An Introduction to Unix

Sarah Inglesfield, Simon Andrews
v2024-08

Babraham | ;)
Bioinformatics

Terminology and Distributions

Babraham | ;)
Bioinformatics

aee11116 666811118 6A86111168 66611118 60611118 66611118 66611118 686811118

@GNU Operatlng System

I ‘ redhat
<2 CentOS

©debian

ubuntu® e £ AlmaLinux
 Bundled Software
0 Rocky Linux”

* Support duration / cost

Types of Linux installation

Bare —
Metal ——
Virtual =
Machine —=

Cloud @

Physical hardware
CD / DVD / USB / Network installation
Can be physically accessible (desktop) or remote (server / cluster)

Runs within another operating system
Portable / disposable
Install from ISO / Network

Virtual machine on someone else's hardware
Amazon / Google are the main providers
Range of available hardware

Connecting to Linux
Installations

Babraham | ;)
Bioinformatics

Local vs Remote Connections

Remote Linux Machine \ User 1's User 2's
Machine Machine

username: o4 Intranet a5

password:

Local Linux Machine

Private Network

' EIEAEAES

username:

password:

Local Machine / e.g. working on clusters

Connecting to a remote Linux installation

Remote

o . What?
P
Machine What:

* Encrypted connection
 Text based interface

t

Username + Password + 2FA
or

Username + SSH key + 2FA

|

How?

OSX or Use the terminal program which
Linux comes with the OS

: Git Bash (https://gitforwindows.org/)
Local Machine Windows PuTTY (https://www.putty.org/)

"Secure shell"

SSH + Password connection

* ssh username@server.address

* [(W1ll be promoted for password]

andrewss@headstone: ~ — [] 4

£ ssh andrewss@headstone
Welcome to the BabrahamBI cluster.

andrewss@headstone's password:
Last login: Thu Mov 5 16:09:19 2020 from 149.155.134.75

andrewss@headstone ~] %

SSH + Key connection

*ssh -1 [key file.pem] username@lserver.address

ubuntu@ip-172-31-1-95: ~ — [] >
~/OneDrive - BABRAHAM/AWS

% ssh -1 ETH_Zurich. pem uhunfuﬂ: l 8.200. 202
The authenticity of host "35.178.200.202 (35.178.200.202)" can't be established.

ECDSA key fingerprint 1is IH”;Eh.1h;EhE”Aag”q1+.;hE”TL_EA”;HLEyanpTFPﬁH?JDE.

Are you sure you want to :aninuﬂ :Dﬂne_tinn (ves,/no)7 ves
Warning: Permanently added "35.178.200.202" (ECDSA) to the Tist of known hosts.
Welcome to Ubuntu 20.04.1 LTS LLhU,L1nuA 5.4.0-1024-aws xB6_64)

SHH Using PuTlTY

Teinet

#her

ac.ux

aham.

ext

Cancel

SHH with Graphical Connections

Remote Single application windows
Linux

e X11
* Sits on top of SSH

Machine

()(https://www.xquartz.org/
A

= vaa https://sourceforge.net/projects/vexsrv/

Sl SHA+X11 ssh =¥YC -1 [key file.pem] username@server.address
= Just Text | . |
' BR PUTTY Configuration e ;pmnswntm”mg B
rwarding

[«] Enable X11 forwarding

Virtual Desktop

ReAl . VNC

Apache Guacamole’ e Stand alone application or
* Browser based desktop

mailto:username@server.address

Exercise 1

Running programs in the
BASH shell

Babraham | ;)
Bioinformatics

Launching programs in Linux

Two major methods:

______ Graphical | Commandline ___

: Full Graphical Environment Command Line Linux
Requires? : :
e.g. virtual desktop Environment
: : T int
How to Launch a program? Click an icon ype c?mmands o an
interpreter

Works for:

Graphical Programs Q' M

Non-Graphical Programs E m’

Most data processing and remote access will be command line based

For this we need an interpreter....

Shells

A shell is a command line interpreter, used to launch software in Linux

I—j Text commands are used to launch programs
$_

e L

| e
e 5 LI

Many different shells available:

* Largely similar in how they launch programs
» Differ in some of their automation/ other clever functions

We will use the most popular shell: BASH

What Does a Shell Provide?

./
xCommand line editing and construction tools

] f.\'.
. *% .
\ tem Automation

_EI/@

History g
$ Scripting language

Job control p || | «— e Variables, functions etc

4 L

What does a Shell look like?

- | student@ip-172-31-1-95; ~

File Edit View Search Terminal Help

To run a command as administrator (user "root"),
See "man sudo root" for details.

student@ip-172-31-1-95:~% |}

use "sudo <command=>".

k'
- 0O X

We will be using a graphical terminal running BASH

Running programs

Type the name of the program you want to run

}

Add on any options the program needs

!

Press return - the program will run

!

When the program ends control will return to the shell

|

Run the next program!

Running programs

student@ipl-2-3-4:~$ 1ls
Desktop Documents Downloads examples.desktop Music
Pictures Public Templates Videos

student@ipl-2-3-4:~5S

] Command prompt - you can't enter a command unless you can see this

B The command we're going to run (1s in this case, to list files)

B The output of the command - just text in this case

Running graphical programs

student@ipl-2-3-4:~5 xeyes

student@ipl-2-3-4:~5

Note that you can't enter another command
until you close the program you launched

The structure of a unix command

ls -1td —--reverse Downloads/ Desktop/ Documents/
\) \ J \ J
| | |
Program Switches Data
name (normally files)

Each option or section is separated by spaces. Options or files with spaces in must be put in quotes.

Command line switches

To change the behaviour of the program must write the appropriate switch

 Different options are represented by short and/or long forms (usually both)

______ shortForm | lomgForm ____

Minus plus single letter Two minuses plus a word
-X —C —Z —-—extract --gzip
Can be combined -xcz Can’t be combined

* Switches can be binary (on/off) or take an additional value

Binary (on/off) + Additional Value

An additional value is provided after the switch

Switch alone specifies the behaviour -f somfile.txt (specify a filename)
-—-gzip ——width=30 (specify a value)

Use a [space] or = to separate

Figuring Out Options...

Programmes usually come with documentation for their options and usage

Non-Core Programs

Included with the install Additional installs e.g analysis tools
Manual page (always) Help Page (usually)
man [program] lprogram] —--help (or -h)

These pages all follow a very similar structure...

Manual Pages

User Commands

cat - concatenate files and print on the standard output

SYNOPSIS
cat [OPTION]... [FILE]...

DESCRIPTICON
Concatenate FILE(s) to standard cutput.

With no FILE, or when FILE is -, read standard input.

—--show-all
equivalent to —-vET

——number-nonblank
number nonempty output lines, owverrides -n

equivalent to —-vE

——show-ends
display $ at end of each line

——number
number all output lines

—--squeeze-blank
suppress repeated empty output lines

equivalent to -vT

—--show-tabs
display TAB characters as *T

(ignored)

——show-nonprinting
use ~ and M- notation, except for LFD and TAB

——help display this help and exit

—-version
output version information and exit

Output f£'s contents, then standard input, then g's contents.

VS Help Pages

puzarr‘ea FastQC - A high throughput sequence QC analysis tool

SYNOFPSIS

Synopsis fastgc seqgfilel segfile2 .. segfileN

fastagc [output dir] [--(no)extract] [-f fastg|bam|sam]
> contaminant file] segfilel .. segfileN

DESCRIPTION

Description

FastQC reads a set of sequence files and produces from each one a guality
control report consisting of a number of different modules, each one of
which will help to identify a different potential tyvpe of problem in your
data.

If no files to process are specified on the command line then the program
will start as an interactive graphical application. If files are provided
on the command line then the program will run with no user interaction
required. In this mode it is suitable for inclusion into a standardised
analysis pipeline.

The options for the program as as follows:
-h --help Print this help file and exit
—--version Print the wersion of the program and exit
——outdir Create all output files in the specified output directory.
Please note that this directory must exist as the program
will not create it. If this option is not set then the

output file for each sequence file is created in the same
directory as the sequence file which was processed.

Examples

Exercise 2

Understanding Unix
File Systems

Babraham | ;)
Bioinformatics

Unix File Systems vs Other File Systems

A Familiar Picture...

= Local Disk (C:)

Standard OS File System

v thE
Hierarchical Directories U
> diMfe
. Each Directory can contain files
b SN y g
. Documents Use drive Letters E

=| test.but Need file extensions e.g. .txt m

A Simple Unix Filesystem

P s ¢ = ROOT Directory = Always the top of the file system
home |/ e— Directory containing all users home directories

S]—> = Directory containing all users home directories

Documents /f = A Directory — note names are case sensitive

=R al S = A text file we want to work with

media,

Y LIS b/ = A USB stick added to the system

How do we write this in our shell? =Path | $ 1s /home/simon/Documents/test.txt

Navigating The File System

* Every Unix session has a ‘working directory’
* This is a folder where the shell looks for file paths

 Your initial working directory will normally be your home directory (eg /home /user)

e There are some useful commands to help navigate the system:

What is my current working directory? pwd
| want to make a new directory mkdir [name of directory to make]

| want to move into a different directory cd [location to move to]

| want to go home cd

Navigating The File System — An Example

[andrewss@server ~]$% pwd
/home/andrewss

[andrewss@server ~]$% mkdir Simon

[andrewss@server ~]%$ cd Simon

[andrewss@server Simon]$ pwd
/home/andrewss/Simon

[andrewss@server Simon]$ cd
[andrewss@server ~]$% pwd
/home/andrewss

Specitying File Paths

Options:
y 1. Absolute paths from the top of the file system e.g.
/home/simon/Documents/Course/some file.txt
home B
Simon 2. Relative paths from your current directory e.g.
Documents if we are in Course = some file.txt

Another Course if we are in Documents = Course/some file.txt
Course

3. Paths using typing shortcuts

_Jsome_file.txt
|

How can we refer to this file?

Specifying file paths - Shortcuts

home

Simon
Documents

Another_Course

Course

j some file.txt

Some Useful Shortcuts:

~ The current user's home directory
The current directory

The directory immediately above the current directory

If we were in Another Course
~/Documents/Course/some file.txt

../Course/some file.txt

Specitying File Paths — Question:

/
home Which Path (or Paths!) will specify my “Fun_ideas.txt”?
sarah
You . . . :
Teaching <= are A /home/sarah/teaching/multiomics/Fun ideas.txt
here
linux B "'/Teaching/muItiomics/Fun_ideaS .txt
QC C multiomics/Fun ideas.txt
multiomics

l_]Fun_ideas.txt

It’s easy to make mistakes when typing paths

Command line completion...

Sl

LY EXPLAINED

...Is Basically the shell's version of Autocomplete

* Most errors in commands are typing errors in either
program names or file paths

* Shells (ie BASH) can help by completing paths for us

How?

Type a partial path then press the TAB key

Hooray for the TAB Key!

AUTO COMPLETION
https://www.datamation.com/trends/tech-comics-is-auto-complete-enough/

https://www.datamation.com/trends/tech-comics-is-auto-complete-enough/

Command line completion- Examples

inglesf <= You are here

Documents
How Tab Complete Will Work:

Downloads
T [TAB] > Templates

Do-re—-me. txt

= P [TAB] > Publi
Mi-so-la.txt

Music Do [TAB] - [beep]

Public Do [TAB] [TAB] - Documents Downloads Do-re-me.txt
Published Doc [TAB] - Documents

Templates

You should ALWAYS use TAB completion to fill in paths for
locations which exist so you can't make typing mistakes

(so it won't work for output files!)

Command line completion- Question

inglesf «mm You are here

Documents

Downloads

Which Is the Shortest Way to Specify Mi-so-la.txt?

Do-re—-me. txt

Mi-so-la.txt A M[TAB]
Music

B Mi[TAB]
Public
Published c Mi-so-la [TAB]

Templates

Specifying Multiple File Paths — Wildcards

Sometimes we want to refer to more than one file / location

Common part of name

Use Wild cards to substitute for unique parts of related file paths

e Shell will expand them before passing them on to the program

mm

One of Any character 202? report.txt

3 Any number of Any characters 20* report.txt

!

Could be more ambiguous here e.g. 20* , *.txt or even *

But it depends what else this path would capture!

Using Wildcards

At any point in the path

Multiple wildcards can be in the same path

Do make sure expression captures files of interest specifically!

X NNK

Command line completion won't work after the first wildcard

ls -1td --reverse D¥
\ J \ J \
1 1 1
Program Switches Data
name

(normally files)

Using Wildcards - Questions

My Working Directory:

Monday » |—| mon_l.txt |= mon_2.txt

Tuesday > |=| tue_l.txt - tue 2.txt

How can | list only text files from Tuesday?

A 1s Tuesday/*
B 1s Tuesday/?.txt

C 1is Tuesday/*txt

-

-

mon 3.txt

tue 3.csv

| mon_500.txt

Using Wildcards - Questions

My Working Directory:

Monday >

mon 1.txt mon 2.txt -] mon 3.txt

—1 —1

Tuesday

A 4

- tue_1l.txt -] tue 2.txt tue 3.csv

—

What files will “1s Monday/mon_ ?.txt” return?

l\ mon 1.txt mon 2Z.txt mon 3.txt

B mon 1.txt mon 2.txt mon 3.txt mon 500.txt

C tue 1.txt tue 2.txt tue 3.csv

—1

mon 500.txt

Using Wildcards - Questions

My Working Directory:

Monday » |—| mon_1.txt | mon_2.txt - mon 3.txt | mon_500.txt

Tuesday > = tue_1l.txt | tue 2.txt tue 3.csv

-

How can | list all the text files in both Monday and Tuesday?
A 1s 2day/*

B 1s *

C 1s */*txt

Manipulating files

Moving or renaming files .\‘ ‘ Copying files

Editing text flles/‘\\ / Deleting files
Viewing files @4— ‘ ’ \ — q Finding files

(normally text files)
o5

You will spend a lot of time managing files on a Linux system

Viewing Files

Simplest solution

cat [file] Sends the entire contents of a file (or multiple files) to the screen.

head -[number] [file] Look atthe first X lines of the file
tail -[number] [file] Look atthe lastX lines of the file

More scalable solution

less [file] A 'pager' program, sends output to the screen one page at a time
-S A useful switch that stops line wrapping
Navigation inside less: Return /j = move down one line

k = move up one line

Space = move down one page

b = go back one page

/[term] = search for [term] in the file

q = quit back to the command prompt

Editing files

» Lots of text editors exist, both graphical and command line

* Many have special functionality for specific content (C, HTML etc)

* nano is a simple command line editor which is always present

nano [filename] edits if file exists, creates if it doesn't

GHNT nano 2.9.3

Modified

Thi= i= the nano text editor.

You can type stuff in here...

The option=s at the bottom are commands, the ™ means the control key

eg: Control+K cuts the current line of text and Control+lU will paste it.

Control+0 will write out the current contents of the editor,
and Control+X will exit back to the shell.

e Gt Help s Write Qut Where I=
-y Foir Yy FEead File Replace

i Cut Text WY Justify W® Cur FPos
Y TTncut Text Wy To Spell M G0 To Line

Moving / Renaming files

e Use mv command for both (renaming = moving from one name to another)

mv [existing file or directory] [new name/location]

 Good to Know....
* If “location” is a existing directory, the file is moved there with its existing name
* Moving a directory moves all of its contents as well
* Shortcuts can help to form the path of where you want to move files to/from

The return of useful shortcuts!

The current directory Useful for “pull” moves

The directory immediately above the current directory Useful for “push” moves

Moving / Renaming files — “Push”

stat _______JCommand ____________ |Outoome ____

my dir

mv old. txt new. txt :
E% new.txt

You
are wmp my dir my dir

here i
old.txt mv old.txt ../Saved/ D aed

Saved % old.txt

mv old.txt ../Saved/new.txt Saved

E% new.txt

Moving / Renaming files — “Pull”

ot Command owcome

my dir my dir
=5
—| old.txt mv ../my dir/old.txt . e
You -
are =l Saved = old.txt

here

Copying a file

* Use cp command on a single file

cp [existing file] [new name/location]

N R

= > my dir my_ ciir

old. txt cp old.txt new. txt old.txt

[

new.txt

Copying Directories with recursive copy

cp -r [existing directory] [new name/location]

N N N

— my dir my dir
Saved cp -r ../Saved NewDir NewDir
[j test.txt [j test.txt
> my_dir my dir
(only if ExistingDir exists)
Saved Saved

=S| test.txt =] test.txt

*remember the original “Saved” directory will also still exist

Copying files: Match the Command with the Desired Action

Command

[j old.txt
Saved

my dir 1) Copy old.txt to Saved

A) cp old.txt ../Saved/new.txt

2) Copy old.txt to Saved

and call it new. txt B) cp ../Saved/old.txt

my dir

Saved 3) Copy old.txt to Saved
C) cp old.txt ../Saved/

Linking rather than copying

* Copy duplicates the data in a file HEEEHEIN &
* Can be a problem with big data files =
e Links are a way to do 'virtual' copies =

Same file
S . XT_. /D

Location B

* Two types of link, hard links and soft (or symbolic) links
* We will always use soft links as they're more flexible

ln -s [from] [to]

stat _________(Command __________ |Outome ______

mydir

mydir

test.txt

ln -s test.txt test2.txt

r>
I

test.tXxXt

test2.txt

Working with symbolic links

When you list a link you can see where it points...

S 1s -1 test2.txt
lrwxrwxrwx 1 babraham babraham 8 Sep 11 16:27 test2.txt -> test.txt

...but you can use it like a file

S cat test.txt = S cat test2.txt
This 1s a test file This 1s a test file

Finding Things with £ind

find [starting point] [global options] [other arguments]
Location to start from modify the behaviour of find Tests of what to look for

« How to handle symbolic links * Find a given file name
-H, -L, -P -name [filename]

 How to handle how deep to * Find matches belonging to a user

search in the filesystem -user [username]

-maxdepth -mindepth

Find matches of a certain type

- d -f
- mydir Example:
filel.txt file3.txt .
find .-maxdepth 1 —-name ‘*.txt’
fileZ2.txt filed.csv
mysubdir

yet another file.txt

Deleting files

Linux has no undo.
Deleting files has no recycle bin.
Cautionl Linux will not ask you "are you sure" [Caution

Use the rm command to delete files and directories (and all of their contents)

rm [name(s) of file to delete]

rm —-r [name(s) of directory to delete]

Examples
*rm test file.txt test fileZ.txt
*rm —-r Old directory/

Deleting files — With Wildcards

You can use the wildcard shortcuts to delete multiple files or directories

rm *.txXt

be VERY careful using wildcards

© e ————

|

Accidental space

Always run 1s first to see what will go

Exercise 3

More advanced BASH
usage

Babraham ;)
Bioinformatics

What we know already

e How to run programs
</>

 How to modify the options for a program using switches
J L * How to supply data to programs using file paths and wildcards

How Can we Usefully Build on this?

What else can we do...

Check for errors in programs

which are running E <[> ‘_, </> Link programs together
into small pipelines

Record the output ‘ $ \ Automate the running of
of programs ' programs over batches of files

All possible with a bit more knowledge of the BASH Shell

Communicating with Programs

Three data streams exist for all Linux programs:

STDOUT

Standard STDIN </> ‘
T

Input
a way to send data into the program program STDE RR

Standard
Output

a way to send expected data out of the program

Standard
Error

a way to send errors/warnings out of the program

By default STDOUT and STDERR are connected to your shell

so when you see text coming from a program it's from these streams

Communicating with Programs

| &> =P <[>

= = 2

iy R
Redirecting standard Redirecting standard
streams to files streams to other programs

2

I (I

Redirecting standard streams

You can redirect using arrows at the end of your command

> [file] Redirects STDOUT

2> [file] Redirects STDERR

> [file] 2>&1 Sends STDERR into STDOUT

< [file] Redirects STDIN
Data Desktop Documents Downloads @rrors.txt examples.desktop file list.txt
Music Pictures Public Templates Videos

./Downloads
./Pictures
./Public
./Music

Throwing stuff away

* Sometimes you want to be able to hide output

- | just want to test whether something worked
* STDERR - | want to hide progress / error messages

Linux defines a special file /dev/null
Which just discards all data sent to it

</>

= =

E3EX

Throw away the STDOUT program > /dev/null

Throw away the STDERR program 2> /dev/null

Linking programs together with pipes

UNIX was designed to have lots of small programs doing specific jobs

Which could be linked together to perform more advanced tasks

— <[> <[> <[> ect.
T T T I T

Do this by connecting STDOUT from one program to STDIN on another

This is done with Pipes | f - |

Data
Desktop

Useful programs for pipes

* You can theoretically use pipes to link any programs

* But there are some which are particularly useful, like:

WC
grep
sort
Uniqg
less

zcat/gunzip/gzip

to do word and line counting

to do pattern searching

to sort things

to deduplicate things

to read large amounts of output

to do decompression or compression

Small example pipeline

Take a compressed fastq sequence file, extract from it all of the entries
containing the telomere repeat sequence (TTAGGG) and count them

Decompress the fastq file ==p Find the pattern ==p Count the matches

zcat file.fg.gz | grep TTAGGGTTAGGG | wc -1

$ zcat file.fg.gz | wc -1
179536960

$ zcat file.fg.gz | grep TTAGGGTTAGGG | wc -1
3925

iterating over files

When processing data often need to re-run the same command multiple times for
different input/output files.

%—b </>

Some programs support being provided with multiple input files i.e. wildcards!

BUT MANY DON'T!

Instead we use the automation features of the BASH shell to automate running these programs

The BASH for loop

What?

Start with a set of files (or values)

—

ect. ‘;/=,

=

Loop over these to do some function
for each in turn

How?

Use Simple looping construct

R

Temporary
command Environment

Variable

Write commands using a special variable

Takes on the value of each item in turn

Example of BASH £or loops

for f£file in *txt
do
echo S$file
grep .sam $file | wc -1
done

Job Control

* By default you run one job at a time in a shell
* Shells support multiple running jobs

jobs

lists the jobs in this shell

States of job:

Running - foreground
Running - background
Suspended

Running - disconnected

shell has the attention of the job
output goes to the shell but other jobs can run
job exists but is paused, consumes no CPU

output is no longer attached to the shell

Job Control
\Working Directory |

prog to run starts in foreground
prog to run & starts in background
Control + 7 suspends the current job
bg Send a job to the background
fg Bring a job to the foreground

disconnects, logs to nohup.out
. or redirect to your choice of file
Means it can’t be killed when terminal exits

nohup prog to run
nohup prog to run > log.txt &

More Extended Job Control on Clusters

Control on a single machine

<[>

e 5

VS

 Same for small jobs we can run on the Head Node

* e.g.nohup, fg, bg

Need a bit more control for bigger jobs

 Workload managers
 Workflow managers

Control on a Cluster

User 1’s
Machine

=

Intranet

User 2’s
Machine

=

Private Network

Workload managers — Cluster Queues

Job1
o slurm
workload manager Com pute Compute
| 1\\ | Node Node

Job 2 ™ Head Node |
d_G
§ Compute Compute
Job 1 Node Node
Job 3 loh 2
05 © Compute Compute
Job 3

Node Node

Workload managers — Cluster Queues

Submitting a job directly Submitting a job to a workload manager
</>
It slurm
'FaSth data . _Fq . gz workload manager
ssub
-0 f.log
--cores=2
- -mem=5G

fastgc data.fq.gz

Workflow Mangers — Beyond 1 job...

Imagine you have generated
RNAseq data for 4 samples...

QC reports QC reports

Multi-QC
J T

Summary
report

Fastq files

Trimmed
Fastq files

Bam files

...A lot to coordinate!

Workflow Mangers ne)CEfIOW

snakemaake

eprod bl

* Larger Scale Automation

* Multiple Programs
QC reports QC reports

* MUItlple Files ac Pﬁ— Qc E‘i Multi-QC .
: : U | e s
E i ;

* Integrates with Clusters
> <[>

4T
Map

Summary
report

Trim

Trimmed
Fastq files

Bam files

nf_rnaseq --genome GRCh38 *fastqg.gz

executor > slurm (2
15/929bd5] process
b9/674ced] process

)

c0/4dcaf9] process
58/879cf5] process
[c4d/cfelfl] process > MULTIQC
Completed at: 05-Feb-2021 08:47:47

Duration : 4dm 2s
CPU hours : 1.9
Succeeded 21
c @ [file:///C:/Users/andrewss/Desktop/execution_reporthtml g mnoaeoemo 3z =

Nextflow Report ~ Summar

Nextflow workflow report

[jovial_bartik]
Workflow execution completed successfully!

Run times
05-Feb-2021 08:43:45 - 05-Feb-2021 08:47:46 (duration: 4m 1s)

Nextflow command

nextflow /bi/apps/nextflow/nextflow_pipelines/nf_rnaseq --genome GRCh3& lanes_DD_PA_TTAGGC_L@S_Rl.fastq.gz lane8_DD_PA_TTAGGC_L@03_R2.fastqg.gz
laneS_DD_P9_TGACCA_LB@S_R1.fastq.gz lane8_DD_P9_TGACCA L8@S_R2.fastq.gz lane8 FF_PA_ATCACG LGS R1.fastq.gz laneB_FF_PA_ATCACG_L@@S R2.fastq.gz
laneS_FF_P9_CGATGT_L@@3_R1.fastq.gz lane8_FF_P9_CGATGT_L@@8_R2.fastq.gz

CPU-Hours: 1.9

Launch directory /bifhome/andrewss/FastQ Data

Work directory /bifhome/andrewss/FastQ_Data/work
Project directory /bi/apps/nextflow/nextflow_pipelines

Serint name nf rnasea hd

1
[] > FASTQC (lane8 DD P9 TGACCA 1.008)
[] > FASTQ SCREEN (lane8 FF P4 ATCACG L008)
[ca/b39d14] process > TRIM GALORE (lane8 FF P9 CGATGT L008)
[] >
[] >

FASTQC2 (lane8 FF P9 CGATGT 1008)
HISAT2 (lane8 FF P9 CGATGT LO008)

Workflow completion notification

Run Name: jovial_bartik
Execution completed successfullyl

The command used to launch the workflow was as follows:

nextflow /bi/fapps/nextflow/nextflow pipelines/nf rnaseg --genome GRCh38
lane8 DD P4 TTAGGC LOOS Rl.fastg.gz lane8 DD P4 TTAGGC L0088 R2.fastqg.gz
lanes _DD_FPS_TGACCA LOOS_R1.fastq.gz lanes DD PS_TGACCA L0OOS R2.fastq.gz
lane8 FF P4 ATCACG L0008 _R1.fastg.gz lane8 FF P4 ATCACG L0088 R2.fastg.gz

laned FF P8 CGATGT_LOO0S_Rl.fastg.gz laneS8 FF PS5 _CGATGT_LO0O0OS R2.fastgq.gz

Execution summary

e @ D) filewy/cfUsers/andrewss/Desi

Processes execution timeline

Launch time: 05 Feb 2021 08:43
Elapsed time: 4m 25

Legend: job wall time / memory usage (RAM)

FASTQC (laneB_DD_P4_TTAGGC_LOOS)
FASTQ_SCREEN (lane8_DD_P4_TTAGGC_LO0B)
FASTQC (laneB_FF_P9_CGATGT_LOOB)
FASTOC (laneB_FF_P4_ATCACG_L0OB)
FASTQ_SCREEN (lanes_FF_P9 CGATGT_L008|
FASTQ_SCREEN (lane8_DD.P9_TGACCA_L0CS)
FASTQC (laneB_DD_P9_TGACCA L00B)
FASTQ_SCREEN (lanes_FF_P4_ATCACG._L00S|
TRIM_GALORE (lane8_DD_P9_TGACCA. L0OS]
TRIM_GALORE (lane8_DD_P4_TTAGGC_L0OB)
TRIM GALORE (laneB_FF_P4 ATCACG_ L00S)
TRIM_GALORE (lane8_FF_P9_CGATGT_L0OB)
FASTQC (lane8_DD_P9 TGACCA_LO08)
HISAT2 (lane8_DD._P9_TGACCA L0OS)
HISAT (laned DD_P4_TTAGGC_LO0B)
FASTQC? (lane8_DD_P4_TTAGGC_L00G)
FASTQC? (laned_FF_P4_ATCACG_L00G)
HISAT2 (laned_FF_P4_ATCACG_L00G)
FASTQC? (laned_FF_P9_CGATGT_L00G)
HISAT2 (laned_FF_P?_ CGATGT_L00G)
MULTIGE

hitex/nextflowlo

Launch time 05-Feb-2021 08:43:45
Ending time 05-Feb-2021 08:47-46 (duration: 4m 1s)
Total CPU-Hours 19
Tasks stats Succeeded: 21 Cached: 0 Ignored: 0 Failed: 0
kiop/execution_timeline htm| @ noQoe@a 2 =
B /3282 MB
2m555/29G8
s 15 M
(90 e
2m455/20G8
3m205/3.1G8
8 /2992 M
am195/3G8
39.6s/31MB
39.55/31MB
39.5s/314M8
39.55/31MB '
39.85/3238M8 |
(w8s/43G8 |
397513868 |
39.75/366.5M8 !
3975/ 2767 M8
(9734308 |
39.65/3245M8 |
9bs1a3GB |
. 3995/ 762 M8

Exercise 4

