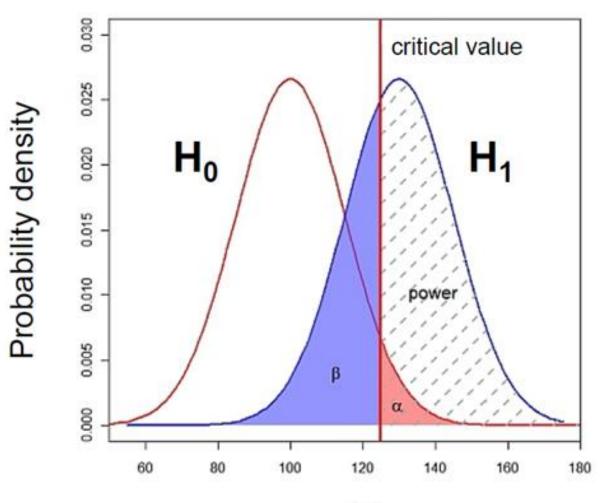


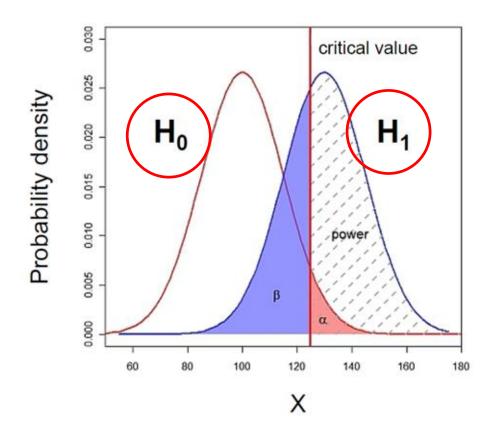
Sample size estimation v. 2018-02

Outline

- Definition of Power
- Variables of a power analysis
- Difference between technical and biological replicates


Power analysis for:

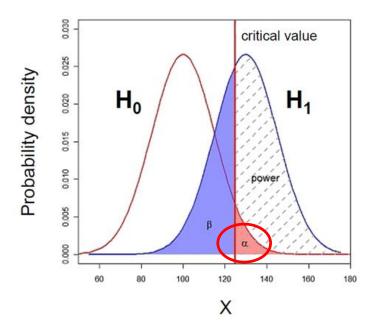
- Comparing 2 proportions
- Comparing 2 means
- Comparing more than 2 means
- Correlation


Power analysis

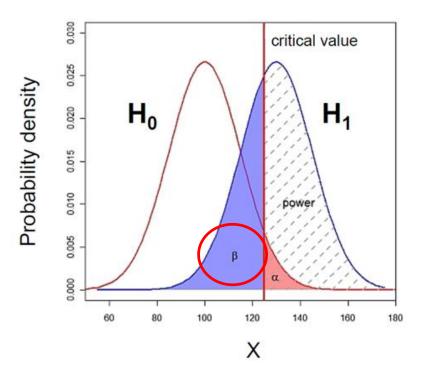
- **Definition of power**: probability that a statistical test will reject a false null hypothesis (H_0) when the alternative hypothesis (H_1) is true.
 - **Plain English**: statistical power is the likelihood that a test will detect an effect when there is an effect to be detected.
- Main output of a **power analysis**:
 - Estimation of an appropriate sample size
 - Very important for several reasons:
 - Too big: waste of resources,
 - **Too small**: may miss the effect (p>0.05)+ waste of resources,
 - Grants: justification of sample size,
 - Publications: reviewers ask for power calculation evidence,

The 3 Rs: Replacement, I	Methods which avoid or replace the use of animals	Methods which minimise the number of animals used per experiment	Methods which minimise suffering and improve animal welfare
	Replacement	Reduction	Refinement

Х



- Probability that the observed result occurs if H_0 is true
 - H₀: **Null hypothesis** = absence of effect
 - H₁: **Alternative hypothesis** = presence of an effect



Example: 2-tailed t-test with n=15 (df=14)

- In hypothesis testing, a critical value is a point on the test distribution that is compared to the test statistic to determine whether to reject the null hypothesis
 - Example of test statistic: t-value
- If the absolute value of your test statistic is greater than the critical value, you can declare statistical significance and reject the null hypothesis
 - Example: t-value > critical t-value

- **α**: the threshold value that we measure p-values against.
 - For results with 95% level of confidence: $\alpha = 0.05$
 - = probability of **type I error**
- **p-value**: probability that the observed statistic occurred by chance alone
- Statistical significance: comparison between α and the p-value
 - p-value < 0.05: reject H_0 and p-value > 0.05: fail to reject H_0

- **Type II error** (β) is the failure to reject a <u>false</u> H₀
 - Direct relationship between **Power** and type **II** error:

•
$$\beta = 0.2$$
 and **Power** = $1 - \beta = 0.8$ (80%)

The desired power of the experiment: 80%

- **Type II error** (β) is the failure to reject a <u>false</u> H₀
 - Direct relationship between **Power** and type II error:
 - if $\beta = 0.2$ and **Power** = $1 \beta = 0.8$ (80%)
 - Hence a true difference will be missed 20% of the time
 - General convention: 80% but could be more or less
 - Cohen (1988):
 - For most researchers: Type I errors are four times more serious than Type II errors: 0.05 * 4 = 0.2
 - Compromise: 2 groups comparisons: 90% = +30% sample size,
 95% = +60%

To recapitulate:

- The null hypothesis (H_0) : H_0 = no effect
- The aim of a statistical test is to reject or not H_{0.}

Statistical decision	True sta	ate of H_0
	H ₀ True (no effect)	H _o False (effect)
Reject H _o	Type I error α	Correct
	False Positive 💙	True Positive 💆
Do not reject H ₀	Correct (00)	Type II error β
	True Negative 🗵	False Negative 💋

- Traditionally, a test or a difference are said to be "significant" if the probability of type I error is: α =< 0.05
- High specificity = low False Positives = low Type I error
- High sensitivity = low False Negatives = low Type II error

Power Analysis

The power analysis depends on the relationship between 6 variables:

- the difference of biological interest
- the standard deviation
- the significance level (5%)
- the desired power of the experiment (80%)
- the sample size
- the alternative hypothesis (ie one or two-sided test)

Effect size

The effect size: what is it?

- The effect size: minimum meaningful effect of biological relevance.
 - Absolute difference + variability
- How to determine it?
 - Substantive knowledge
 - Previous research
 - Conventions

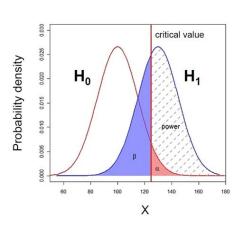
Jacob Cohen

- Author of several books and articles on power
- Defined small, medium and large effects for different tests

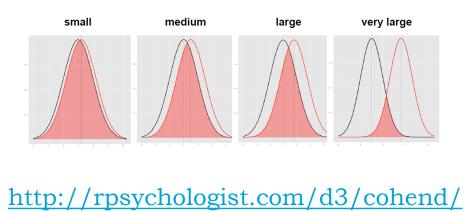
	Relevant	Effect Size Threshold			
Test	effect size	Small	Medium	Large	
t-test for means	d	0.2	0.5	0.8	
F-test for ANOVA	f	0.1	0.25	0.4	
t-test for correlation	r	0.1	0.3	0.5	
Chi-square	w	0.1	0.3	0.5	
2 proportions	h	0.2	0.5	0.8	

The effect size: how is it calculated? The absolute difference

- It depends on the type of difference and the data
 - Easy example: comparison between 2 means

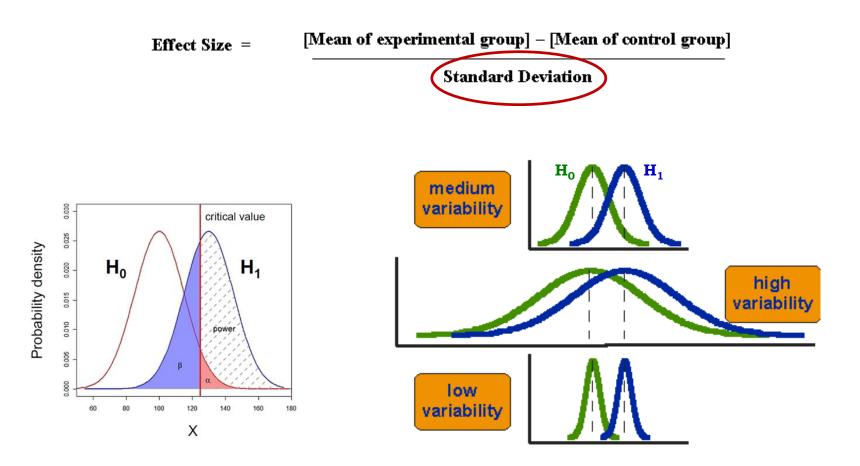

Absolute difference

Effect Size =


[Mean of experimental group] – [Mean of control group]

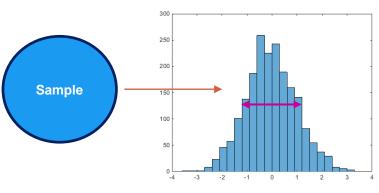
Standard Deviation

- The bigger the effect (the absolute difference), the bigger the power
 - the bigger the probability of picking up the difference

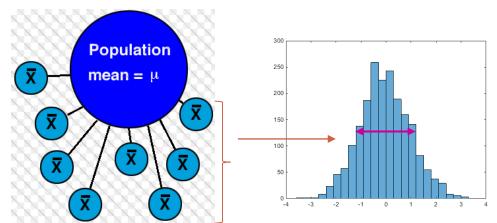


The effect size: how is it calculated? The standard deviation

• The bigger the variability of the data, the smaller the power

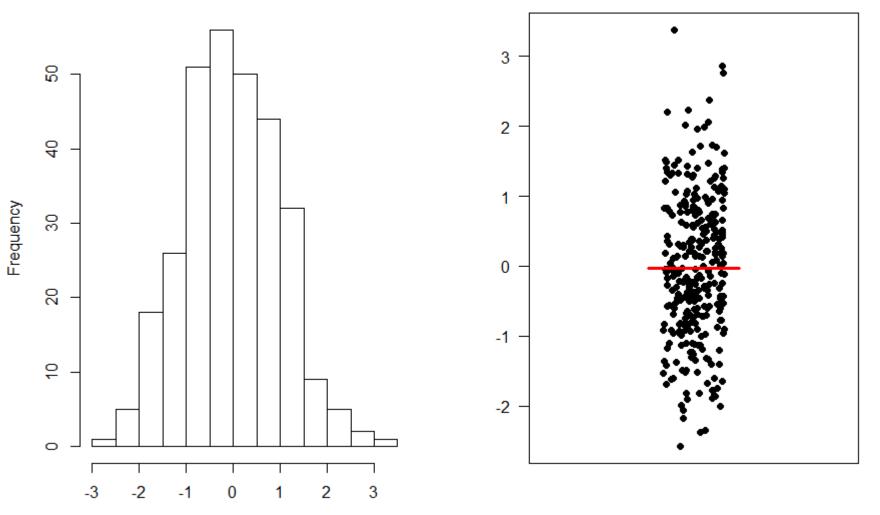


Power Analysis


The power analysis depends on the relationship between 6 variables:

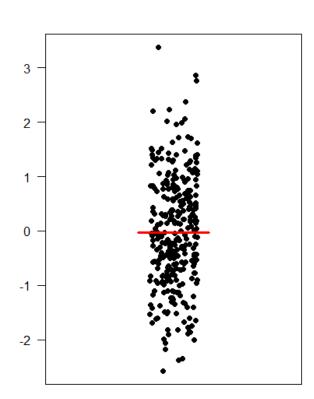
- the **difference** of biological interest
- the standard deviation
- the significance level (5%) (p< 0.05) α
- the desired power of the experiment (80%) β
- the **sample size**
- the alternative hypothesis (ie one or two-sided test)

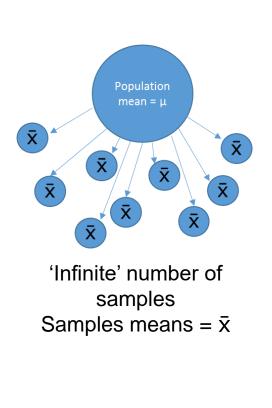
- Most of the time, the output of a power calculation
- The bigger the sample, the bigger the power
 - but how does it work actually?
- In reality it is difficult to reduce the variability in data, or the contrast between means,
 - most effective way of improving power:
 - increase the sample size.
- The standard deviation of the sample distribution
 - = Standard Error of the Mean: **SEM** = SD/ \sqrt{N}
 - SEM decreases as sample size increases

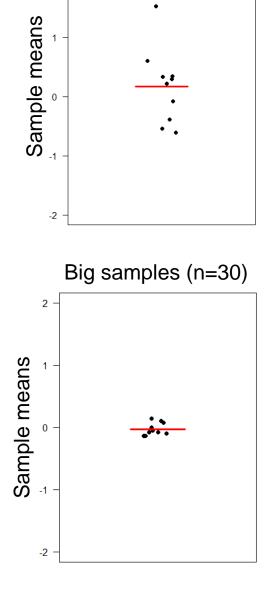


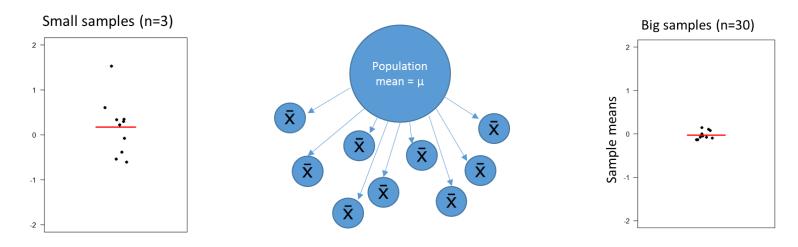
Standard deviation

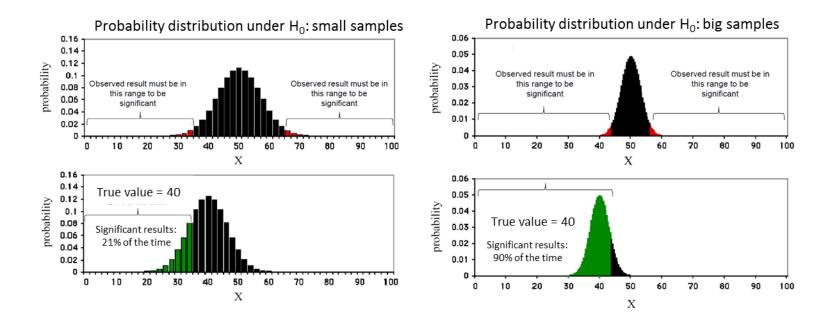
SEM: standard deviation of the sample distribution

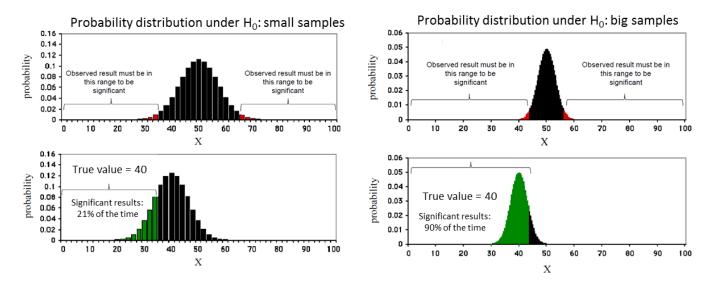

A population

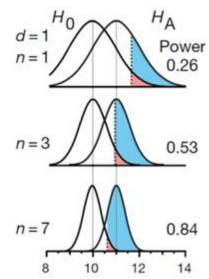


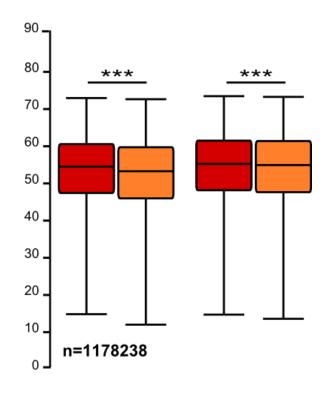

random


Small samples (n=3)


2

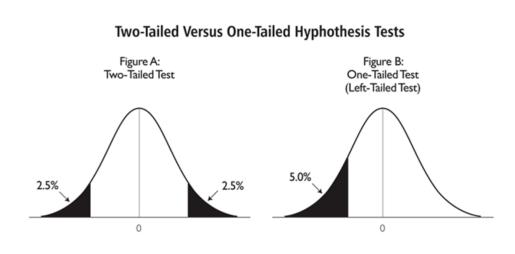




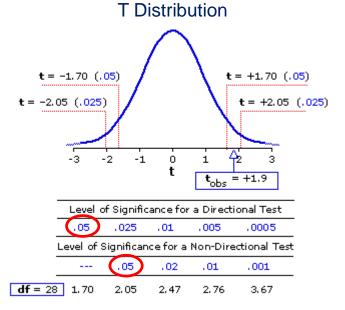


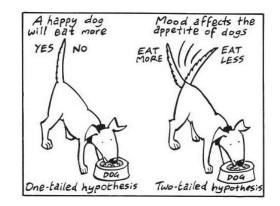
The sample size: the bigger the better?

- It takes huge samples to detect tiny differences but tiny samples to detect huge differences.
- What if the tiny difference is meaningless?
 - Beware of **overpower**
 - Nothing wrong with the stats: it is all about interpretation of the results of the test.
- Remember the important first step of power analysis
 - What is the effect size of biological interest?

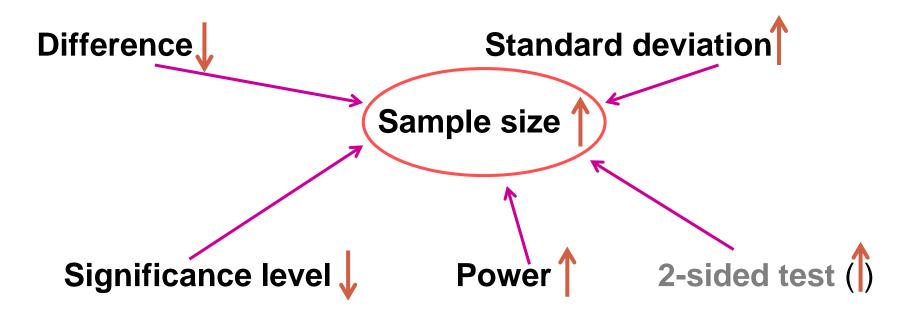

Power Analysis

The power analysis depends on the relationship between 6 variables:


- the effect size of biological interest
- the standard deviation
- the significance level (5%)
- the desired power of the experiment (80%)
- the sample size
- the alternative hypothesis (ie one or two-sided test)

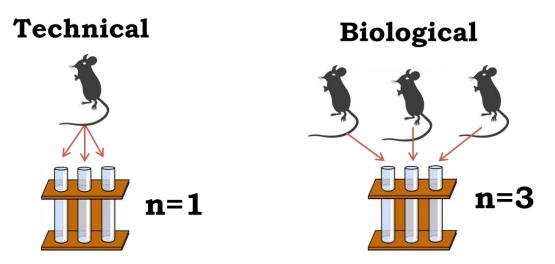

The alternative hypothesis: what is it?

One-tailed or 2-tailed test? One-sided or 2-sided tests?


- Is the question:
 - Is the there a difference?
 - Is it bigger than or smaller than?
- Can rarely justify the use of a one-tailed test
- Two times easier to reach significance with a one-tailed than a two-tailed
 - Suspicious reviewer!

• Fix any five of the variables and a mathematical relationship can be used to estimate the sixth.

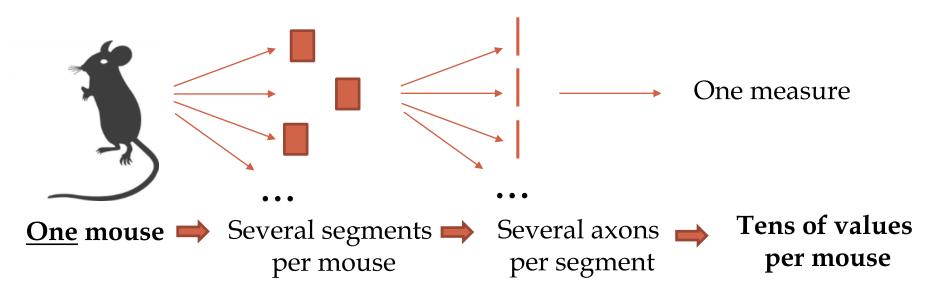
e.g. What sample size do I need to have a 80% probability (**power**) to detect this particular effect (**difference** and **standard deviation**) at a 5% **significance level** using a **2-sided test**?



Technical and biological replicates

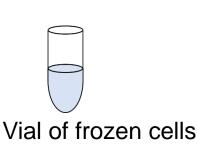
- Definition of technical and biological depends on the model and the question
 - e.g. mouse, cells ...
- <u>Question</u>: Why **replicates** at all?
 - To make proper inference from sample to general population we need biological samples.
 - Example: difference on weight between grey mice and white mice:
 - cannot conclude anything from one grey mouse and one white mouse randomly selected
 - only 2 biological samples
 - need to repeat the measurements:
 - measure 5 times each mouse: **technical replicates**
 - measure 5 white and 5 grey mice: **biological replicates**
- <u>Answer</u>: Biological replicates are needed to infer to the general population

Technical and biological replicates Always easy to tell the difference?


- Definition of **technical** and **biological** depends on the model and the question.
- The model: mouse, rat ... mammals in general.
 - Easy: one value per individual
 - e.g. weight, neutrophils counts ...

• <u>What to do</u>? Mean of technical replicates = 1 biological replicate

Technical and biological replicates Always easy to tell the difference?

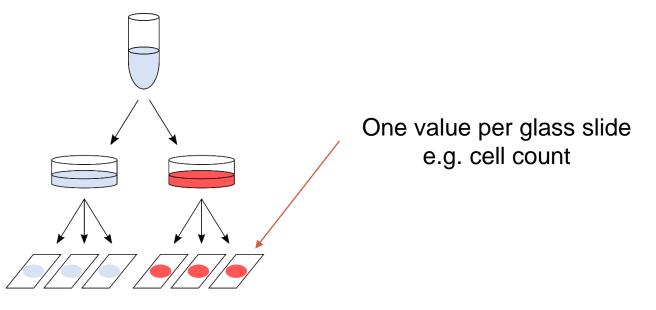

- The model is still: mouse, rat ... mammals in general.
 - Less easy: more than one value per individual
 - e.g. axon degeneration

- <u>What to do</u>? Not one good answer.
 - In this case: mouse = experiment unit
 - axons = technical replicates, nerve segments = biological replicates

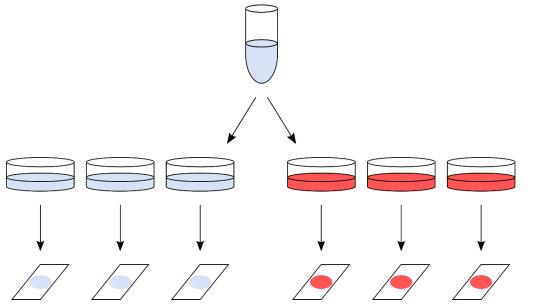
Technical and biological replicates Always easy to tell the difference?

- The model is : worms, cells ...
 - Less and less easy: many 'individuals'
 - What is 'n' in cell culture experiments?
- Cell lines: no biological replication, only technical replication
- To make valid inference: valid design

Control Treatment

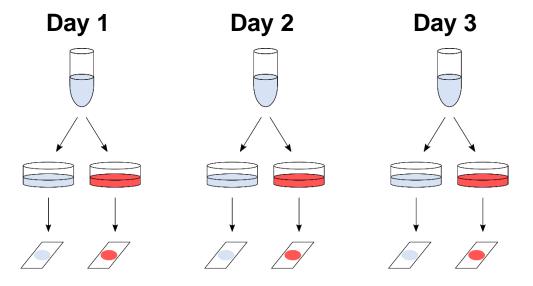

Dishes, flasks, wells ... Cells in culture **Point of Treatment**

Glass slides microarrays lanes in gel wells in plate

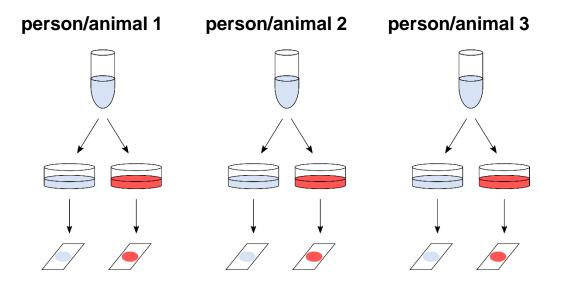

Point of Measurements

• Design 1: As bad as it can get

- After quantification: 6 values
 - But what is the sample size?
 - n = 1
 - no independence between the slides
 - variability = pipetting error

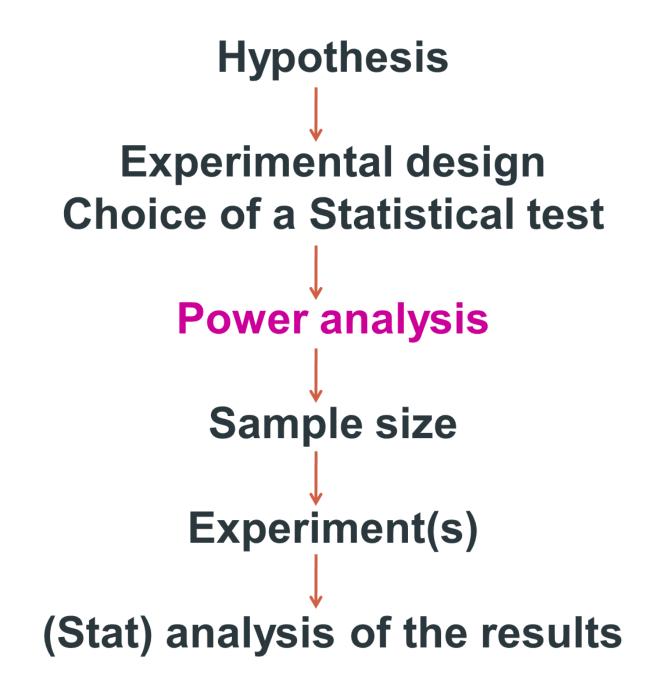

• Design 2: Marginally better, but still not good enough

Everything processed on the same day


- After quantification: 6 values
 - But what is the sample size?
 - n = 1
 - no independence between the plates
 - variability = a bit better as sample split higher up in the hierarchy

• <u>Design 3</u>: Often, as good as it can get

- After quantification: 6 values
 - But what is the sample size?
 - n = 3
 - Key difference: the whole procedure is repeated 3 separate times
 - Still technical variability but done at the highest hierarchical level
 - Results from 3 days are (mostly) independent
 - Values from 2 glass slides: paired observations


• Design 4: The ideal design

- After quantification: 6 values
 - But what is the sample size?
 - n = 3
 - Real biological replicates

Technical and biological replicates What to remember

- Key things to remember:
 - Take the time to identify technical and biological replicates
 - Try to make the replications as independent as possible
 - Never ever mix technical and biological replicates
 - The hierarchical structure of the experiment needs to be respected in the statistical analysis.

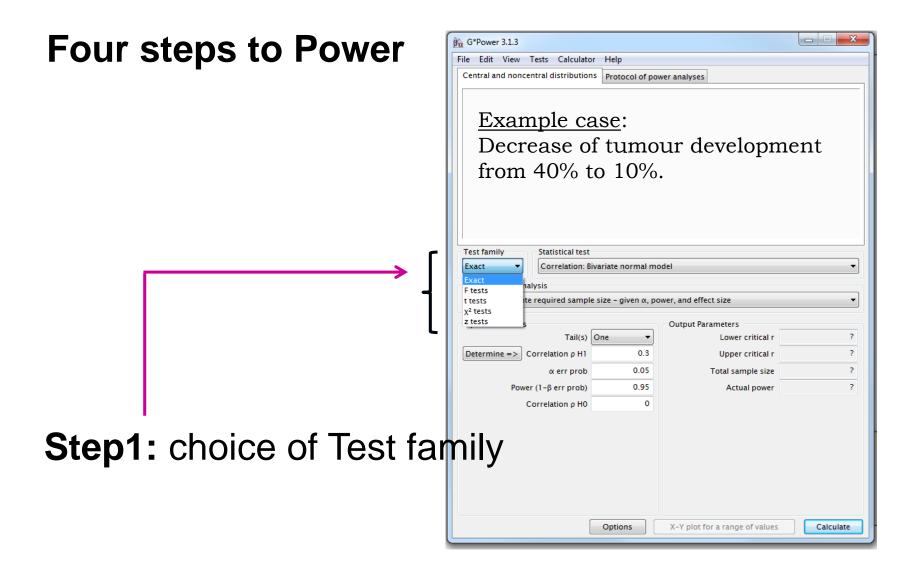
• Good news:

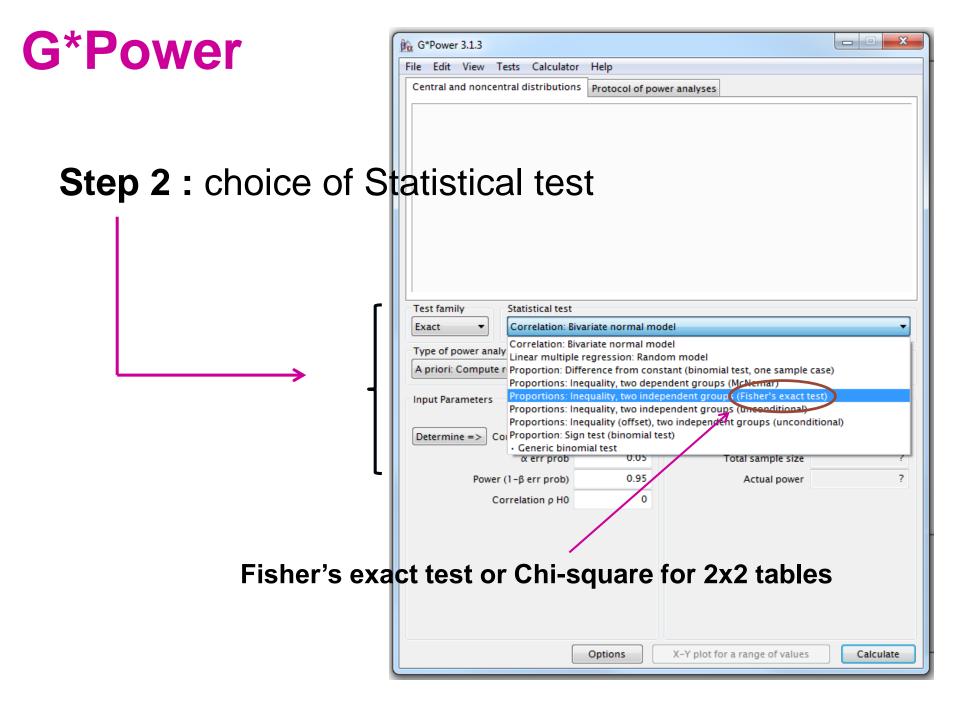
there are packages that can do the power analysis for you ... providing you have some prior knowledge of the key parameters!

difference + standard deviation = effect size

- Free packages:
 - **G*Power** and InVivoStat
 - Russ Lenth's power and sample-size page:
 - http://www.divms.uiowa.edu/~rlenth/Power/
 - R
- Cheap package: StatMate (~ \$95)
- Not so cheap package: MedCalc (~ \$495)

Power Analysis Let's do it


- Examples of power calculations:
 - Comparing 2 proportions
 - Comparing 2 means
 - Comparing more than 2 means
 - Correlation


• <u>Package</u>: **G*Power**

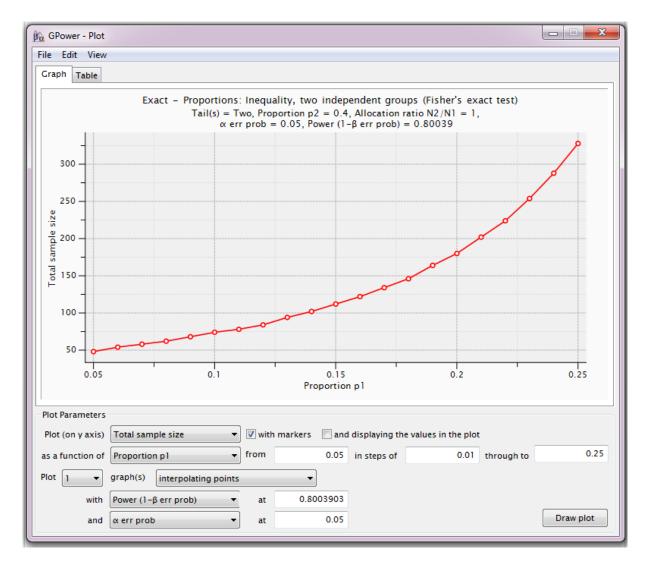
Power Analysis Comparing 2 proportions

- Research example:
 - A scientist is looking at a new treatment to reduce the development of tumours in mice.
 - Control group: 40% of mice develop tumours
 - Aim: reduction to 10%
 - Power: 80%, 5% significance
- Effect size: measure of distance between 2 proportions or probabilities
- Comparison between 2 proportions: Fisher's exact test

Power Analysis Comparing 2 proportions

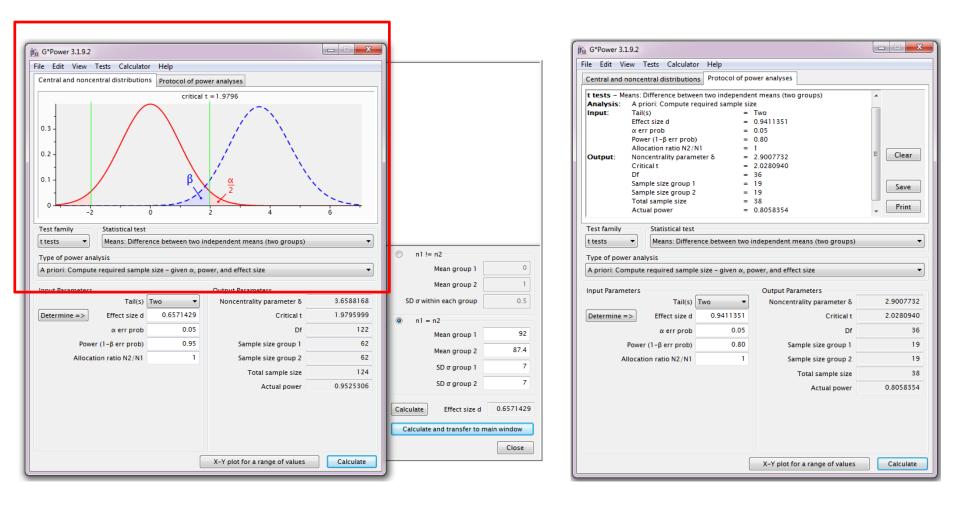
j*Power	βα G*Power 3.1.3	- • ×
	File Edit View Tests Calculator Help	
	Central and noncentral distributions Protocol of power analyses	
Step 3: Type of powe	er analysis	
	Test family Statistical test	
	Exact Proportions: Inequality, two independent groups (Fisher's exact test)	
r	Type of power analysis	
	A priori: Compute required sample size – given α , power, and effect size	•
	A priori: Compute required sample size – given α , power, and effect size Compromise: Compute implied $\alpha \&$ power – given β/α ratio, sample size, and effect size Criterion: Compute required α – given power, effect size, and sample size Post hoc: Compute achieved power – given α , sample size, and effect size Sensitivity: Compute required effect size – given α , power, and sample size	
Ľ	Proportion p2 0.6 Total sample size	?
	α err prob 0.05 Actual power	?
	Power (1-β err prob) 0.95 Actual α	?
	Allocation ratio N2/N1 1	
	Options X-Y plot for a range of values	Calculate

G*Power 3.1.9.2	
M	
File Edit View Tests Calculator Help	
Central and noncentral distributions Protocol	of power analyses

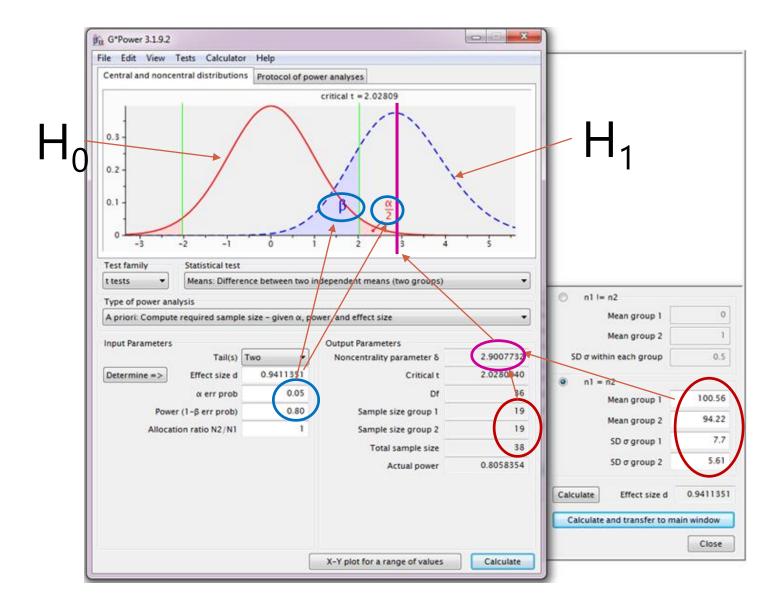

Step 4: Choice of Parameters Tricky bit: need information on the size of the difference and the variability.

Exact Type of power ar	est family xact Proportions: Inequality, two independent groups (Fisher's exact test) ype of power analysis a priori: Compute required sample size – given α, power, and effect size			t) •
Input Parameters			Output Parameters	
	Tail(s)	Two 🔻	Sample size group 1	?
Determine =>	Proportion p1	0.1	Sample size group 2	?
	Proportion p2	0.4	Total sample size	?
	α err prob	0.05	Actual power	?
Pow	er (1-β err prob)	0.8	Actual α	?
Alloca	ation ratio N2/N1	1		
		Options	X-Y plot for a range of values	Calculate

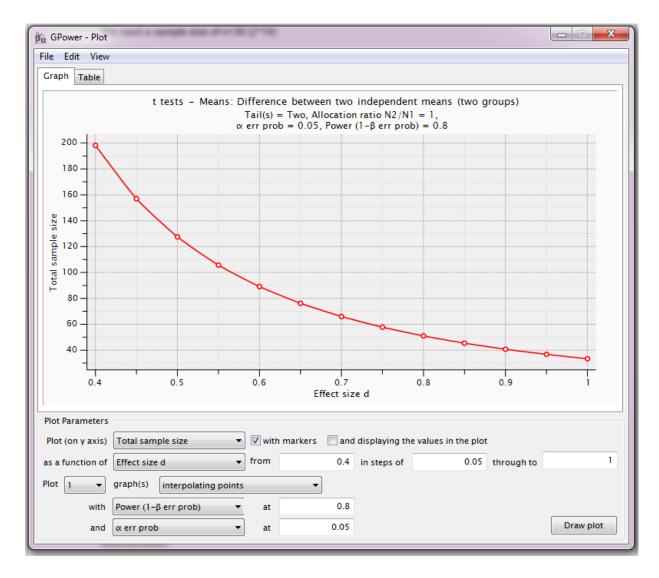
 If aiming for a decrease from 40% to 10% for tumour development, we will need 2 samples of about 36 mice to reach significance (p<0.05) with 80% power.


🙀 G*Power 3.1	G*Power 3.1.9.2				
File Edit Vi	File Edit View Tests Calculator Help				
Central and r	Central and noncentral distributions Protocol of power analyses				
[2] Monda	[2] Monday, July 25, 2016 18:03:23				
			roups (Fisher's exact test)		
Options:	Exact distribution				
Analysis:	A priori: Compute r				
Input:	Tail(s) Proportion p1		Two 0.1		
	Proportion p2		0.4		
	α err prob		0.05	Clear	
	Power (1-β err prob		0.8		
	Allocation ratio N2/	N1 =	1	=	
Output:	Sample size group 1	=	36	Save	
	Sample size group 2		36		
	Total sample size		72	Print	
	Actual power	=	0.8003903	*	
- Test family -	Statistical test				
Exact	Proportions:	Inequality, two ind	ependent groups (Fisher's exact	test) 🔹	
Type of powe					
A priori: Cor	mpute required sampl	e size – given α, p	ower, and effect size	•	
Input Parame	eters		Output Parameters		
	Tail(s)	Two 🔻	Sample size group 1	36	
Determine =	Proportion p1	0.1	Sample size group 2	36	
	Proportion p2	0.4	Total sample size	72	
	α err prob	0.05	Actual power	0.8003903	
	Power (1-β err prob)	0.8	Actual α	0.0256590	
A	Allocation ratio N2/N1 1				
	Options X-Y plot for a range of values Calculate				

For a range of sample sizes:



Power Analysis Comparing 2 means


- <u>Research example:</u>
 - A scientist is looking at the effect of caffeine on muscle metabolism.
 - Metabolism measured via Respiratory Exchange Ratio (RER)
 - Pilot study:
 - Placebo: Mean=100.56, SD=7.70 and Caffeine: Mean=94.22, SD=5.61
 - Power: 80%, 5% significance
- **Effect size:** difference between the 2 means accounting for the variability (Cohen's d).
- Comparison between 2 means: t-test

Providing the difference observed in the pilot study is a good estimation of the real effect size, we need a **sample size of n=38 (2*19).**

For a range of sample sizes:

Comparison of more than 2 means ANOVA

- Extension of the t-test as in it compares means accounting for groups variability but because there are more than 2 means, it actually compares the variance between groups with the one within groups (hence ANalysis Of VAriance).
- Output of an ANOVA is 2-fold:
 - first, the omnibus part quantifying the overall difference between the groups and
 - second, the pairwise comparisons of interest via post-hoc tests.
- Most of the time, it's the second bit which is really interesting
 - An adjustment needs to be applied to account for multiple comparisons.

Comparison of more than 2 means

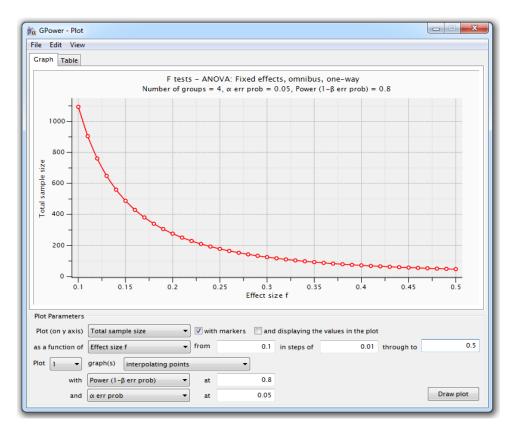
- Different ways to go about power analysis in the context of ANOVA:
 - $-\eta^2$: explained proportion variance of the total variance.
 - Can be translated into effect size d.
 - Not very useful: only looking at the omnibus part of the test

 Minimum power specification: looks at the difference between the smallest and the biggest means.

- All means other than the 2 extreme one are equal to the grand mean.
- Smallest meaningful difference
 - Works like a post-hoc test.

Power Analysis Comparing more than 2 means

- Minimum power specification
- <u>Research example:</u>
 - A researcher is interested in 4 different teaching methods in the area of mathematics education.
 - Effect of these methods on standardized math scores.
 - Group 1: the traditional teaching method,
 - Group 2: the intensive practice method,
 - Group 3: the computer assisted method and,
 - Group 4: the peer assistance learning method.
- Standardized test: mean score = 550, SD = 80
- Power: 80%, 5% significance


Power Analysis Comparing more than 2 means

- <u>Research example</u>: Comparison between 4 teaching methods
 - Assumptions:
 - Equal group sizes and equal variability (SD = 80)
 - Prior research:
 - Traditional teaching (Group 1): lowest mean score
 - Peer assistance (Group 4): highest mean score
 - Group 1: mean = 550 (SD = 80)
 - Group 4: Difference of interest> +1.2 SD: 550+80*1.2 = 646
 - Other 2 groups: mean = grand mean = 598 (= 646+550/2)

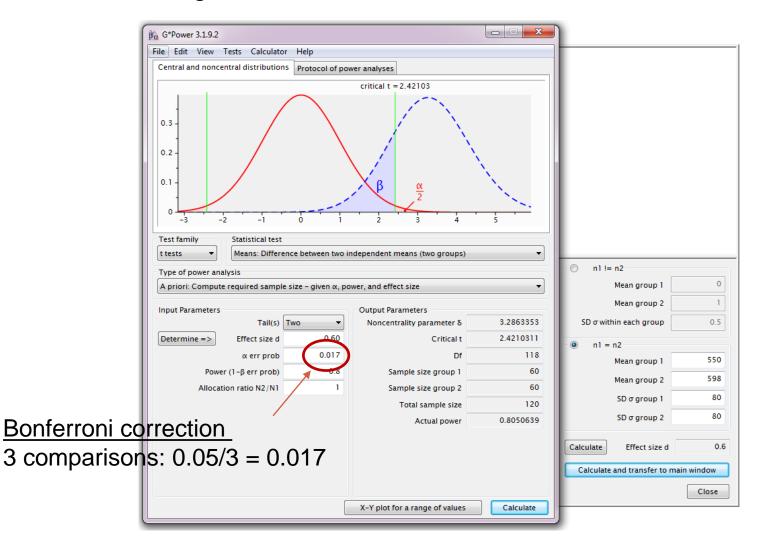
• Minimum power specification

🙀 G*Power 3.1	.9.2						
File Edit Vie	File Edit View Tests Calculator Help						
Central and n	Central and noncentral distributions Protocol of power analyses						
[16] Frida	[16] Friday, September 23, 2016 14:59:38						
	NOVA: Fixed effects, on						
Analysis:	A priori: Compute rec	uired sample siz	e				
Input:	Effect size f	=	0.4242641				
	α err prob		0.05				
	Power (1-β err prob)		0.80				
	Number of groups	=		Clear			
Output:	Noncentrality parame		12.2400018	Cieai			
	Critical F Numerator df	=	2.7481909				
	Denominator df	=	-				
	Total sample size	=		Save			
	Actual power		0.8232895		Select proced	lure	
				- Print			
1					Effect size fr	om means	•
Test family	Statistical test						
F tests	F tests ANOVA: Fixed effects, omnibus, one-way Number of groups					4 🚔	
Type of powe	Type of power analysis SD σ within each group 80					80	
A priori: Con	npute required sample	size – given α, po	ower, and effect size		Group	Mean	Size
Input Parame	ters		Output Parameters				
		0.4242641		12.2400018	1	550	5
Determine =	α err prob	0.4242041	Noncentrality parameter λ Critical F	2.7481909	2	598	5
	Power (1-β err prob)	0.80	Numerator df	3	3	598 646	5
	Number of groups	4	Denominator df	64		040	5
	2 .		Total sample size	68			
			Actual power	0.8232895	1	Equal n	5
	1		4 🗖	,	Т	otal sample size	20
LE E	Each group: n=17					0.4242641	
	Calculate and transfer to main window					ain window	
							Close
					ciose		
	X-Y plot for a range of values Calculate						
L)		

Minimum power specification

- If the other 2 means are known, better to use them:
 - if more polarized towards the two extreme ends:
 - easier to detect the group effect: smaller samples.

Comparison of more than 2 means


- Different ways to go about power analysis in the context of ANOVA:
 - $-\eta^2$: explained proportion variance of the total variance.
 - Can be translated into effect size d.
 - Minimum power specification: looks at the difference between the smallest and the biggest means.
 - All means other than the 2 extreme one are equal to the grand mean.
 - Smallest meaningful difference
 - Works like a post-hoc test.

Power Analysis Comparing more than 2 means

- <u>Research example</u>: Comparison between 4 teaching methods
- Smallest meaningful difference
 - Same assumptions:
 - Equal group sizes and equal variability (SD = 80)
 - 3 comparisons of interest: vs. Group 1
 - Smallest meaningful difference: group 1 vs. Group 2
 - t-test: Mean 1 = 550, SD = 80 and mean 2 = 598, SD = 80
 - Power calculation like for a t-test but with a Bonferroni correction (adjustment for multiple comparisons)

Power Analysis Comparing more than 2 means

Smallest meaningful difference

Power Analysis Correlation

• <u>Research example:</u>

• A ecologist is looking at the host-parasite relationship in roe deers. Measures of body weight and parasite load will be collected from a group of females: Body weight = f(parasite load).

- Pilot study on a small group: r = 0.3
- Power: 80%, 5% significance
- Effect size: Cohen's r: effect size in correlation

Power Analysis Correlation

🙀 G*Power 3.1.9.2			
File Edit View Tests Calculator Help			
Central and noncentral distributions Protocol of power analyses			
	critical t = 1.99006		
critical t = 1.99006			
-3 -2 -1 0	1 2 3 4 5		
Test family Statistical test)		
t tests Correlation: Point biserial mode	I •		
Type of power analysis A priori: Compute required sample size – given α, po	was and offect size		
A priori. Compute required sample size - given a, po	wer, and effect size		
Input Parameters	Output Parameters		
Tail(s) Two 🔻	Noncentrality parameter δ 2.8477869		
Determine => Effect size p 0.3	Critical t 1.9900634		
α err prob 0.05	Df 80		
Power (1-β err prob) 0.8	Total sample size 82 Actual power 0.8033045		
	Actual power 0.8033843		
	X-Y plot for a range of values Calculate		

Power Analysis Unequal sample sizes

- Scientists often deal with unequal sample sizes
 - No simple trade-off:
 - if one needs 2 groups of 30, going for 20 and 40
 will be associated with decreased power.
 Unbalanced design = bigger total sample
 Solution:

<u>Step 1</u>: power calculation for equal sample size <u>Step 2</u>: adjustment

 <u>Caffeine example</u> but this time: placebo group: 2 times smaller than caffeine one: k=2. Using the formula, we get a total:

N=2*19*(1+2)²/4*2=43

Placebo $(n_1)=14$ and caffeine $(n_2)=29$

 $N = \frac{2n(1+k)^2}{4k}$ $n_1 = \frac{N}{(1+k)}$ $n_2 = \frac{kN}{(1+k)}$

- Non-parametric tests: do not assume data come from a Gaussian distribution.
 - Non-parametric tests are based on ranking values from low to high
 - Non-parametric tests not always less powerful
- Proper power calculation for non-parametric tests:
 - Need to specify which kind of distribution we are dealing with
 - Not always easy
- Non-parametric tests never require more than 15% additional subjects providing 2 assumptions:
 - n>=30
 - the distribution is not too unusual
- Very crude rule of thumb for non-parametric tests:
 - Compute the sample size required for a parametric test and add 15%.

