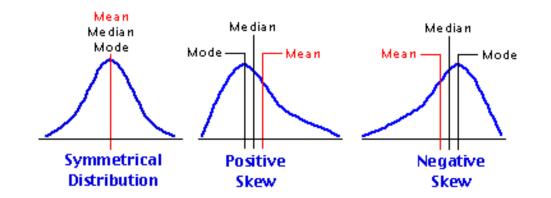


Survival analysis

Anne Segonds-Pichon v2020-07

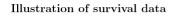

Survival analysis

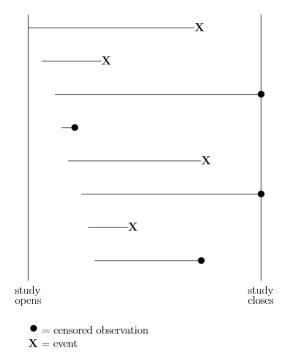
- Time to **event data**.
- Censoring.
- Survivor function Kaplan-Meier plot.
- Log-rank test.
- Hazard function and Hazard ratio .

Time to event data: examples

- Time to death.
- Time to progression of cancer.
- Time to development of diabetes.
- Time to recovery from diarrhea.
- Time to event data typically collected in
 - cohort studies (time between study baseline and event of interest).
 - clinical trials (time between randomisation and event of interest).
- Also known as survival data.

Features of time to event data


• Non-negative values.


- Not normally distributed (usually positively skewed).
- Event not usually observed for all individuals during the study.
- An observation is **censored** if individual does not experience event during the study.
- **Censoring time**: time from baseline/randomisation until latest date at which individual is known to be still alive and event-free.

Censoring

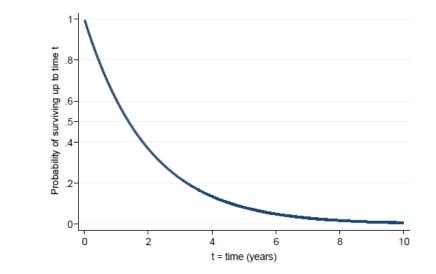
- Definition: Event of interest not observed for all individuals.
- **Fixed censoring:** event has not occurred when study has ended or data analysis is performed.
- Loss to follow-up: individual has been lost to follow-up (e.g. he/she no longer wishes to take part in study).

- Survival analysis methods make use of information from censored observations.
- Assume censoring is **non-informative**, i.e. if an individual is censored, his/her subsequent risk of the event of interest is unaffected.

Example of time to event data

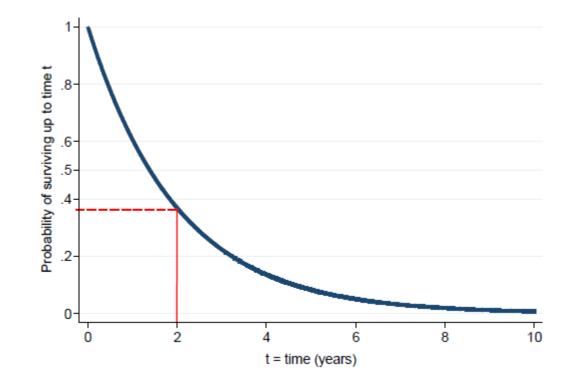
Weeks to death or censoring (*) in 20 adults with recurrent astrocytoma:

6	13	21	30	31*	37	38	47*	49	50	
63	79	80*	82*	82*	86	98	149	202	219	

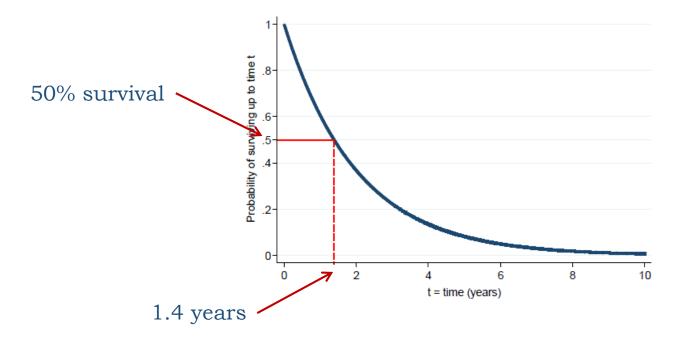

ID	death	weeks
1	1	6
2	1	13
3	1	21
4	1	30
5	0	31
6	1	37
7	1	38
8	0	47
9	1	49
10	1	50
11	1	63
12	1	79
13	0	80
14	0	82
15	0	82
16	1	86
17	1	98
18	0	149
19	1	202
20	1	219

Data reproduced from BMJ 2004; 328:1073.

Aims of survival analysis

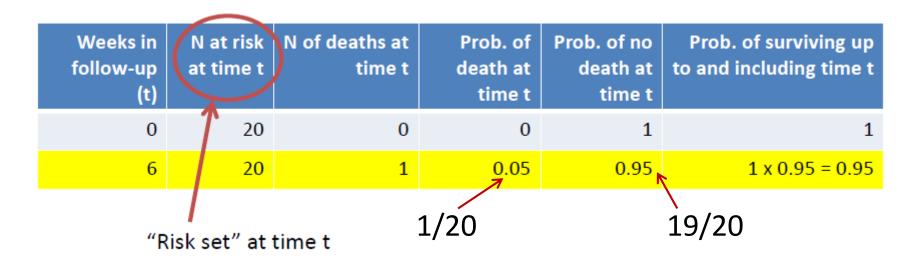

- To estimate probability of not experiencing event of interest (not dying = "surviving") over any given time period (e.g. 5 year survival rate).
- To compare overall survival experience between different groups of individuals (e.g. between groups in a randomised clinical trial).
- **Survivor function**: Probability of not experiencing event of interest ("surviving") up to time t.

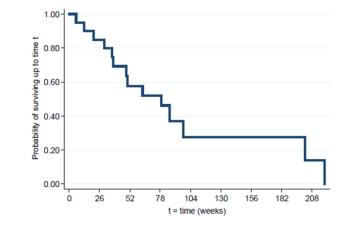
Example:


Estimating a survival rate

• Probability of surviving up to 2 years = 0.37.

Median survival time

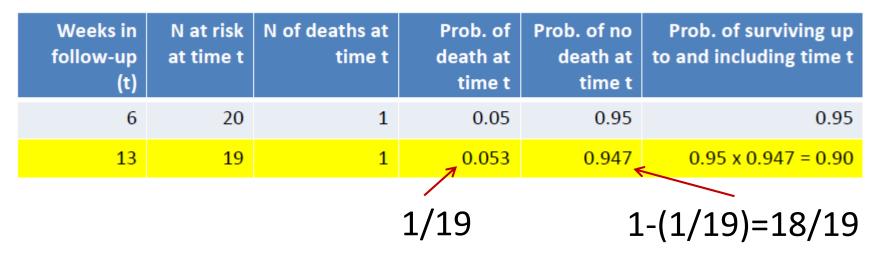

- It is the time (expressed in months or years) when half the patients are expected to be alive. It means that the chance of surviving beyond that time is 50%.
- Median survival time = 1.4 years, since the probability of surviving up to 1.4 years is 0.5.



Kaplan-Meier (KM) estimation of survivor function <u>First death</u>

6	13	21	30	31*	37	38	47*	49	50	
63	79	80*	82*	82*	86	98	149	202	219	

- **20** individuals in study at t=0.
- First death at t=6 weeks.
- No individuals censored before t=6.
- Probability of death for each individual: 1/20=0.05
- Therefore probability of surviving beyond t=6 is (1-0.05)=0.95=19/20.



K-M estimation of survivor function Second death

	13	21	30	31*	37	38	47*	49	50
63	79	80*	82*	82*	86	98	149	202	219

- **19** individuals in study between t=6 and t=13.
- Second death at t=13.
- No individuals censored between t=6 and t=13.
 19/20 18/19
- Probability of death for each individual: 1/19=0.053
- Therefore probability of surviving beyond t=13 is **0.95 x 0.947 =0.90**.
 - with 0.95=(1-(1/20)) and 0.947=(1-(1/19))

K-M estimation of survivor function Third and fourth death

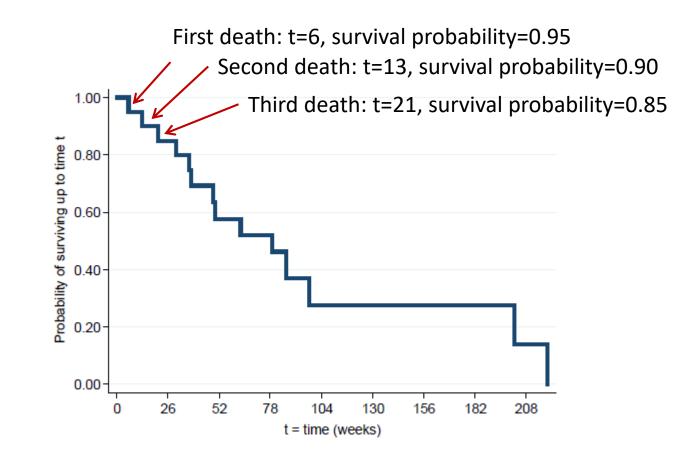
		21	30	31*	37	38	47*	49	50
63	79	80*	82*	82*	86	98	149	202	219

- **18** individuals in study between t=13 and t=21.
- Probability of death for each individual: 1/18=0.056
- Probability of surviving beyond t=21 is 0.90 x (1-(1/18)) =0.85.
- **17** individuals in study between t=21 and t=30.
- Probability of death for each individual: 1/17=0.059
- Probability of surviving beyond t=30 is **0.85 x (1-(1/17)) =0.80**.

Weeks in follow-up (t)	N at risk at time t	N of deaths at time t		Prob. of no death at time t	Prob. of surviving up to and including time t
13	19	1	1/19= 0.053	0.947	0.90
21	18	1	1/18= 0.056	0.944	0.85
30	17	1	1/17= 0.059	0.941	0.80

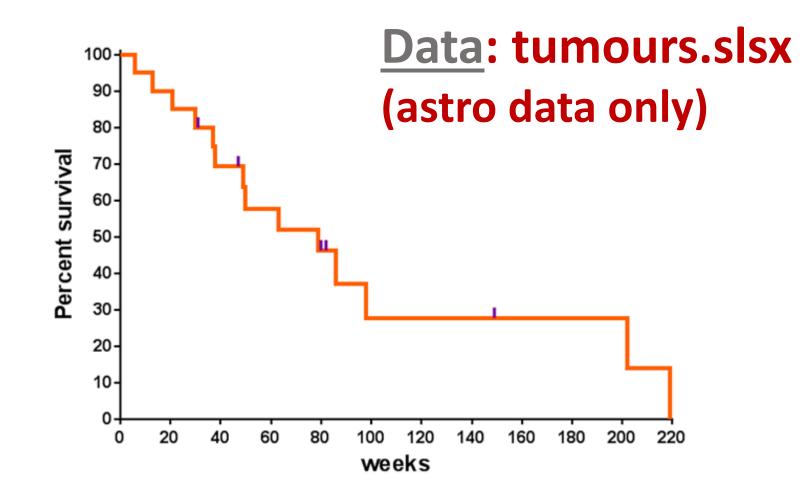
From t=13: 0.95*0.947

K-M estimation of survivor function <u>Fifth and sixth death</u>


				31*	37	38	47*	49	50
63	79	80*	82*	82*	86	98	149	202	219

- **16** individuals in study between t=30 and t=31.
- 1 individual censored at t=31.
- Probability of surviving beyond t=31 remains at 0.80.
- **15** individuals in study between t=31 and t=37.
- Probability of surviving beyond t=37 is **0.80 x (1-(1/15)) =0.747**.

Weeks in follow-up (t)	N at risk at time t	N of deaths at time t	Prob. of death at time t		Prob. of surviving up to and including time t
30	17	1	0.059	0.941	0.80
31	16	0	0	1	0.80 x 1 = 0.80
37	15	1	1/15= 0.067	0.933	0.80 x 0.933 = 0.747


K-M plot of survivor function

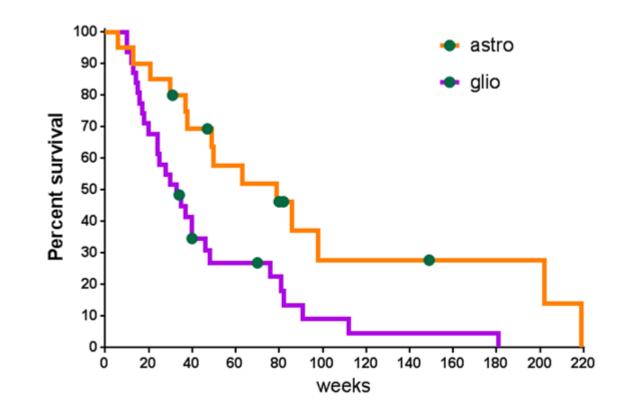
- Continue these calculations until reaching the longest event time.
- K-M plot drawn as a step function:

K-M plot of survivor function

• Add ticks to indicate where censoring occurred.

Comparing 2 groups

• Weeks to death or censoring (*) in **20 adults** with recurrent astrocytoma:


6	13	21	30	31*	37	38	47*	49	50	
63	79	80*	82*	82*	86	98	149	202	219	

• Weeks to death or censoring (*) in **31 adults** with recurrent glioblastoma:

10	10	12	13	14	15	16	17	18	20
24	24	25	28	30	33	34*	35	37	40
40	40*	46	48	70*	76	81	82	91	112
181									

Data reproduced from BMJ 2004; 328:1073.

K-M plot of survivor function by tumour type

 Survival chances appear better in individuals with astrocytoma than with glioblastoma, but is the difference between groups statistically significant?

Comparing 2 samples

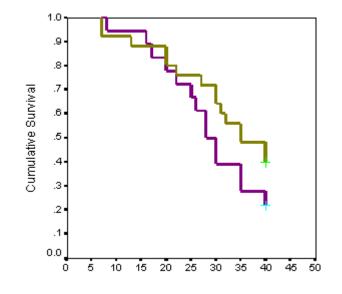
- Could compare **median survival time**, or **probability of surviving** up to any particular time.
- Better to use a test which compares survivor functions over whole follow-up period.
- Log rank test: tests null hypothesis of no difference between samples in probability of an event (death in this example) at any time point during follow-up.
- Log rank test statistic:
 - based on calculating expected number of events that would occur under null hypothesis at each event time, and comparing to observed number of events.
 - under null hypothesis has a Chi² distribution with 1 degree of freedom.

Log rank test to compare 2 groups

	Death		Death
Astro	Death (=1)	Glio	Death (=1)
6	1	10	1
13	1	10	1
21	1	10	1
30	1	12	1
31	0	13	1
37	1	15	1
38	1	15	1
47	0	10	1
49	1	18	1
50	1	20	1
63	1	20	1
79	1	24	1
80	0	24	1
82	0	23	1
82	0	30	1
86	1	33	1
98	1	34	0
149	0	35	1
202	1	37	1
219	1	40	1
		40	1
= =14	deaths	40	0
		46	1
		48	1
		70	0
		76	1
			1
			1
		91	1
		112	1
		181	1
		=2	8 death

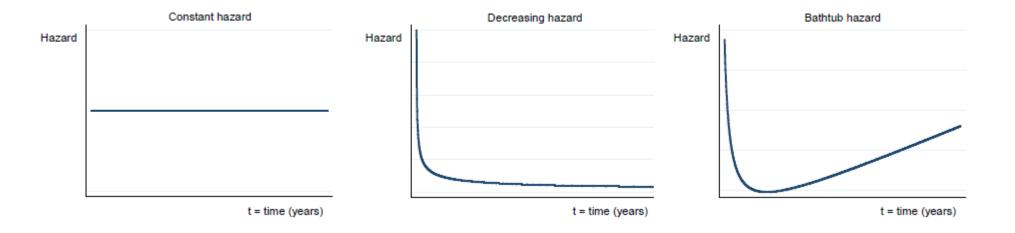
	20/51			31/51	
Week	Overall Observed Deaths	Expected Deaths – Astro	Expected Deaths - Glio	Observed Remainder – Astro	Observed Remainder – Glio
6	1/51	0.392157	0.607843	19	31
10	2/50	ø 0.76	1.24 🔍	19	29
12					
13		<u> </u>			
14	(19/5	<u>1)*2</u>		31/50)*2 🗌	
15		5) 2		. ,	
Total (E	xpected)	Sum	Sum		
Total (O	bserved)	14	28		

Log rank test statistic has a Chi² distribution:


$$Z = rac{\sum_{j=1}^J (O_{1j} - E_{1j})}{\sqrt{\sum_{j=1}^J V_j}}$$

Log rank test

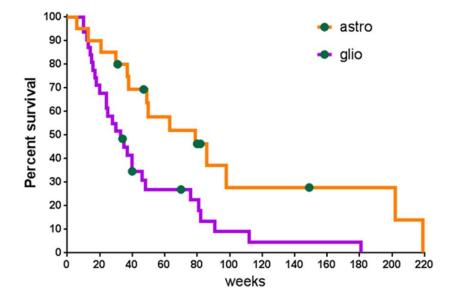
- Unlikely to detect a difference between Groups if survivor functions cross over during follow-up.
- Assumes non-informative censoring
- Can be extended to compare more than 2 groups.


<u>But</u>

- Only provides a p-value, not an estimate of size of difference between groups or a confidence interval.
 - Estimate of size of difference = Hazard Ratio

Hazard function

- **Hazard** is defined as the slope of the survival curve :a measure of how rapidly subjects are dying.
- Hazard function describes how hazard varies over time.



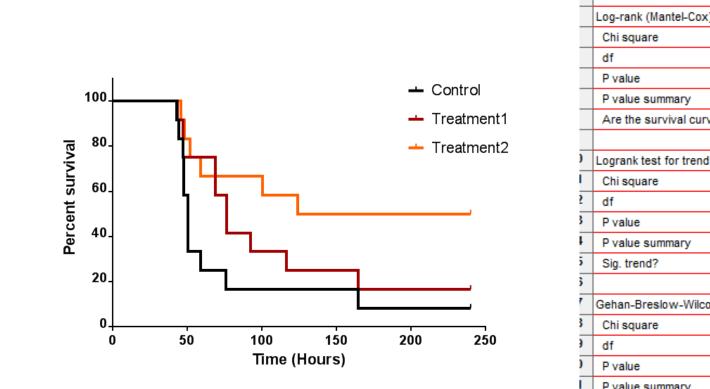
Hazard Ratio (HR) for comparing 2 samples

- Hazards may vary over time, but assume that **HR is constant over time**.
- The hazard ratio is not directly related to the ratio of median survival times.
- When comparing 2 groups (a and b):
 - observed events (deaths) in each group: Oa and Ob,
 - expected events (deaths) in each group: Ea and Eb,
 - assuming a null hypothesis of no difference in survival.
- HR= (Oa/Ea)/(Ob/Eb)
- No assumption is needed about shape of hazard functions or underlying distribution of time to event data.
- HR is obtained from **Cox regression**

Hazard Ratio (HR)

Data: tumours.xlsx

• **HR = 2.3** (95% CI [1.32;4.44])


	Survival		
Ħ	Curve comparison		
4			
	Comparison of Survival Curves		
2			
3	Log-rank (Mantel-Cox) test		
1	Chi square	7.497	
5	df	1	
5	P value	0.0062	
7	P value summary	**	
3	Are the survival curves sig different?	Yes	
)			
0	Gehan-Breslow-Wilcoxon test		
1	Chi square	5.828	
2	df	1	
3	P value	0.0158	
4	P value summary	*	
5	Are the survival curves sig different?	Yes	
6			
7	Median survival		1
8	astro	79	
9	glio	33	1
0	Ratio (and its reciprocal)	2.394	0.4177
1	95% Cl of ratio	1.26 to 4.547	0.2199 to 0.7934
2			
3	Hazard Ratio (Mantel-Haenszel)	A/B	B/A
4	Ratio (and its reciprocal)	0.4132	2.42
5	95% Cl of ratio	0.2194 to 0.7779	1.286 to 4.557
6			
7	Hazard Ratio (logrank)	A/B	B/A
8	Ratio (and its reciprocal)	0.4341	2.304
9	95% Cl of ratio	0.2367 to 0.7961	1.256 to 4.224

• At any point in time, hazard (i.e. instantaneous rate) of dying in individuals with recurrent glioblastoma is **2.3 times** higher than in individuals with recurrent astrocytoma.

Comparing more than 2 samples

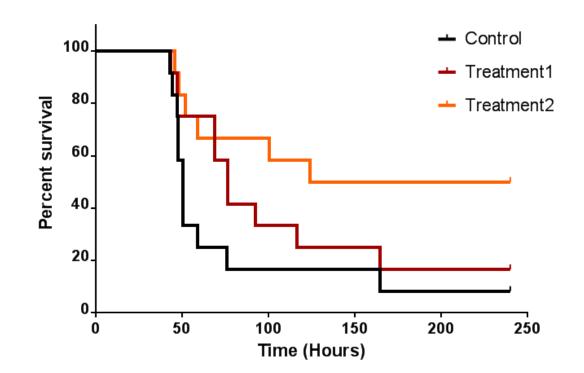
- Issue with GraphPad: cannot compare more than 2 groups directly
 - As in: does not run post-hoc pairwise comparisons
- So how do we do it?
 - <u>Step 1</u>: All groups comparisons (equivalent omnibus step in ANOVA)
 - <u>Step 2</u>: Make all pairwise comparisons of interest
 - <u>Step 3</u>: Apply Bonferroni correction
- Example dataset: Lung infection
 - Mice are infected with *Streptococcus pneumoniae*
 - 3 groups: Control, treatment 1 and treatment 2

Comparing more than 2 groups

• Step 1: All groups comparisons

1		
	Comparison of Survival Curves	
	Log-rank (Mantel-Cox) test (recommended)	
	Chi square	7.112
	df	2
	P value	0.0286
	P value summary	ż
	Are the survival curves sig different?	Yes
)	Logrank test for trend (recommended)	
I	Chi square	7.044
2	df	1
3	P value	0.0080
ł	P value summary	**
5	Sig. trend?	Yes
5		
1	Gehan-Breslow-Wilcoxon test	
3	Chi square	6.743
)	df	2
)	P value	0.0343
I	P value summary	*
2	Are the survival curves sig different?	Yes
,		1 1

 There is an overall difference in survival between the 3 groups but which group is different from which?


Comparing more than 2 groups

• <u>Step 2</u>: Make all pairwise comparisons of interest

Control	vs. T	1	Contro	ol vs. 1	ſ2	T1	vs. T2	
			4			4		
Comparison of Survival Curves			Comparison of Survival Curves			Comparison of Survival Curves		
_og-rank (Mantel-Cox) test			Log-rank (Mantel-Cox) test			Log-rank (Mantel-Cox) test		
Chi square	1.800		Chi square	6.101		Chisquare	2.214	
df	1		df	1		df	1	
P value	0.1798		P value	0.0135		P value	0.1367	
P value summary			P value summary			P value summary	0.5	
Are the survival cur Adjuste	d p-value	=0.5394	Are the surv Adjusted p	value = 0.	0405	Are the survival Adjuste	d p-value =	0.4101
Sehan-Breslow-Wilcoxon test			Gehan-Breslow-Wilcoxon test			Gehan-Breslow-Wilcoxon test		
Chi square	2.227		Chi square	5.825		Chi square	1.528	
df	1		df	1		df	1	
P value	0.1356		P value	0.0158		P value	0.2164	
P value summary	ns		P value summary	ż		P value summary	ns	
Are the survival curves sig different?	No		Are the survival curves sig different?	Yes		Are the survival curves sig differe	nt? No	
ledian survival			Median survival			Median survival		
Control	50.50		Control	50.50		Treatment1	76.50	
reatment1	76.50		Treatment2	182.0		Treatment2	182.0	
Ratio (and its reciprocal)	0.6601	1.515	Ratio (and its reciprocal)	0.2775	3.604	Ratio (and its reciprocal)	0.4203	2.379
95% Cl of ratio	0.2804 to 1.554	0.6433 to 3.567	95% Cl of ratio	0.1026 to 0.7503	1.333 to 9.745	95% Cl of ratio	0.1528 to 1.157	0.8647 to 6.54
azard Ratio (Mantel-Haenszel)	A/B	B/A	Hazard Ratio (Mantel-Haenszel)	A/C	C/A	Hazard Ratio (Mantel-Haenszel)	B/C	C/B
Ratio (and its reciprocal)	1.898	0.5270	Ratio (and its reciprocal)	3.642	0.2746	Ratio (and its reciprocal)	2.151	0.4649
95% Clofratio	0.7443 to 4.838	0.2067 to 1.344	95% Cl of ratio	1.306 to 10.16	0.09847 to 0.7658	95% Cl of ratio	0.7843 to 5.899	0.1695 to 1.27
		1 1			1			
lazard Ratio (logrank)	A/B	B/A	Hazard Ratio (logrank)	A/C	C/A	Hazard Ratio (logrank)	B/C	C/B
	A/B 1.720	B/A 0.5813	Hazard Ratio (logrank) Ratio (and its reciprocal)	A/C 3.130	C/A 0.3195	Hazard Ratio (logrank) Ratio (and its reciprocal)	B/C 2.084	C/B 0.4797

• <u>Step 3</u>: Apply Bonferroni correction: 0.05/3=0.06 or initial **p-values*3**

Comparing more than 2 groups

- At any point in time, hazard of dying in mice with lung infection is:
 - almost 2 times higher in the control than in the treatment 1 group (p=0.54)
 - 3.6 times higher in the control than in the treatment 1 group (p=0.04)