 0.658

Disease genes are more likely to be on Chr1 and Non Disease genes are more likely to be on ChrX

Chromosome Disease Linked Non Disease

1 5 6

2 2 20

X 1 50



Quantitative Probabilities

State        mean   stdev

Disease      42.3   10.10 

Non Disease  65.0    8.99

Disease Non-Disease

40



Naïve Bayes Predictions

• Predict the state for a new datapoint

– Chromosome is 1

– GC content is 40%

New data is predicted to be Disease

Non-Disease Disease

Prior 
(starting assumption)

(8/84) = 0.095 (76/84) = 0.905

Probability Chr1 0.625 0.079

Probability 40% GC 0.038 0.001

Total 0.0022 0.00007



Decision Trees



Obese Smoker Exercises Age Cancer Risk

Yes Yes No 64 High

Yes No Yes 32 Low

Yes No No 58 High

No Yes Yes 25 Low

No No Yes 66 Low

No No Yes 34 Low

No Yes No 48 ???

Predict Cancer Risk with a Decision Tree 

Smokes?

Age <50? Obese?

Exercises?

Yes No

Yes

High

No

Yes No

HighLow

Yes No

LowExercises

Yes No

HighLow

Smokes?

Age <50?

Exercises?

High



How do you build a tree?

• From a population of observations
– Which variable do you use?

– [If quantitative] which cutoff do you use?

• Answer: you calculate an ‘impurity’ score and pick the least 
‘impure’ variable to split the remaining data

• Want to use the most cleanly predictive question to improve 
the tree



Calculating Categorical Impurity

Smoker?

30 70

18 2 12 68

Yes No
Outcome is ‘impure’ 
because there are a 
mix of high and low 

risk individuals in 
each node.

Node impurity = 1 – (p High)2 – (p Low)2

1 – (18/20)2 – (2/20)2

0.180
1 – (12/80)2 – (68/80)2

0.255

Weighted Average of Node Impurities = 0.18 * (20/100) + 0.255 * (80/100) = 0.24



Calculating Quantitative Impurity

Age Cancer Risk

25 Low

32 Low

34 Low

58 High

64 High

66 Low

Age <= 25 = 1 Low 0 High, Age >25  = 3 Low 2 High, Impurity = 0.40

Age <= 32 = 2 Low 0 High, Age >32  = 2 Low 2 High, Impurity = 0.33

Age <= 34 = 3 Low 0 High, Age >34  = 1 Low 2 High, Impurity = 0.22

Age <= 58 = 3 Low 1 High, Age >58  = 1 Low 1 High, Impurity = 0.42

Age <= 64 = 3 Low 2 High, Age >64  = 1 Low 0 High, Impurity = 0.40



Pruning Trees

• Lower branches may provide minimal additional information

• Leaves don’t need to be completely pure

• Can terminate the tree early and pick the majority answer

Swims

8 1

Yes No

0 1 8 0



Random Forests



Random Forest

• Decision trees can be fragile

• Prone to overfitting

• Many trees are better than one!

Bagging
Bootstrapping

Selecting multiple random subsets of data

Aggregating
Making many predictions and voting

+



Bootstrapping
Two Levels of Randomisation

 Smoker Exercises Age Cancer Risk

Yes Yes No 64 High

Yes No Yes 32 Low

Yes No No 58 High

No Yes Yes 25 Low

No No Yes 66 Low

No No Yes 34 Low

Original

 Smoker Exercises Age Cancer Risk

Yes No No 58 High

Yes No No 58 High

No No Yes 66 Low

Yes No Yes 32 Low

Yes No Yes 32 Low

Yes No No 58 High

Random

x

x

x

“Out of Bag”

Build tree with 
random selection 
of variables at 
each branch 
point

Smoker | Exercises
Age | Exercises
Age |   Smoker



Build a Forest
(hundreds of trees)

Evaluate
Run the “out of bag” data through the trees

See how often they predict correctly

Vary random variable number to optimise

Predict
Run new data down all trees

Count the predicted outcomes

Most frequent outcome wins



Feature Selection

Smoker | Exercises
Age | Exercises
Age |   Smoker

Smoker | Exercises
Age | Exercises
Age |   Smoker

More informative features will 
appear higher up the tree.

Can aggregate this information 
across the forest



Neural Networks



Neural Networks

0.1

0.9

0.5

Node

Layer

0.6

0.2

0.9

Activation Value
(between 0 and 1)



Calculating Node Values

0.1

0.9

0.5

?

+0.5

+3.1

-1.9

Weight

(0.1 x 0.5) + (0.9 x 3.1) + (0.5 x -1.9) = 1.89

Sigmoid output = 0.87

Sigmoid output (bias 2) = 0.47

Training = Calculating Weights and Biases



Neural Network Structure

Input Hidden Output

Disease

No Disease

Weight

Height

Age

Smokes

Exercises

Diet

History



Using the network

Hidden Output

Disease

No Disease

Input

Weight

Height

Age

Smokes

Exercises

Diet

History



Training the network
Selecting the number of hidden layers

• Number of layers changes the type of relationships modelled

0 hidden layers = linear relationship, similar to linear modelling

1 hidden layer = nonlinear relationships

2 hidden layers = nonlinear relationships with arbitrary boundaries

Most problems only require 1 hidden layer. More complex data 
can benefit from 2.  Virtually nothing requires more than two.



Training the network
Selecting the number of nodes in hidden layers

Too few nodes will not allow enough complexity to model the system effectively

Too many nodes will overfit – essentially "memorising" the training data

Number of hidden layer nodes should be between the input number and the output number 

Simple
Try 2/3 input number 
plus output number

Complex

Nh = number of hidden nodes
Ni = number of input nodes
No = number of output nodes
Ns = size of training set
α = scaling factor (normally 2)



Training the network
Selecting weights and biases

Generate a "cost function" – a numerical value which says how well the 
model performed on the training data (high = bad, low = good)

Could just be how good the predictions are, but often good to include how 
complex the connections are

Start by initialising the weights / biases to random numbers

Shuffle the values to gradually minimise the cost function value



Training the network
Back Propagation

• How do you increase a value?
– Increase positive weights

• Tied to high activations upstream

– Decrease negative weights

• Tied to high activations upstream

• What doesn't matter?
– Anything with a low weight

– Anything with a low upstream activation

0.8

0.9

0.1

0.1

0.9

Disease

No Disease

Prediction for a single disease sample

Average across all samples and then adjust

Should be lower

Should be higher

0.6

0.7

Should be higher

Should be lower



Cleaning the network

• Good idea to minimise the 
network

• Remove nodes where all 
output weights are low

• Having little effect on the rest 
of the network

Weight

Height

Age

Smokes

Exercises

Diet

History



Exercise: Trying different models



Evaluating Models



A good model?

DC
Disease Corp

In a recent study our new AI model correctly 
predicted the disease status of 980 out of 
1000 patients – that’s a 98% success rate!

Non diseased, predicted correctly (980)

Non diseased, predicted incorrectly (10)

Diseased, predicted incorrectly (10)



Baseline for comparison

• 1000 patients, 10 have disease

• Assign most common category (healthy) to everyone

• 990 correct = 99% success!

• A good model must do better than this.



Evaluating Qualitative Models

Sample Prediction Truth Correct

D Healthy Healthy  ✓

E Diseased Diseased  ✓

F Diseased Healthy x

G Healthy Healthy  ✓

H Healthy Diseased x

True Healthy True Diseased

Predicted Healthy 88 4

Predicted Diseased 6 24

False Negative

False Positive



True Healthy True Diseased

Predicted Healthy 88 4

Predicted Diseased 1 4

Evaluating Qualitative Models

True Healthy True Diseased

Predicted Healthy 88 4

Predicted Diseased 6 24

(88+24) = 112 correct 
(4+6) = 10 incorrect

Overall = 92% correct 

True Healthy True Diseased

Predicted Healthy 78 0

Predicted Diseased 16 28

(88+4) = 92 correct 
(4+1) = 5 incorrect

Overall = 95% correct 

(78+28) = 106 correct 
(0+16) = 16 incorrect

Overall = 91% correct 



True Healthy True Diseased

Predicted Healthy 88 4

Predicted Diseased 1 4

Sensitivity vs Specificity

True Healthy True Diseased

Predicted Healthy 88 4

Predicted Diseased 6 24

Overall = 92% correct

Sensitivity = 24/28 = 86%
Specificity =  88/94 = 94%

True Healthy True Diseased

Predicted Healthy 78 0

Predicted Diseased 16 28

Sensitivity: How likely is the model to identify diseased patients correctly
Specificity: How likely is the model to identify healthy patients correctly

Overall = 95% correct

Sensitivity = 4/8      = 50%
Specificity =  88/89 = 99%

Overall = 91% correct

Sensitivity = 28/28 = 100%
Specificity =  78/94 = 83%



Sensitivity vs Specificity
What matters more?

Overall = 92% correct

Sensitivity = 24/28 = 86%
Specificity =  88/94 = 94%

Overall = 95% correct

Sensitivity = 4/8      = 50%
Specificity =  88/89 = 99%

Overall = 91% correct

Sensitivity = 28/28 = 100%
Specificity =  78/94 = 83%

Getting both is ideal – obviously!

If never missing disease is the main concern favour sensitivity

If not incorrectly false predictions is important favour specificity

Need to consider the frequency of true positives



Cohen's Kappa Score

• Measures whether the predictions are correct more often that 
you'd expect if the model was just guessing

• Takes into account the proportion of predictions and 
observations in each class



Evaluating Quantitative Models

• How close are the predictions to the true values?

• Doesn’t matter if the mistake is high or low

• Need a single value to summarise the total error



Evaluating Quantitative Models

Line of perfect fit

Differences (+ and -)

Square differences (all positive)

Sum differences = single value

Sum of Squared Differences

SSD



Making best use of your data when 
building and testing models



Data is Precious

Training the model

Sample Truth

A Healthy

B Diseased

C Diseased

D Healthy

E Healthy

F Healthy

G Healthy

H Healthy

I Healthy

J Healthy

K Healthy

L Healthy

M Healthy

N Healthy

O Healthy

P Healthy

Q Healthy

R Healthy

S Healthy

T Healthy

Model sensitivity = 95%
Model specificity = 98%



Overfitting

• Rules are too specific

– Works brilliantly on the training data

– Won't work well on new data

Has my model learned useful trends from the data, or just 'memorised' the training data?

Person Weight Age Sex

A 27 4.5 Male

B 28 2 Female

C 19 6.7 Female

Model:
If weight is >=28 or weight <=19 Sex is FEMALE
Otherwise Sex is MALE

You can't evaluate 
a model using the 
same data used to 

train it



Data is Precious

Majority of Data for 
Training the model

Minority of Data for 
Testing the model

Sample Truth

A Healthy

B Diseased

C Diseased

D Healthy

E Healthy

F Healthy

G Healthy

H Healthy

I Healthy

J Healthy

K Healthy

L Healthy

M Healthy

N Healthy

O Healthy

P Healthy

Q Healthy

R Healthy

S Healthy

T Healthy

Random Splitting



Weighted Training Selection

Sample Truth

A Healthy

B Diseased

C Diseased

D Healthy

E Healthy

F Healthy

G Healthy

H Healthy

I Healthy

J Healthy

K Healthy

L Healthy

M Healthy

N Healthy

O Healthy

P Healthy

Q Healthy

R Healthy

S Healthy

T Healthy

Sample Truth

A Healthy

B Diseased

C Diseased

D Healthy

Sample Truth

E Healthy

F Healthy

G Healthy

H Healthy

I Healthy

J Healthy

K Healthy

L Healthy

M Healthy

N Healthy

O Healthy

P Healthy

Q Healthy

R Healthy

S Healthy

T Healthy

Test Data

Training Data

All disease samples are in the testing set
Nothing left to train on.

Biased selection maintains a balance of 
outcomes in each group



Performance could depend on data split
Sample Truth

A Healthy

B Diseased

C Diseased

D Healthy

E Healthy

F Healthy

G Diseased

H Healthy

I Diseased

J Healthy

K Diseased

L Healthy

M Healthy

N Healthy

O Healthy

P Diseased

Q Healthy

R Diseased

S Healthy

T Healthy

90% Accurate Model

80% Accurate Model



Cross Validation

Train

Test



Cross Validation



10-Fold Cross Validation



Exercise: Evaluating Models



Input Data



Garbage in = Garbage out

Data Cleaning, Filtering, Scaling and Feature Construction

Noisy 
Variables

Outliers
Poorly 
Scaled 

Variables

Conflated 
Signals

Poorly 
Constructe
d Features

Missing 
Data

Duplicates

Data 
Leakage



Common Data Problems
Data Leakage

Accidentally including something unintentional which reveals the 
true prediction for the case

• Audio clips from right whales were shorter 
than those from other species.

• The right whale clips were next to each other 
in the dataset

• Healthy scans came from children

• Healthy scans came from people lying down

• Models recognised the font on the scan pictures 



Common Data Problems
• Outliers

– Extreme values, or just mistakes, will skew summary metrics

• Missing values
– Handled poorly by many models, either remove, or impute

• Noisy variables
– Variables with no connection to the question. Slow modelling and make 

results worse

• Different scales
– Quantitative models benefit from having variables with similar ranges of 

values



Preprocessing
Converting to Numbers

• Some models require all data to be numeric

– Linear Models, SVM, Neural Nets

• Some don’t care

– Decision trees, Random Forest

Blue Red Purple Orange Green

0 1 2 3 4

Blue Red Purple Orange Green

1 0 0 0 0

0 0 1 0 0

0 1 0 0 0

0 0 0 0 1



Preprocessing
Converting to Numbers

8 1 1

8 2 1

4 2 6

0 1 7

5 3 2

3 1 6

2 1 1

1 1 1

0 1 9

0 2 8

2 1 8

1 2 7



Preprocessing
Infrequent Categories

Biotype Count

protein_coding 19986

lncRNA 16828

snRNA 1910

miRNA 1879

TEC 1064

snoRNA 942

rRNA_pseudogene 499

IG_V_pseudogene 188

IG_V_gene 144

TR_V_gene 106

TR_J_gene 79

rRNA 58

scaRNA 49

IG_D_gene 37

pseudogene 22

Mt_tRNA 22

IG_J_gene 18

IG_C_gene 14

ribozyme 8

TR_C_gene 6

sRNA 5

TR_D_gene 4

Mt_rRNA 2

scRNA 1

vaultRNA 1

IG_pseudogene 1

Biotype Count

protein_coding 19986

lncRNA 16828

snRNA 1910

miRNA 1879

TEC 1064

snoRNA 942

rRNA_pseudogene 499

IG_V_pseudogene 188

IG_V_gene 144

TR_V_gene 106

TR_J_gene 79

rRNA 58

scaRNA 49

IG_D_gene 37

pseudogene 22

Mt_tRNA 22

IG_J_gene 18

IG_C_gene 14

ribozyme 8

TR_C_gene 6

sRNA 5

TR_D_gene 4

Mt_rRNA 2

scRNA 1

vaultRNA 1

IG_pseudogene 1

OTHER                                                7059

Biotype Count

protein_coding 19986

lncRNA 16828

snRNA 1910

miRNA 1879

TEC 1064

snoRNA 942

rRNA_pseudogene 499

IG_V_pseudogene 188

IG_V_gene 144

TR_V_gene 106

TR_J_gene 79

rRNA 58

scaRNA 49

IG_D_gene 37

pseudogene 22

Mt_tRNA 22

IG_J_gene 18

IG_C_gene 14

ribozyme 8

TR_C_gene 6

sRNA 5

TR_D_gene 4

Mt_rRNA 2

scRNA 1

vaultRNA 1

IG_pseudogene 1

IG                                                          596

Small RNA                                          5880

Pseudogenes                                       710

Structural RNA                                      82



Preprocessing
Feature Engineering

• Monday

• July

• 2023

• Summer

• Q3

• End of month

31-07-2023

Gene H3K4me3 H3K27me3 H3K4me1 H3K9me3 H2AK119Ub

A 20 2 23 6 2

B 18 5 2 2 10

C 1 14 7 18 11

D 4 16 3 18 19

E 12 2 1 2 4



Preprocessing
Scaling and Normalising

• Some models expect numerical data which behaves in a roughly normal 
manner
– Naïve Bayes, Linear Modelling, Neural Nets

• Transformations make data more usable
– Log transformation
– Mean centering
– Z-score normalisation
– Converting to ranks

• More advanced transformations
– PCA to remove noise



Preprocessing
Data Filtering

• Good idea to reduce the data complexity 
– Remove noise

– Reduce size (runs quicker)

• Remove variables or cases which aren't helpful
– Outlier values

– Poorly measured features

– Redundant features

– Features with no variability



Practical Machine Learning using R and tidymodels



Baseline R
Come on an R Course!

https://www.bioinformatics.babraham.ac.uk/training.html#rintrotidy

https://www.bioinformatics.babraham.ac.uk/training.html#advancedrtidy

https://www.bioinformatics.babraham.ac.uk/training.html#ggplot

https://www.bioinformatics.babraham.ac.uk/training.html#rintrotidy
https://www.bioinformatics.babraham.ac.uk/training.html#advancedrtidy
https://www.bioinformatics.babraham.ac.uk/training.html#ggplot


R Syntax

forest_fit %>%

predict(data) %>%

bind_cols(data) -> prediction_results

Variables (data structures)

Functions (do stuff and give something back)

A 'pipe'
Passes data from left to right

Function 'arguments'
Options for the function

Assignment arrow
Saves data to a variable



Packages for machine learning in R

• lm

• nnet

• rpart

• brulee

• kknn

• ranger

• h2o

• mboost

• spark

• glmnet

• keras

• partykit

• aorsf

• stan

• kernlab

• thief

• tbats

• survival

• xrf

• hurdle

• aorsf

• gee

• lmer

• mgcv

All have their own conventions for preparing data and building models



TidyModels
https://www.tidymodels.org/

Provides a consistent interface to prepare 
data, construct models and evaluate 

results.

Easy to move between different modelling 
packages with minimal code changes.



Input Data

• Tibble of data (2D Spreadsheet)

– rows are observations (cases) columns are variables

• Classification variables must be factors (not text)

• Standard exploration / plotting should happen before 
modelling



Code Structure

1. Create a model
– No data yet, just the type of model and the settings to use

2. Create your data
– Prepare and filter the input data
– Split off training / testing data, or set up cross validation

3. Train the model
– Pass the data to the model and define the variable to predict

4. Test / Use the model
– Use the trained model to predict new values



Create a Model

• You need

1. A model type

2. An engine

3. A mode

4. Options

https://www.tidymodels.org/find/parsnip/



Create a Model

library(tidymodels)
tidymodels_prefer()

rand_forest(trees=100, min_n=5) %>%  
set_mode("classification") %>%  
set_engine("ranger") -> model

The model
function

Model Options

Model Type

The back end engine



Examine the model

model %>% translate()

Random Forest Model Specification (classification)

Main Arguments:
trees = 100
min_n = 5

Computational engine: ranger 

Model fit template:
ranger::ranger(x = missing_arg(), y = missing_arg(), weights = missing_arg(), 

num.trees = 100, min.node.size = min_rows(~5, x), num.threads = 1, 
verbose = FALSE, seed = sample.int(10^5, 1), probability = TRUE)



Creating Data

read_delim("development_gene_expression.txt") -> data

data %>%
mutate(Development=factor(Development)) -> data

set.seed(123)
data %>%  

sample_frac() -> data



Splitting Data

data %>% 
initial_split(prop=0.8) -> split_data

training(split_data)
# A tibble: 992 × 93

testing(split_data)
# A tibble: 249 × 93



Splitting Data

data %>%
vfold_cv(v = 10) -> cv_data

#  10-fold cross-validation 
# A tibble: 10 × 2

splits             id    
1 <split [1116/125]> Fold01
2 <split [1117/124]> Fold02
3 <split [1117/124]> Fold03
4 <split [1117/124]> Fold04
5 <split [1117/124]> Fold05
6 <split [1117/124]> Fold06
7 <split [1117/124]> Fold07
8 <split [1117/124]> Fold08
9 <split [1117/124]> Fold09

10 <split [1117/124]> Fold10



Training the Model
Create a formula

Variable to predict ~ Variables to use

Variable to predict ~ . (dot = everything else)

Variable to predict ~ VarA + VarB + VarC



Training the Model
Performing a single fit

model %>%
fit(Development ~ ., data=training(split_data)) -> model_fit

model_fit

parsnip model object

Ranger result

Call:
ranger::ranger(x = maybe_data_frame(x), y = y, num.trees = ~100, min.node.size = min_rows(~5, x), num.threads = 1, 
verbose = FALSE,seed = sample.int(10^5, 1), probability = TRUE) 

Type:                             Probability estimation 
Number of trees:                  100 
Sample size:                      992 
Number of independent variables:  92 
Mtry:                             9 
Target node size:                 5 
Variable importance mode:         none 
Splitrule:                        gini
OOB prediction error (Brier s.):  0.2412714 



%>%
bind_cols(testing(split_data))

Evaluating / Using the Model

model_fit %>%
predict(new_data=testing(split_data))



Evaluating / Using the Model

model_fit %>%  
predict(new_data=testing(split_data)) %>%  
bind_cols(testing(split_data)) %>%  
group_by(.pred_class, Development) %>%  count()



Evaluating / Using the Model

model_fit %>%  
predict(new_data=testing(split_data)) %>%  
bind_cols(testing(split_data)) %>%
sens(Development,.pred_class)
spec(Development,.pred_class)
metrics(Development,.pred_class)



Script Editor
Code Goes Here

Control + Return to run a line

R Console
Code Runs Here

Output Appears Here

Environment
Data Appears Here
Click name to view it



Write Code
Often multi-line statements 

joined with pipes

Run Code
Cursor on last line

Control + Run or Run button

Examine Output
You should see a copy of the

code, along with the output it
generated



Exercise: Building a model in tidymodels



Automation with Recipes and Workflows

• Preprocessing often has multiple steps

• Need to apply these to training, testing and future data

• Manually preprocessing is tedious and potentially inconsistent

• Recipes let you automate this



• Create a recipe
– Specify formula and optionally data

• Add processing steps
– Filtering, Transformation etc.

• Create a model
– Same as we did before

• Create a workflow
– Combine the recipe and model together

Automation with Recipes and Workflows



Creating a Recipe

recipe(  
var_to_predict ~ .,
data=training(split_data)

) -> my_recipe

You add data here but it's only used to list and type the variables.  
You still need to provide it when you train or use the model



• step_rm : Remove one or more variables

• step_log: Log transform variables

• step_normalize: Convert values to z-scores

• step_dummy: Create numerical dummy variables from text

• step_other: Combine infrequent categories into an 'other'

• step_corr: Remove variables which are highly correlated

• step_naomit: Remove rows/columns with missing values

Recipe Preprocessing Steps

Full list of steps at https://recipes.tidymodels.org/reference/index.html

https://recipes.tidymodels.org/reference/index.html


Applying Steps to Variables

Individually named variables
step_rm(Unsued1, Unused2)

Role selectors
step_normalize(all_numeric_predictors())

step_dummy(all_nominal_predictors())



Adding Preprocessing Steps

my_recipe %>%
step_rm(Unsued1, Unused2) %>%
step_log(expression, gene_length) %>%
step_normalize(all_numeric_predictors()) %>%
step_dummy(all_nominal_predictors()) -> my_recipe



Creating a workflow

• Workflows bring together

– Recipe (training data, preprocessing, formula)

– Model

workflow() %>%
add_recipe(my_recipe) %>%
add_model(my_model) -> my_workflow



Training via a workflow

my_workflow %>%
fit(training(my_data)) -> my_workflow

Fits the model, but also finalises choices in the recipe inside the workflow



Testing via a workflow

my_workflow %>%
predict(new_data=testing(my_data)) %>%
bind_cols(testing(my_data)) %>%
select(.pred_class, var_to_predict)

Predict will automatically pull the trained model out of the 
workflow and will run the recipe on the new data



Exercise: Automating models with workflows



Optimising Models

• We manually selected some parameters for models

– Number of hidden nodes / layers (neural net)

– Number of random variables to select (random forest)

• How do we know we picked the best values?

• We perform a search of the parameters.



mlp(
epochs = 1000, 
hidden_units = 200, 
penalty = 0.01, 
learn_rate = 0.01

)

mlp(
epochs = 1000, 
hidden_units = tune(), 
penalty = 0.01, 
learn_rate = 0.01

)

Adding tuneable parameters



Extract tuneable parameters from workflow

workflow %>%
extract_parameter_set_dials()

Collection of 1 parameters for tuning
identifier         type    object

hidden_units hidden_units nparam[+]

workflow %>%
extract_parameter_set_dials() %>%
extract_parameter_dials("hidden_units")

# Hidden Units (quantitative)
Range: [1, 10]



Customise tuneable parameters

workflow %>%
extract_parameter_set_dials() %>%
update(    

hidden_units = hidden_units(c(10,500))
) -> tune_parameters



Grid Search

• Generates evenly spaced search parameters over one or more 
tuneable parameters

grid_regular(tune_parameters, levels=5)

# A tibble: 5 × 1
hidden_units

<int>
1           10
2          132
3          255
4          377
5          500



Running a grid search

• Needs data from a cross validation split

workflow %>%
tune_grid(

vdata,
grid = grid_regular(tune_parameters, levels=5),
metrics = metric_set(kap)  

) -> tune_results



Viewing Search Results

autoplot(tune_results)


