

Exercises:

Introduction to R

Version 2018-09

 Exercises: Introduction to R

2

Licence
This manual is © 2011-18, Laura Biggins and Simon Andrews.

This manual is distributed under the creative commons Attribution-Non-Commercial-Share Alike 2.0

licence. This means that you are free:

 to copy, distribute, display, and perform the work

 to make derivative works

Under the following conditions:

 Attribution. You must give the original author credit.

 Non-Commercial. You may not use this work for commercial purposes.

 Share Alike. If you alter, transform, or build upon this work, you may distribute the resulting

work only under a licence identical to this one.

Please note that:

 For any reuse or distribution, you must make clear to others the licence terms of this work.

 Any of these conditions can be waived if you get permission from the copyright holder.

 Nothing in this license impairs or restricts the author's moral rights.

Full details of this licence can be found at

http://creativecommons.org/licenses/by-nc-sa/2.0/uk/legalcode

http://creativecommons.org/licenses/by-nc-sa/2.0/uk/legalcode

 Exercises: Introduction to R

3

Exercise 1: Simple Calculations

 Use R to calculate the following:

o 31 * 78

o 697 / 41

 Assign the value of 39 to x

 Assign the value of 22 to y

 Make z the value of x - y

 Display the value of z in the console

 Calculate the square root of 2345, and perform a log2 transformation on the result.

Exercise 2: Working with Vectors

 Create a vector called vec1 containing the numbers 2,5,8,12 and 16

 Use [lower]:[upper] notation to make a second vector called vec2 containing the numbers 5 to 9

 Subtract vec2 from vec1 and look at the result

 Use seq() to make a vector of 100 values starting at 2 and increasing by 3 each time and store it

in a new variable

 Extract the values at positions 5,10,15 and 20 in the vector of 100 values you made

 Extract the values at positions 10 to 30 in the vector of 100 values you made

Exercise 3: Lists and Data Frames

 Enter the following into a vector with the name mouse.colour. Remember to surround each

piece of text with quotes.

purple

red

yellow

brown

 Display the 2nd element in the vector (red) in the console.

 Enter the following into a vector with the name mouse.weight:

23

21

18

26

 Join the 2 vectors together using the data.frame function to make a data frame named

mouse.info with 2 columns and 4 rows. Call the first column ‘colour’ and the second one

‘weight’.

 Display the data frame in the console.

 Display just row 3 in the console

 Display just column 1 in the console

 Display the item of data in row 4, column 1.

Exercise 4: Reading in data from a file

Set your working directory to where the data files are stored. Make sure that the folder of data files has

been unzipped. e.g. setwd("D:/Data_folder")

 Exercises: Introduction to R

4

4a
 Read the file ‘small_file.txt’ into a new data structure. This is a tab delimited file so you should

use read.delim(). Remember to assign a name to the data that you read in using the

assignment operator, e.g.

my.small.file <- read.delim(“small_file.txt”)

 View the data set to check that it has imported correctly.

4b
 Read the file ‘Child_Variants.csv’ into a new data structure. This is a comma separated file so

you should use read.csv(). Again, remember to assign a name to the data when you import

it.

 Use head and View to look at the data set to check that it has imported correctly.

 Calculate the mean of the column named MutantReadPercent. Think about how you are

going to access a single column first (probably by using the $ notation), then once you can

access the data pass it to the mean function.

Exercise 5: Filtering

For all filtering think of the problem in a structured way:

1. Extract the vector of values you want to filter against

2. Apply the logical test

3. Either use the logical vector produced to filter the data using a selection, or use sum() to get

the count of the hits.

5a
 Create a filtered version of the child variants dataset which only includes rows where the

MutantReadPercent is >=70. Save this under a new name. The process you should use is:

 Make sure you can access the MutantReadPercent column from the data frame

 Do a logical test on this data for >=70 to obtain a logical vector

 Use this logical vector as the row selector to filter the original dataset. Remember that you

need to say which rows AND columns you want, so as you want all columns you’ll need to

put a comma after the logical vector in your data frame filter.

5b

 From the filtered data frame (the one you created in 5a) we want to know how often G, A, T

and C bases were mutated. You will need to use an exact match filter (==) against the text in

the REF column to match each of the bases in turn. The process you should use is:

 Make sure you can access the REF column from the data frame.

 Do a logical test on this data to obtain a logical vector. Remember to use the == operator,

and to put quotes around the text that you are matching.

 To get the count you can sum() the logical vector values (true counts as 1, false counts as

0).

 Repeat these steps for A, T and C.

 Create a vector called mutation.counts of the counts for the different mutations (you

will need to make this manually using c() having calculated the values).

 Exercises: Introduction to R

5

Exercise 6: Histograms, Boxplots and Barplots

 In the original child variants dataset draw a histogram (hist) of the MutantReadPercent

column, try increasing the number of categories (breaks) to 50.

 Plot a boxplot of the MutantReadPercent values from both the original child variants and the

same column from the filtered dataset you made in Exercise 5 (MutantReadPercent >=70).

Check that the distributions look different. To do this you can just pass two vectors to the boxplot

function.

 Plot the results of the vector created in Exercise 5 (mutation.counts) as a barplot. Use the

names.arg argument to show which mutation is which and make a vector of colours

(c("black","green","red","blue")) to give the bars different colours (using the col

parameter).

[Optional] Exercise 7: Scatterplots and Line graphs

 Read in the file ‘neutrophils.csv’. This is a comma-delimited file so use read.csv().

 Create a boxplot of the 4 samples and put a suitable title on the plot (you should be able to pass

the entire data frame to boxplot since you’re plotting all of the data there).

 Use the colMeans() function to calculate the mean of each dataset. Note: the data contains

missing values (NA) so look at the help file for colMeans to find out how to ignore these. Plot the

means as a barplot.

 Read in the file ‘brain_bodyweight.txt’. This is a tab delimited file so you can use

read.delim(). The first column contains species names, not data, so use row.names=1 to set

these up correctly in your data frame.

 Log transform the data (base 2).

 Create a scatterplot with default parameters with the log transformed data.

 Read in the file ‘chr_data.txt’.

 Remove the first column (you can simply select the second and third columns and then overwrite

the original variable)

 Create a line graph like the one below. The process will be:

o Use plot() to plot the genome position vs the ABL1 dataset. You will need to set the

type parameter to l (lower case L) to get this to be a line graph.

o Use legend to add in a legend to the plot, and title to add a title to the plot (you could

also do this by adding a main parameter to the original plot function)

