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Introduction

GraphPad Prism is a straightforward package with a user-friendly environment. There is a lot of easy-
to-access documentation and the tutorials are very good.

Graphical representation of data is pivotal when we want to present scientific results, in particular for
publications. GraphPad allows us to build top quality graphs, much better than Excel for example and
in a much more intuitive way.

In this manual, however, we are going to focus on the statistical menu of GraphPad. The data analysis
approach is much friendlier than with R for instance. R does not hold your hand all the way through the
analysis, whereas GraphPad does. On the down side, GraphPad is not as powerful as R - as in we
cannot do as many as different analyses with GraphPad as we can with R. If we are interested in linear
modelling for example, we would need to use R.

Both GraphPad and R work quite differently. Despite this, whichever program we choose we need some
basic statistical knowledge if only to design our experiments correctly, so there is no way out of it!

And don’t forget: we use stats to present our data in a comprehensible way and to make our point; this
is just a tool, so don’t hate it, use it!

“Forget about getting definitive results from a single experiment; instead embrace variation, accept
uncertainty, and learn what you can." Andrew Gelman, 2018.
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Chapter 1. sample size estimation

It's practically impossible to collect data on an entire population of interest. Instead we examine data
from a random sample to provide support for or against our hypothesis. Now the question is: how many
samples/participants/data points should we collect?

Power analysis allows us to determine the sample sizes needed to detect statistical effects with high
probability.

Experimenters often guard against false positives with statistical significance tests. After an experiment
has been run, we are concerned about falsely concluding that there is an effect when there really isn’t.
Power analysis asks the opposite question: supposing there truly is a treatment effect and we were to
run our experiment a huge number of times, how often will we get a statistically significant result?
Answering this question requires informed guesswork. We’ll have to supply guesses as to how big our
treatment effect can reasonably be for it to be biologically/clinically relevant/meaningful.

What is Power?

First, the definition of power: probability that a statistical test will reject a false null hypothesis (Ho) when
the alternative hypothesis (Hi) is true. We can also say: it is the probability of detecting a specified effect
at a specified significance level. Now ‘specified effect’ refers to the effect size which can be the result
of an experimental manipulation or the strength of a relationship between 2 variables. And this effect
size is ‘specified’ because prior to the power analysis we should have an idea of the size of the effect
we expect to see. The ‘probability of detecting’ bit refers to the ability of a test to detect an effect of a
specified size. The recommended power is 0.8 which means we have an 80% chance of detecting an
effect if one genuinely exists.

Power is defined in the context of hypothesis testing. A hypothesis (statistical) test tells us the probability
of our result (or a more extreme result) occurring, if the null hypothesis is true. If the probability is lower
than a pre-specified value (alpha, usually 0.05), it is rejected.

The null hypothesis (Ho) corresponds to the absence of effect and the aim of a statistical test is to reject
or not Ho. A test or a difference are said to be “significant” if the probability of type | error is: a =< 0.05
(max a=1). It means that the level of uncertainty of a test usually accepted is 5%.

Type | error is the incorrect rejection of a true null hypothesis (false positive). Basically, it is the
probability of thinking we have found something when it is not really there.

Type Il on the other hand, is the failure to reject a false null hypothesis (false negative), so saying there
is nothing going on whereas actually there is. There is a direct relation between Type Il error and power,
as Power =1 — 3 where 3=0.20 usually hence power = 0.8 (probability of drawing a correct conclusion
of an effect). We will go back to it in more detail later.

Below is a graphical representation of what we have covered so far. Hi is the alternative hypothesis
and the critical value is the value of the difference beyond which that difference is considered significant.


https://en.wikipedia.org/wiki/Null_hypothesis

Babrm Introduction to Statistics with GraphPad Prism 7

Bioinformatics

N critical value
>
‘0
s 51 Hp H,
©
£ &4
S
8 % - power
o
o g |
E B
g | a \\-_______
6‘0 8‘0 1(;0 1;0 M‘D 1fliﬂ 180
X
Statistical decision True state of Ho
Ho True (no effect) Ho False (effect)
Reject Ho Type | error (False Positive) o | Correct (True Positive)
Do not reject Ho Correct (True Negative) Type Il error (False Negative) B

The ability to reject the null hypothesis depends upon alpha but also the sample size: a larger sample
size leads to more accurate parameter estimates, which leads to a greater ability to find what we were
looking for. The harder we look, the more likely we are to find it. It also depends on the effect size: the
size of the effect in the population: the bigger it is, the easier it will be to find.

What is Effect Size?

Power analysis allows us to make sure that we have looked hard enough to find something interesting.
The size of the thing we are looking for is the effect size. Several methods exist for deciding what effect
size we would be interested in. Different statistical tests have different effect sizes developed for them,
however, the general principle is the same. The first step is to make sure to have preliminary knowledge
of the effect we are after. And there are different ways to go about it.

Effect size determined by substantive knowledge

One way is to identify an effect size that is meaningful i.e. biologically relevant. The estimation of such
an effect is often based on substantive knowledge. Here is a classic example: It is hypothesised that
40 year old men who drink more than three cups of coffee per day will score more highly on the Cornell
Medical Index (CMI: a self-report screening instrument used to obtain a large amount of relevant
medical and psychiatric information) than same-aged men who do not drink coffee. The CMI ranges
from 0 to 195, and previous research has shown that scores on the CMI increase by about 3.5 points
for every decade of life. Therefore, if drinking coffee caused a similar increase in CMI, it would warrant
concern, and so an effect size can be calculated based on that assumption.
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Effect size determined from previous research

Another approach is to base the estimation of an interesting effect size on previous research, see what
effect sizes other researchers studying similar fields have found. Once identified, it can be used to
estimate the sample size.

Effect size determined by conventions

Yet another approach is to use conventions. Cohen (author of several books and articles on power
analysis) has defined small, medium and large effect sizes for many types of test. These form useful
conventions, and can guide you if you know approximately how strong the effect is likely to be.

Table 1: Thresholds/Convention for interpreting effect size

Test Relevant Effect Size Threshold
effect size Small Medium Large
t-test for means d 0.2 0.5 0.8
F-test for ANOVA f 0.1 0.25 0.4
t-test for correlation r 0.1 0.3 0.5
Chi-square w 0.1 0.3 0.5
2 proportions h 0.2 0.5 0.8

Note: The rationale for these benchmarks can be found in Cohen (1988); Rosenthal (1996) later added
the classification of very large.

The graphs below give a visual representation of the effect sizes.

Power
0.53

Q3
Il

medium

8 10 12 14

Krzywinski and Altman 2013 (Nature Methods)

Below is a link to a sliding tool providing a visual approach to Cohen’s effect size:
http://rpsychologist.com/d3/cohend/



http://rpsychologist.com/d3/cohend/
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The point is sample size is always determined to detect some hypothetical difference. It takes huge
samples to detect tiny differences but tiny samples to detect huge differences, so you have to specify
the size of the effect you are trying to detect.

So how is that effect size calculated anyway?

Let’s start with an easy example. If we think about comparing 2 means, the effect size, called Cohen’s
d, is just the standardised difference between 2 groups:

[Mean of experimental group] - [Mean of control group]|
Effect Size =

Standard Deviation

The standard deviation is a measure of the spread of a set of values. Here it refers to the standard
deviation of the population from which the different treatment groups were taken. In practice, however,
this is almost never known, so it must be estimated either from the standard deviation of the control
group, or from a 'pooled' value from both groups.

McGraw and Wong (1992) have suggested a 'Common Language Effect Size' (CLES) statistic, which
they argue is readily understood by non-statisticians (shown in column 5 of Table 2). This is the
probability that a score sampled at random from one distribution will be greater than a score sampled
from another. They give the example of the heights of young adult males and females, which differ by
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an effect size of about 2, and translate this difference to a CLES of 0.92. In other words 'in 92 out of
100 blind dates among young adults, the male will be taller than the female'.

Table 2: Interpretation of Effect Size (Robert Coe, 2002)

Percentage of Probability that
control group | Rank of person in a control |you could guess
Effect | below average | group of 25 equivalentto | which group a

Probability that person from
experimental group will be
higher than person from

Size person in the average person in person was in .
, , control, if both chosen at
experimental experimental group from knowledge
) random (=CLES)
group of their 'score'.
0.0 50% 13t 0.50 0.50
0.2 58% 11t 0.54 0.56
0.5 69% gth 0.60 0.64
0.8 79% 6t 0.66 0.71
1.2 88% 3 0.73 0.80
14 92% 2nd 0.76 0.84
2.0 98% 1st 0.84 0.92

Doing power analysis

The main output of a power analysis is the estimation of a sufficient sample size. This is of pivotal
importance of course. If our sample is too big, it is a waste of resources; if it is too small, we may miss
the effect (p>0.05) which would also mean a waste of resources. On a more practical point of view,
when we write a grant, we need to justify our sample size which we can do through a power analysis.
Finally, it is all about the ethics of research, really, which is encapsulated in the UK Home office’s 3 R:
Replacement, Refinement and Reduction. The latter in particular relates directly to power calculation
as it refers to ‘methods which minimise animal use and enable researchers to obtain comparable levels
of information from fewer animals’ (NC3Rs website).

When should we run a power analysis? It depends on what we expect from it: the most common output
being the sample size, we should run it before doing the actual experiment (a priori analysis). The
correct sequence from hypothesis to results should be:
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Hypothesis

Experimental design
Choice of a Statistical test

Power analysis

Sample size

\

Experiment(s)
(Stat) analysis of the results

Practically, the power analysis depends on the relationship between 6 variables: the significance level,
the desired power, the difference of biological interest, the standard deviation (together they make up
for the effect size), the alternative hypothesis and the sample size. The significance level is about the
p-value (a =< 0.05), the desired power, as mentioned earlier is usually 80% and we already discussed
effect size.

Now the alternative hypothesis is about choosing between one and 2-sided tests (= one and 2-tailed
tests). This is both a theoretical and a practical issue and it is worth spending a bit of time reflecting on
it as it can help understanding this whole idea of power.

We saw before that the bigger the effect size, the bigger the power as in the bigger the probability of
picking up a difference.

Going back to one-tailed vs. 2-tailed tests, often there are two alternatives to Ho, and two ways the data
could be different from what we expect given Ho, but we are only interested in one of them. This will
influence the way we calculate p. For example, imagine a test finding out about the length of eels. We
have 2 groups of eels and for one group, say Group 1, we know the mean and standard deviation, for
eels length. We can then ask two different questions. First question: ‘What is the probability of eels in
Group 2 having a different length to the ones in Group 1?’ This is called a two-tailed test, as we'd
calculate p by looking at the area under both ‘tails’ of the normal curve (See graph below).

And second question: ‘What is the probability of eels in Group 2 being longer than eels in Group 17’
This is a one-tailed test, as we’d calculate p by looking at the area under only one end of the normal
curve. The one-tailed p is just one half of the two-tailed p-value. In order to use a one-tailed test we
must be only interested in one of two possible cases, and be able specify which in advance.

Two-Tailed Versus One-Tailed Hyphothesis Tests

Figure A: Figure B:
Two-Tailed Test One-Tailed Test
(Left-Tailed Test)

5.0%




probability

probability
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If you can reasonably predict the direction of an effect, based on a scientific hypothesis, a 1-tailed test
is more powerful than a 2-tailed test. However, it is not always rigidly applied so be cautious when 1-
tailed tests are reported, especially when accompanied by marginally-significant results! And reviewers
are usually very suspicious about them.

So far we have discussed 5 out of the 6 variables involved in power analysis: the effect size (difference
of biological interest + the standard deviation), the significance level, the desired power and the
alternative hypothesis. We are left with the variable that we are actually after when we run a power
analysis: the sample size.

To start with, we saw that the sample size is related to power but how does it work? It is best explained
graphically.

The graph below on the left shows what happens with a sample of n=50, the one of the right what
happens with a bigger sample (n=270). The standard deviation of the sampling distribution (= SEM so
standard error of the mean) decreases as N increases. This has the effect of reducing the overlap
between the Ho and Hz distributions. Since in reality it is difficult to reduce the variability inherent in data,
or the contrast between means, the most effective way of improving power is to increase the sample
size.

0.18
— - - 0.06
2'1; Probability distribution under Ho: sample size 50 0.05 Probability distribution under Ho: sample size 270
01 erved resul o £ 004 Opsarved resultmustbein Observed result must be in
0.08 bserved result must be in bserved result must be in Z this range o be this range to be
this range to be this range to be S 003 g d
0.06 significant significant £ significant significant
S o0z
0.04 = } | d
0.02 0.01 4/ ) l
0+ 0
o 10z 30 40 S0 60 70 B0 S0 100 T 10 20 30 4 S0 60 70 80 S0 100
X X
0.16
N = 50; true value = 40 0.06
0144 7
A significant result only e
0.12 21% of the time! 005 1! !
=
0.1 = 0047 N=270:true value = 40
0.08 < 003 A significant result 90%
0.06 ,’g: : of the time! n=7 0.84
0.04 g o002
0.02 0.01
0 =, . 8 10 12 14
0 10 20 0 40 50 60 70 80 90 100 0 10 20 0 40 50 60 2 80 a0 100
X

Krzywinski and Altman 2013 (Nature Methods)

So the bigger the sample, the bigger the power and the higher the probability to detect the effect size
we are after.

The problem with overpower

As we saw, power and effect size are linked so that the bigger the power the smaller the effect size that
can be detected, as in associated with a significant p-value. The problem is that there is such a thing
as overpower. Studies or experiments which produce thousand or hundreds of thousands of data, when
statistically analysed will pretty much always generate very low p-values even when the effect size is
minuscule. There is nothing wrong with the stats, what matters here is the interpretation of the results.
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When the sample size is able to detect differences much finer than the expected effect size, a difference
that is correctly statistically distinct is not practically meaningful (and from the perspective of the "end-
user" this is effectively a "false positive" even if it's not a statistical one). Beyond the ethical issues
associated with overpower, it all comes back to the importance of having in mind a meaningful effect
size before running the experiments.

Sample size (n): biological vs. technical replicates
(=repeats)

When thinking about sample size, it is very important to consider the difference between technical and
biological replicates. For example, technical replicates involve taking several samples from one tube
and analysing it across multiple conditions. Biological replicates are different samples measured across
multiple conditions. When the experimental unit is an animal, it is pretty easy to make the distinction
between the 2 types of replicates.

Technical Biological

2 3338
ﬁ n=1 n=3

To run proper statistical tests so that we can make proper inference from sample to general population,
we need biological samples. Staying with mice, if we randomly select one white and one grey mouse
and measure their weights, we will not be able to draw any conclusions about whether grey mice are,
say, heavier in general. This is because we only have two biological samples.
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If we repeat the measurements, let’'s say we weigh each mouse five times then we will have ten different
measurements. But this cannot be used to prove that grey mice are heavier than white mice in general,
we still have only looked at one white and one grey mouse. Using the terminology above, the five
measurements of each mouse are technical replicates.

What we need to do is to select five different white mice and five different grey mice. Then we would
have more than two biological samples and be able to say if there is a statistical difference between
white and grey mice in general.

So the concept of biological replicates is quite easy to understand when dealing with animals. But what
is "n" in cell culture experiments?

(The examples below are extracts from Statistics for Experimental Biologists)

One of the difficulties in analyzing cell culture experiments is determining what the experimental unit is,
or what counts as a replicate, or "n". This is easy when cells are derived from different individuals, for
example if a blood sample is taken from 20 individuals, and ten serve as a control group while the other
ten are the treated group. It is clear that each person is a biological replicate and the blood samples are
independent of each other, so the sample size is 20. However, when cell lines are used, there isn't any
biological replication, only technical replication, and it is important to have this replication at the right
level in order to have valid inferences. The examples below will mainly discuss the use of cell lines. In
the figures, the tubes represent a vial of frozen cells, the dishes could be separate flasks, separate
culture dishes, or different wells in a plate, and represent cells in culture and the point at which the
treatment is applied. The flat rectangular objects could represent glass slides, microarrays, lanes in a
gel, or wells in a plate, etc. and are the point at which something gets measured. The control groups
are grey and the treated groups are red.

Design 1: As bad as it can get

In this experiment a single vial is thawed, cells are divided into two culture dishes and the treatment
(red) is randomly applied to one of the two dishes. The cells are allowed to grow for a period of time,
and then three samples are pipetted from each dish onto glass slides, and the number of cells are
counted (yes there are better ways to count cells, the main point is that from each glass slide we get
just one value, in this case the total number of cells). So after the quantification, there are six values--
the number of cells on the three control and three treated slides. So what is the sample size--there was
one vial, two culture dishes, and six glass slides?

/N
= -
/N /N

Vi

The answer, which will surprise some people, is one, and most certainly not six. The reason for this has
to do with the lack of independence between the three glass slides within each condition. A non-
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laboratory example will clarify why. Suppose | want to know if people gain weight over the Christmas
holidays, so | find one volunteer and measure their weight three times on the morning of Dec 20th
(within a few minutes of each other). Then, on the morning of Jan 3rd | measure this same person's
weight three times. So | have six data points in total, and | can calculate means, SEMs, 95%Cls, and
can even do a t-test. But with these six values, can | address the research question? No, because the
research question was do people gain weight over the holidays, but | have observations on only one
person, and taking more and more observations on this single person will not enable me to make better
estimates of weight changes in people. The key point is that the variability from slide-to-slide within a
condition is only pipetting error (just like measuring someone's weight three times within a few minutes
of each other), and therefore those values do not constitute a sample size of three in each condition.

Design 2: Marginally better, but still not good enough

In this modified experiment, the vial of cells is divided into six separate culture dishes, and then cells
from each culture dish are pipetted onto a single glass slide. Similar to the previous experiment, there
are six values after quantifying the number of cells on each slide. So now is the sample size six?
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Unfortunately not, because even though the cells were grown in separate dishes, they are not really
independent because they were all processed on the same day, they were all sitting in the same
medium, they were all kept in the same incubator at the same time, etc. Cells in two culture dishes from
the same stock and processed identically do not become fully independent just because a bit of plastic
has been placed between them. However, one might expect some more variability within the groups
compared to the first design because the samples were split higher up in the hierarchy, but this is not
enough to ensure the validity of the statistical test. To keep with the weight gain analogy, you can think
of this as measuring a person's weight in the morning, afternoon, and evening on the same day, rather
than taking measurements a few minutes apart. The three measurements are likely to be a bit more
variable, but still highly correlated.

Design 3: Often, as good as it can get

In this design, a vial of cells is thawed, divided in two culture dishes, and then eventually one sample
from each dish is pipetted onto a glass slide. The main (and key) difference is that the whole procedure
is repeated three separate times. Here, they are listed as Day 1, 2, and 3, but they need not be
consecutive days and could be weeks or even months apart. This is where independence gets
introduced, even though the same starting material is used (i.e. same cell line), the whole procedure is
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done at one time, and then repeated at another time, and then a third time. There are still six numbers
that we get out of the experiment, but the variability now includes the variability of doing the experiment
more than once. Note that this is still technical variability, but it is done at the highest level in the
hierarchy, and the results of one day are (mostly) independent of the results of another day. And what
is the sample size now?

Da}rl Day2 Day3

5 5 S
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The "independent" aspect of the experiment are the days, and so n = 3. Note, that the two glass slides
from the same day can (and should) be treated as paired observations, and so it is the difference
between treated and control within each day that is of interest (a paired-samples t-test could be used).
An important technical point is that these three replications should be made as independent as possible.
This means that it is better to complete the first experiment before starting the second. For example, if
the cells will be grown in culture for a week, it is better to do everything over three weeks rather than
starting the first experiment on a Monday, the next on Tuesday, and the third on Wednesday. If the
three experiments are mostly done in parallel, they will not be as independent as when done back-to-
back. Ideally, different media should be made up for each experiment, but this is where reality often
places constraints on what is statistically optimal.

Continuing with the weight-gain example, this design is similar to measuring a person's weight before
and after the holidays over three consecutive years. This is still not ideal for answering the research
question (which was determining whether people gain weight over the holidays), but if we have only
one volunteer at our disposal then this is the best we can do. But now at least we can see whether the
phenomenon is reproducible over multiple years, which will give us a bit more confidence that the
phenomenon is real. We still don't know about other people, and the best we could do was repeated
experiments on this one person.

Design 4: The ideal design

Like many ideals, the ideal experiment is often impossible to attain. With cell lines, there are no
biological replicates, and so Design 3 is the best that can be done. The ideal design would have
biological replicates (i.e. cells from multiple people or animals), and in this case the experiment need
only be done once. | hope it is now clear (and after reading the two references) why Design 1 and
Design 2 do not provide any reason to believe that the results will be reproducible. Some people may
object that it is a weak analogy, and say that they are only interested in whether compound X increases
phosphorylation of protein Y, and are not interested in other proteins, other compounds, other cell lines,
etc., and so Design 1 or 2 are sufficient. Unfortunately, this is not the case and it has to do with lack of
independence, which is a fundamental assumption of the statistical analysis (see Lazic, 2010 and
references therein). But even if you don't appreciate the statistical arguments, this analogy might help:
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if you claim to be a superstar archer and hit the bullseye to prove it, this is certainly evidence that you
have some skill, but let's see if you can do it three times in a row.

person/animal/plant 1 person/animal/plant 2 person/animal/plant 3
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== = ==
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Replication at multiple levels

The analysis of such cell culture experiments in many published studies is inappropriate, even if there
were replicate experiments. You will probably have noticed the hierarchical nature of the data: the
experiment can be conducted on multiple days, there can be replications of cell cultures within days,
there can be replications of more than one glass slide per culture dish, and often multiple measurements
within each glass slide can be taken (in this example the total number of cells was measured, but the
soma size of 20 randomly selected cells on each glass slide could have been measured, which would
give many more data points). This hierarchical structure needs to be respected during the analysis,
either by using a hierarchical model (also known as a mixed-effects or multi-level model) or by averaging
the lower level values (see Lazic, 2010). Note that it is NOT appropriate to simply enter all of the
numbers into a statistics program and run a simple t-test or ANOVA. It is really important to remember
that you should never mix biological and technical replicates.

Two more things to note. First, it is possible to have replication at multiple levels. In the previous
examples, replication was only introduced at one level at a time to illustrate the concepts. However, it
is often of interest to know at which level most of the variation comes from, as this will aid in designing
future experiments. Cost considerations are also important, if samples are difficult to obtain (e.g. rare
clinical samples) then technical replication can give more precise estimates for those precious few
samples. However, if the samples are easy to get and/or inexpensive, and you want to do a microarray
study (substituting expensive arrays for the glass slides in the previous examples), then there is little
point in having technical replicates and it is better to increase the number of biological replicates.
Second, if you want to increase the power of the analysis, you need to replicate the "days", not the
number of culture dishes within days, or the number of glass slides within a culture dish, or the number
of cells on a slide. Alternatively, if biological replicates are available, increasing these will increase
power, but not more technical replicates.



Babrm Introduction to Statistics with GraphPad Prism 18

Bioinformatics

Going back to the basic idea behind the power analysis that if you fix any five of the variables, a
mathematical relationship can be used to estimate the sixth. The variables are all linked and will vary
as shown in the following diagram.

Effect sizei Standard deviationT

\ /

Sample sizeT

RN

Significance levell Power 2-sided test (T)

Now here is the good news, there are packages that can do the power analysis for us ... providing of
course we have some prior knowledge of the key parameters.

We are going to go through 2 examples of power calculations:
- Comparing 2 proportions
- Comparing 2 means



Babrm Introduction to Statistics with GraphPad Prism 19

Bioinformatics

Examples of power calculation

We have previously mainly mentioned quantitative variables but it is also possible to think about power
in the context of qualitative variable. All statistical tests, regardless of the type of outcome variables
they are dealing with, are associated with a measure of power. Statistics are about confidence in the
inferential potential of the results of an experiment so when comparing 2 proportions the question
becomes: What makes me believe that 35% is different from 50%? The answer is: a sample big enough,
and the ‘big enough’ is estimated by a power analysis. What makes me believe that 35% is statistically
different from 45%7? The answer is: a bigger sample!

There are many free resources available to help with sample size estimation. We are going to use
G*Power which is a reasonably friendly package.

Comparing 2 proportions

(Data from: http://www.sciencealert.com/scientists-are-painting-eyes-on-cows-butts-to-stop-lions-

getting-shot)

Scientists have come up with a solution that will reduce the number of lions being shot by farmers in
Africa - painting eyes on the butts of cows. It sounds a little crazy, but early trials suggest that lions are
less likely to attack livestock when they think they’re being watched - and fewer livestock attacks could
help farmers and lions co-exist more peacefully.

Pilot study over 6 weeks: 3 out of 39 unpainted cows were killed by lions, none of the 23 painted cows
from the same herd were Kkilled.

¢ Do you think the observed effect is meaningful to the extent that such a ‘treatment’ should be
applied? Consider ethics, economics, conservation ...
e Run a power calculation to find out how many cows should be included in the study.

Using G*Power, we need to follow 4 steps.

First step: we need to choose a Test family. We are going to use a Fisher’s exact test on the cow data
so we pick the ‘Exact’ family. As part of the experimental design, we have chosen a statistical test,
which means that when the time comes to run a power calculation, we know which test we are going to
use.


http://www.sciencealert.com/scientists-are-painting-eyes-on-cows-butts-to-stop-lions-getting-shot
http://www.sciencealert.com/scientists-are-painting-eyes-on-cows-butts-to-stop-lions-getting-shot
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iy GPower 3.13 =L
File Edit View Tests Caleulstor Help
Central and noncentral distritutions hmnin(puﬂdlll]ﬁr_'s.

Example case:
0 cows killed in the painted group

versus 3 out 39.

 Test family Statistical test
- Exact - [cemwwn:mﬂm normal model ']
-, =
Frests patvts
ttests fte required sample size - given o, power, and effect size v|
X tests
- — Output Parameters
Tailis) | One X Lower critical r ?
Determine =3 | Correlation o H1 03 Upper eritical r ?
o err prob 0.05 Total sample size 7
Pawer (1-p err prob) 0.95 Actual power 7
Correlation p HO o

Stepl: choice of Test family

-
—

Second step: we choose the actual test. Again, that choice should have been made at the experimental
design stage.

-
¥ G*Power 3.1.3 e “
File Edit View Tests Calculator Help

| Central and noncentral distributions Protocol of power analyses

Step 2 : choice of Statistical test

~ Test family Statistical test
| Exact - Correlation: Bivariate normal -
Correlation: Bivariate normal model

Type of power analy Linear regression: R model

> [A priori: Compute r Proportion: Difference from constant (binomial test, one sample case)
Proportions: Inequality, two dependent groups (Mch

= IR T 7B Croportions: Inequality, two independent groups (Fisher's exact test)
Proportions: lity, two dent groupg i
Proportions: Inequality (offset), two indepeng€ht groups (unconditional)
Coi Proportion: Sign test (binomial test)
+ Generic binomial test
& proD Uv
-

Power (1-B err prob) Actual power ?

Correlation p HO

Fisher’s exact|test or Chi-square for 2x2 tables

X-Y plot for a range of values Calculate
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Then, step 3, we choose the type of power analysis we want to run. Pretty much always, we will go for
the default choice: A priori: as we will want to compute the required sample size, given a, power and

effect size.

i

-
g G*Power 3.13
File Edit View Tests Calculator Help

Central and noncentral distributions | Protocol of power analyses

Step 3: Type of power analysis

Test family Statistical test
. Exact '} lProportions: Inequality, two independent groups (Fisher's exact test) Y
[ Type of power analysis
> Compromise: Compute implied o & power - given B/ ratio, sample size, and effect size
Criterion: Compute required o - given power, effect size, and sample size
Post hoc: Compute achieved power - given &, sample size, and effect size
Sensitivity: Compute required effect size - given &, power, and sample size
Proportion p2 0.6 Total sample size 2
o err prob 0.05 Actual power ?
Power (1~ err prob) 0.95 Actual o« ?

Allocation ratio N2/N1 1

X~Y plot for a range of values Calculate

Finally, the last bit is the more difficult one. We need to have/find reliable information about the data we
are going to analyse. Luckily, in our case, we have data from a preliminary study.
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f % G*Power 3.1.92 =a =
File Edit View Tests Calculator Help
Central and noncentral distributions. m
Step 4: Choice of Parameters
Tricky bit: need information on the size of the
difference and the variability.
Test family Statistical test
[E"’" '] [ P : Inequality, two independent groups (Fisher's exact test) v]

Type of power analysis

IA priori: Compute required sample size - given «, power, and effect size

Input Parameters

Proportion p1 0.077

Proportion p2 ]

o err prob 0.05

> Power (1-B err prob) 0.8
-

Allocation ratio N2/N1 1

~ Options

Output Parameters
Sample size group 1

Sample size group 2
Total sample size
Actual power

Actual o

X-Y plot for a range of values

We hit ‘Calculate’ and:

i G*Power 3192 =1
File Edit View Tests Calculator Help
Central and noncentral distributions | Protocol of power analyses
Exact — Proportions: Inequality, two independent groups (Fisher's exact test) -
Options: Exact distribution
Analysis: A priori: Compute required sample size
Input: Tail(s) = Two
Proportion pl = 0.077
Proportion p2 =0 =
o err prob = 0.05 L
Power (1=§ err prob) = 0.8 1
Allocation ratio N2 /N1 =1
output: sample size group 1 = 102 LS
Sample size group 2 = 102
Total sample size = 204 e
[ — mn — ] »
Test family Statistical tast
IF_xact v] Ilrn_,_ quality, two independent groups (Fisher's exact test) -
Type of power analysis
[A priori: Compute required sample size - given o, power, and effect size =)
Input Parameaters Output Parameters
Tail(s) | Two - Sample size group 1
Proportion p1 0.077 Sample size group 2
Proportion p2 1] Total sample size 204
o e prob 0.05 Actual power 0.8060031
Power (1- err prob) 0.8 Actual o o
Allocation ratio N2 /N1 1

Options | X-¥ plot for a range of values

| I Calculate
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To be able to pick such a difference between the 2 groups, as in to reach significance, we will need
about 102 cows in each group. In other words: if we want to be at least 80% confident to spot a treatment
effect, if indeed there is one, we will need a bit more than 200 cows altogether.

Always remember, power calculations are guessing exercises, the sample sizes found are never
absolute. Our data might show an effect a bit bigger © or smaller ® than expected. By doing a power
calculation, providing the effect size we are after is meaningful, we want to know if we can afford to run
the experiment. Afford in all possible ways: money, time, space ... and ethically. In our case here, we
wanted to know how many-ish animals were needed: 100-ish happens to be OK but if it had been 1000-
ish, maybe the cost-benefit of the experiment would not have been worth it.

One last thing: be careful with small samples sizes. If our power calculation tells you that we need n=3
or 4, try to add one or 2 experimental units if possible. With n=3, we cannot afford any mistakes, so if

something goes wrong with one of our animals for instance, we will end up with n=2 and be in trouble
statswise.

Comparing 2 means

(Data from Discovering Stats with SPSS’ by Andy Field)

Pilot study: 10 arachnophobes were asked to perform 2 tasks:
Task 1: Groupl (n=5): to play with a big hairy tarantula spider with big fangs and an evil look in its eight
eyes.

Task 2: Group 2 (n=5): to look only at pictures of the same hairy tarantula. Picture  Real Spider
25 45
Anxiety scores were measured for each group (0 to 100). 35 40
e Use the data to calculate the values for a power calculation. 45 55
e Run a power calculation to find out how many subjects should be 40 33
included in the study. 50 62
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24

p
% G*Power 3.1.9.2

[ESIE—S)

File Edit View Tests Calculator Help

Central and noncentral distributions | Protocol of power analyses

critical t = 2.10092

Test family Statistical test

[( tests '] [Means: Difference between two independent means (two groups)

Type of power analysis

IA priori: Compute required sample size - given «, power, and effect size

7]

Input Parameters Qutput Parameters

Noncentrality parameter &

Effectsized  1.3422517 Critical t
o err prob 0.05 Df

Power (1-B err prob) 0.8 Sample size group 1

Allocation ratio N2/N1 1 Sample size group 2

Total sample size

Actual power

3.0013660
2.1009220
18
10
10
20
0.8100566

X-Y plot for a range of values

I [ Calculate ]

nl 1= n2
Mean group 1 0
Mean group 2 1

SD o within each group 0.5
Q nl =n2
Mean group 1 39
Mean group 2 52
SD o group 1 9.62
SD o group 2 9.75
Effectsized  1.342252
[ Calculate and transfer to main window ]

Unequal sample sizes

So far we have only considered balanced design as in groups of equal sizes. However, more often than
not, scientists have to deal with unequal sample sizes for a wide variety of reasons. The problem is that
there is not a simple trade-off as in if one needs 2 groups of 30 for a particular comparison, going for

20 and 40 will be associated with decreased power.

The best approach is to run the power calculation based on a balanced design and then apply a
correction. The tricky bit is that we need to have an idea of the unbalance and express it as a ratio (k)

of the 2 sample sizes.

The formula to correct for unbalanced design is then quite simple.

With k, the ratio of the samples sizes in the 2 groups after adjustment (=n1/n2)

N 2n(1+k)”
4k
N
n=——
(1+k)
kN

n =———
© (+k)



Babrm Introduction to Statistics with GraphPad Prism 25

Bioinformatics

Power calculation for non-parametric tests

Nonparametric tests are used when we are not willing to assume that our data come from a Gaussian
distribution. Commonly used nonparametric tests are based on ranking values from low to high, and
then looking at the distribution of sum-of-ranks between groups.

Now if we want to run a proper power calculation for non-parametric tests, we need to specify which
kind of distribution we are dealing with. This would imply a more advanced approach to the data and it
is not the purpose of this manual.

But if we don’t know the shape of the underlying distribution, we cannot do proper sample size
calculation. So we have a problem here.

Fortunately, there is a way to have a rough idea of the sample size needed. First of all, non-parametric
tests are usually said to be less powerful than their parametric counterparts. It is not always true and
depending on the nature of the distribution, the non-parametric tests might actually require fewer
subjects. And when they need more, they never require more than 15% additional subjects providing
these 2 assumptions are true: we are looking at reasonably high numbers of subjects (say at least n=30)
and the distribution is not too unusual.

So the rule of thumb is: if we plan to use a nonparametric test, we compute the sample size required
for a parametric test and add 15%.
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Chapter 2: Some key concepts
A bit of theory: the null hypothesis and the error types.

The null hypothesis (Ho) corresponds to the absence of effect (e.g.: the animals rewarded by food are
as likely to line dance as the ones rewarded by affection) and the aim of a statistical test is to accept or
to reject Ho. As mentioned earlier, traditionally, a test or a difference are said to be “significant” if the
probability of type | error is: a =< 0.05 (max a=1). It means that the level of uncertainty of a test usually
accepted is 5%. It also means that there is a probability of 5% that we may be wrong when we say that
our 2 means are different, for instance, or we can say that when we see an effect we want to be at least
95% confident that something is significantly happening.

Statistical decision True state of Ho
Ho True (no effect) Ho False (effect)
Reject Ho Type | error (False Positive) Correct (True Positive)
Do not reject Ho Correct (True Negative) Type Il error (False Negative)

Tip: if our p-value is between 5% and 10% (0.05 and 0.10), | would not reject it too fast. It is often worth
putting this result into perspective and ask ourselves a few questions like:

- what the literature says about what am | looking at?

- what if | had a bigger sample?

- have I run other tests on similar data and were they significant or not?

The interpretation of a border line result can be difficult so it is important to look at the whole picture.
The specificity and the sensitivity of a test are closely related to Type | and Type Il errors.

Specificity = Number of True Negatives / (Number of False Positives + Number of True Negatives). A
test with a high specificity has a low type | error rate.

Sensitivity = Number of True Positives / (Number of False Negatives + Number of True Positives). A
test with a high sensitivity has a low type Il error rate.


http://en.wikipedia.org/wiki/Type_I_and_type_II_errors
http://en.wikipedia.org/wiki/Type_I_and_type_II_errors
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A bit of theory: Statistical inference

This is such an obvious concept that people tend to forget about it. The whole point of looking at a
sample of data and analysing it is because we assume that that sample is a fair representation of the
population it is coming from. As such, the findings from the sample can be inferred to that population,
they can be generalised.

With that in mind, if we observe a difference between 2 groups in our sample, we get excited because
we think that what we are observing can be what is happening in the general population, as in ‘for real’.
Now when we observe a difference, we get excited if that difference is meaningful or, rather, we should.
We should only get excited by a difference which is biologically relevant in the context of our study, and
not by any difference.

So, let’s say that the difference is meaningful, the next question is: is it real? And for that we need to
apply a statistical test, which will allow us to quantify the confidence we have in our difference. All
statistical tests produce a statistic (e.g. t-value, F ...) and statistics are all about the difference observed
but also about the variability of the data (the noise) and the sample size. We need all three to know how
confident we are, to be able to infer from our sample to the population.

Then the final question is: is the statistic big enough? Because it will almost never be 0, there will always
be a difference, but when does this difference start to be real, meaningful, significant? Statistical tests
allow us to draw a line, the critical value, beyond which the result is significant, the difference is real.

@ Statistical Inference —
[ Difference HMeaningful? i)

¥

[ Statistical test ]
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The signal-to-noise ratio

[ Difference ] Si qn al

Statistics are all about understanding and controlling variation. In pretty much all quantitative tests, the
statistic is a variation on the theme of the so-called signal-to-noise ratio, in effect the difference over the
variability. We want this ratio to be as big as possible because if the noise is low then the signal is
detectable but if the noise (i.e. inter-individual variation) is large then the same signal will not be
detected. So in a statistical test, the signal-to-noise ratio determines the significance.

+ Noise >
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Chapter 3: Descriptive statistics

When it comes to quantitative data, a lot of tests are available but assumptions must be met before
applying them. In fact, there are 2 types of statistical tests: parametric and non-parametric ones.
Parametric tests have 4 assumptions that must be met for the tests to be accurate. Non-parametric
tests are based on ranks and they make few or no assumptions about population parameters like
normality (e.g. Mann-Whitney test).

3-1 A bit of theory: descriptive stats

The median: The median is the value exactly in the middle of an ordered set of numbers.

Example 1: 18 27 34 52 54 59 68 82 85 87 91 93 100, Median = 68
Example 2: 18 27 27 34 52 52 59 61 68 68 85 85 85 90, Median = 60

The mean (or average) p = average of all values in a column

It can be considered as a model because it summarises the data.

- Example: number of friends of each member of a group of 5 lecturers: 1, 2, 3, 3 and 4

Mean: (1+2+3+3+4)/5 = 2.6 friends per lecturer: clearly a hypothetical value!

Now if the values were: 1, 1, 1, 1 and 9 the mean would also be 2.6 but clearly it would not give an
accurate picture of the data. So, how can we know that it is an accurate model? We look at the difference
between the real data and our model. To do so, we calculate the difference between the real data and
the model created and we make the sum so that we get the total error (or sum of differences).

5

+1.4

@

?—H ).4 ?+ﬂ.4

Number of Friends
o
e
o
@

>(xi-u) =(-1.6) + (-0.6) + (0.4) + (0.4) + (1.4) =0  And we get no errors !

Of course: positive and negative differences cancel each other out. So to avoid the problem of the
direction of the error, we can square the differences and instead of sum of errors, we get the Sum of
Squared errors (SS).

- In our example: SS = (-1.6)? + (-0.6)? + (0.4)? + (0.4)?> + (1.4)? =5.20
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This SS gives a good measure of the accuracy of the model but it is dependent upon the amount of
data: the more data, the higher the SS. The solution is to divide the SS by the number of observations
(N). As we are interested in measuring the error in the sample to estimate the one in the population, we
divide the SS by N-1 instead of N and we get the variance (S?) = SS/N-1

- In our example: Variance (S?) =5.20/4=1.3

Why N-1 instead N?

If we take a sample of 4 scores in a population they are free to vary but if we use this sample to calculate
the variance, we have to use the mean of the sample as an estimate of the mean of the population. To
do that we have to hold one parameter constant.

- Example: mean of the sample is 10
We assume that the mean of the population from which the sample has been collected is also 10. If we
want to calculate the variance, we must keep this value constant which means that the 4 scores cannot

vary freely:
- If the values are 9, 8, 11 and 12 (mean = 10) and if we change 3 of these values to 7, 15 and

8 then the final value must be 10 to keep the mean constant.
If we hold 1 parameter constant, we have to use N-1 instead of N. It is the idea behind the degree of

freedom: one less than the sample size.

The Standard Deviation (SD)

The problem with the variance is that it is measured in squared units which is not very nice to
manipulate. So for more convenience, the square root of the variance is taken to obtain a measure in
the same unit as the original measure: the standard deviation.

- S.D. = J(SS/N-1) = V(S2), in our example: S.D. = V(1.3) = 1.14
So you would present your mean as follows: p = 2.6 +/- 1.14 friends.

The standard deviation is a measure of how well the mean represents the data or how much our data
are scattered around the mean.

- small S.D.: data close to the mean: mean is a good fit of the data (graph on the left)
- large S.D.: data distant from the mean: mean is not an accurate representation (graph on the right)

-]
-]
|

Standard Deviation = 0.55 Standard Deviation = 1.82

sl ' 5 @
& =
a2 4 B a (=]

=3

g §
3 | %
2a 3 ] <] g3
= LD T T e e Ve g1 - A —
3 B
é ] @ [} 5" ] -3

! 1 @ @

0t a

(] 1 2 3 4 B -] (1] 1 2 3 4 L
Lecturs Lacture




Babrm Introduction to Statistics with GraphPad Prism 31

Bioinformatics

Standard Deviation vs. Standard Error

Many scientists are confused about the difference between the standard deviation (S.D.) and the
standard error of the mean (S.E.M. = S.D./VN).

- The S.D. (graph on the left) quantifies the scatter of the data and increasing the size of the sample
does not decrease the scatter (above a certain threshold).

- The S.E.M. (graph on the right) quantifies how accurately we know the true population mean, it's a
measure of how much we expect sample means to vary. So the S.E.M. gets smaller as our samples
get larger: the mean of a large sampile is likely to be closer to the true mean than is the mean of a small
sample.
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A big S.E.M. means that there is a lot of variability between the means of different samples and that our
sample might not be representative of the population.

A small S.E.M. means that most samples means are similar to the population mean and so our sample
is likely to be an accurate representation of the population.

Which one to choose?

- If the scatter is caused by biological variability, it is important to show the variation. So it is more
appropriate to report the S.D. rather than the S.E.M. Even better, we can show in a graph all data points,
or perhaps report the largest and smallest value.

- If we are using an in vitro system with theoretically very little biological variability, the scatter can only
result from experimental imprecision (no biological meaning). It is more sensible then to report the
S.E.M. since the S.D. is less useful here. The S.E.M. gives the readers a sense of how well we have
determined the mean.

Choosing between SD and SEM also depends on what we want to show. If we just want to present our
data on a descriptive purpose then we go for the SD. If we want the reader to be able to infer an idea
of significance then you should go for the SEM or the Confidence Interval (see below). We will go into
a bit more detail later.

Confidence interval

The confidence interval quantifies the uncertainty in measurement. The mean we calculate from our
sample of data points depends on which values we happened to sample. Therefore, the mean we
calculate is unlikely to equal the true population mean. The size of the likely discrepancy depends on
the variability of the values and the sample size. If we combine those together, we can calculate a 95%
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confidence interval (95% CI), which is a range of values. If the population is normal (or nearly so), there

is a 95% chance that the confidence interval contains the true population mean.
95% of observations in a normal distribution lie within +/- 1.96*SE

One other way to look at error bars:

150+ - -
. 95% Cl . 95% Cl Seee® 95% ClI
100 o° l { %2 I - m x
L L
- [ 3 .
50+ N=5 - =10 - N=150
0

Error bars Type Description

Standard deviation (SD) Descriptive Typical or average difference
between the data points and
their mean.

Standard error (SEM) Inferential A measure of how variable the
mean will be, if you repeat the
whole study many times.

Confidence interval  (Cl), | Inferential A range of values you can be

usually 95% CiI 95% confident contains the
true mean.

From Geoff Cumming et al. 2007

If we want to compare experimental results, it could be more appropriate to show inferential error bars
such as SE or Cl rather than SD. If we want to describe our sample, for instance its normality, then the
SD would be the one to choose.

However, if n is very small (for example n=3), rather than showing error bars and statistics, it is better
to simply plot the individual data points.

Standard Error(SE) (Inferential)

Q's between populations: Are they “different”?
-

P ’Z(V‘V’z ' :, tﬂ sD
SD e i:t SE= ﬁ

Standard Deviation(SD) (Descriptive)
Q's w/n a population: /s this "normal"?

y-axis
y-axis
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SE gap ~ 4.5 n=3

SE gap ~ 2 n=3
13 16
A o 154 I
5" [ 14 S
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2 10 T 12
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In the same way, you can

A B estimate statistical

A B
Cl overlap ~ 0.5 n>=10 L .
P Cl overlap ~ 0 n>=10 significance using the

12 12 / overlap rule for 95% CI

bars.

Dependent variable
2
o
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x
o
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2
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3-2 A bit of theory: Assumptions of parametric data

When we are dealing with quantitative data, the first thing we should look at is how they are distributed,
what they look like. The distribution of our data will tell us if there is something wrong in the way we
collected them or enter them and it will also tell us what kind of test we can apply to make them say
something.

T-test, analysis of variance and correlation tests belong to the family of parametric tests and to be able
to use them our data must comply with 4 assumptions:

1) The data have to be normally distributed (normal shape, bell shape, Gaussian shape).
Example of normally distributed data:
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Lengths of Raven eggs (from R ateliff, 19938)
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There are 2 main types of departure from normality:

- Skewness: lack of symmetry of a distribution

(a) Negatively skewed (b) Normal (no skew) (c) Positively skewed
Mean
Meadian
Mode Mode Mode

Frequency

| |
I |
| |
| |
| |
| |
| | |
| | |
|
: o d X i AN s
PARANORMAL DISTRIBUTION

Negative direction The normal curve Positive direction
represents a perfectly
symmetrical distribution

- Kurtosis: measure of the degree of ‘peakedness’ in the distribution

The two distributions below have the same variance approximately the same skew, but differ markedly
in kurtosis.

Kurtoziz = 1.25 Kurtosis = —-1.22

meljwm ’_I—H—m_’_‘““““““‘:

Frequency

Score
(e) Platykurtic and leptokurtic
2) Homogeneity in variance: The variance should not change
systematically throughout the data.

3) Interval data: The distance between points of the scale should be equal at all parts along the scale

4) Independence: Data from different subjects are independent so that values corresponding to one
subject do not influence the values corresponding to another subject. Basically, it means one measure
per subject. There are specific designs for repeated measures experiments.
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Chapter 4. Comparing 2 groups

How can we check that our data are parametric/normal?

Let’s try it through an example.
Example (File: coyotes.x1sx) csv as in ‘comma-separated values’

We want to know if male coyotes are bigger than female coyotes. Of course, before doing anything
else, we design our experiment and we are told that to compare 2 samples we need to apply a t-test
(we will explain this test later). So basically we are going to catch coyotes and hopefully we will manage
to catch males and females. Now, the tricky bit here is how many coyotes do we need?

4-1 Power analysis with a t-test

Let’s say that we don’t have data from a pilot study, but we have found some information in the literature.
In a study run in similar conditions as the one we intend to run, male coyotes were found to measure:
92cm+/- 7cm (SD). We expect a 5% difference between genders.

-
fi G*Power 313 = n=h
File Edit View Tests Calculator Help

Central and noncentral distributions | Protocol of power analyses

(5] - Monday, Novernber 26, 2012 — 14:31:50
t tests - Means: Difference between two independent means (two groups)
\Analysis: A priori: Compute required sample size

Input: Tail(s) wo
Effect size d 06571429
aerr prob. 0.05
Power (1-p err prob) 080

Allocation ratio N2/N1
Qutput:  Noncentrality parameter &
Critical t

1
28644195
1.9925435

i

sample size group 1

Sample size group 2 = 38
Total sample size. =76 -
Test family Statistical test
| [F== = — )

Type of power analysis ) nl=n2

[ priori: Compute required sampie size ~ given , power, and effect size ] Mean group 1 0

Mean group 2 1
Input Parameters Output Parameters

Tail(s)y Noncentrality parameter & 2.8644195 5D g within each group. 05
sz 0e371425 concae  vsszsass [
© m-nz

oerrprob 005 DF 74

Mean group 1 9z
Power (1-B err prob) 080 Sample size group 1 38
Mean group 2 874
Allocation ratio N2 /N1 1 Sample size group 2 38
sDagroup 1 7
Total sample size 76 JEtD
Actual povier 0.3070562 Do group 2 7
Effectsized  0.6571429
|
ot [Loamees)

We need a sample size of n=76 (2*38).
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4-2 Data exploration

Once the data are collected, we need to check that our data meet the assumptions for parametric tests.
Though normality tests are good, the best way to get a really good idea of what is going on is to plot
our data. When it comes to normality, there are 3 ways to plot our data: the box plot, the scatter plot
and the histogram. We are going to do them all with GraphPad Prism:

X | = Now~ Do 1 O~ = Analyze /
New Data Table With Graph... !
New Data Table (No Automatic Graph)...
New Info...
New Analysis...
New Graph of Existing Data...

MNass | avrmet

Kind of graph
Show Cohmn v
Box am
.\'
o/. o
-—
110+
] °
. ®
100:
] 'Y
o0
°
| I )
] ®e0, 0
=S 1 ®o0
c ] e8¢0
o)
> ] °3s
3 ] °
@ ] °
80—_ °
°
] °
70-_
60-] . .
Males Females

This graphical representation is very informative. It tells us about the difference between the 2 genders,
of course, but much more than that: it also tells us about the sample size and the behaviour of the data.
The latter is important as we need to know if our data meet the assumptions for the t-test. For that, we
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are looking for normality and homogeneity of variance; so on the graph, we want symmetry and balance
in terms of variability between the 2 genders. Which is pretty much what we see. So far, so good.
However, we can notice that 2 dots are bit out of range: 2 females seem smaller than their peers. Now
the question is: are they smaller, as in just the smallest of the group, or smaller as in outliers. To find
out, we need to plot the data in another way: the boxplot.

To draw a box plot we choose it from the gallery of graphs in Column and we choose Tukey for
Whiskers. Tukey was the guy who invented the box plot and this particular representation allows us to
identify outliers (which we will talk about later).

Coyote
1107
Maximum
100+
/ Upper Quartile (Q3) 75 percentile
E 90 Interquartile Range (IQR)
O
—
_: -------
b=}
g’ Median \ Lower Quartile (Q1) 25™ percentile
L]
- 80+
Smallest data value / Cutoff - Q1 — 15'IQR
l T e PPN Rlol
> lower cutoff
[ ]
70- \
Outlier
60

Male Female

It is very important that we know how a box plot is built. It is rather simple and it will allow us to get a
pretty good idea about the distribution of our data at a glance. Below we can see the relationship
between box plot and histogram. If our distribution is normal-ish then the box plot should be
symmetrical-ish.

Regarding the outliers, there is no really right or wrong attitude. If there is a technical issue or an
experimental problem, we should remove it, of course, but if there is nothing obvious, it is up to us. |
would always recommend keeping outliers if we can; we can run the analysis with and without it for
instance and see what effect it has on the p-value. If the outcome is still consistent with our hypothesis,
then we should keep it. If not, then it is between us and our conscience!
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One other way to explore data is with a histogram. | think it works best with big samples, but it is still
useful here so let’s do it.

To draw such a graph with GraphPad, we first need to calculate the frequency distribution. To do so,
we go: =Analyze>Column Analyses>Frequency distribution.

GraphPad will automatically draw a histogram from the frequency. The slightly delicate thing here is to
determine the size of the bin: too small, the distribution may look anything but normal, too big, we will
not see a thing. The best way is to try 2 or 3 bin size and see how it goes.

Something else to be careful about: by default, GraphPad will plot the counts (in Tabulate> Number of
Data Points). It is OK when we plot just one group or one data set but when we want to plot several (or
just 2 like here) and the groups are not of the same size then we should plot percentages (in Tabulate>
Relative frequencies as percent) if we want to be able to compare them graphically.

As we can see, depending of the choice of the bin size, the histograms look quite different so again,
they work better with a bigger sample size than we have here.


http://upload.wikimedia.org/wikipedia/commons/8/89/Boxplot_vs_PDF.png
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Histogram of Coyote (Bin size 2)
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Histogram of Coyote (Bin size 3)
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Number of values
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Histogram of Coyote (Bin size 4)
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Finally, a totally cool way to explore and present data actually, is the violinplot.
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So, we have been exploring our data quite thoroughly with scatterplots, boxplots and histograms. We
are quite confident that they meet the first and the second assumptions for parametric tests but there
will be occasions where data will be a bit more on the dodgy side and thus where it will be more difficult
to conclude. It is possible to run tests to quantify whether or not data are departing significantly from
the assumptions. Now these tests do not, and should never, replace a proper graphical exploration of
the data but they can be useful when said exploration is a bit ambiguous.

First, normality, to test for it, we go: =Analyze>Column Analyses>Column statistics.

p
Parameters: Normality and Lognormality Tests M

Which distribution(s) to test?
V] Normal (Gaussian) distribution
Lognormal distribution

[7] Compute the relative likelihood of sampling from a Gaussian (normal) vs. a
lognormal distribution (assuming no other possibilities)

Methods to test distribution(s)
¥| Anderson-Darling test
[V] D'Agostino-Pearson omnibus normality test
V| Shapiro-Wilk normality test
v Kolmogorov-Smirnov normality test with Dallal-Wilkinson-Liliefor P value
Graphing options
V| Create a QQ plot
Subcolumns

Significance level (alpha)  0.05
Output
Show this many significant digits (for everything except P values): q IS

P value style: [GP: 0.1234 (ns), 0.0332 (%), 0.0021 (%), v/ 1~ |5
Make these choices the default for future analyses.

[ tean | [ concel J[ ox ]

N—— eyt

GraphPad Prism offers 4 different tests for normality: Anderson-Darling, D'Agostino-Pearson,
Kolmogorov-Smirnov and Shapiro-Wilk (the first 2 require n>7). They will produce different p-values but
should reach the same conclusion. If we had to choose, | would probably go for D'Agostino-Pearson as
it is quite a friendly one. As GraphPad puts it: ‘It first computes the skewness and kurtosis to quantify
how far from Gaussian the distribution is in terms of asymmetry and shape. It then calculates how far
each of these values differs from the value expected with a Gaussian distribution, and computes a
single p-value from the sum of these discrepancies.” The Kolmogorov-Smirnov test is not
recommended, and the Shapiro-Wilk test is only accurate when no two values have the same value.


mk:@MSITStore:C:/Program%20Files/GraphPad/Prism%205/prism5.chm::/stat_skewness_and_kurtosis.htm

Ei%?gm Introduction to Statistics with GraphPad Prism 41

T Mormality and Lognormality Tests A B
Tabular results Females Males

4

1 Test for normal distribution

2 Anderson-Darling test

3 A2F 0.3158 0.1750

- P value 0.5294 0.9192

5 Passed normality test (alpha=0.05)? Yes Yes

6 P value summary ns ns

8 D'Agostino & Pearson test

9 K2 4.203 0.5080

10 P value 01223 0.¥757

11 Passed normality test (alpha=0.05)? Yes Yes

12 Pvalue summary ns ns

14 Shapiro-Wilk test

15 W 0.9700 0.9845

16 P value 0.3164 0.8190

17 | Passed normality test (alpha=0.05)? Yes Yes

18 Pvalue summary ns ns

19

20 Kolmogorov-Smirnov test

21 KS distance 0.07845 0.08853

22 P value »0.1000 =0.1000

23 Passed normality test (alpha=0.05)? Yes Yes

24 Pvalue summary ns ns

25

26 Number of values 43 43

)
=l

So, no significant departure from normality here which should come as no surprise after our data
exploration.

Now if our data had failed the tests, we should not be too quick to switch to nonparametric tests. While
they do not assume Gaussian distributions, these tests do assume that the shape of the data distribution
is the same in each group. So if your groups have very different standard deviations and so are not
appropriate for a parametric test, they should not be analysed with its non-parametric equivalent either.
However, parametric tests like ANOVA and t-tests are rather robust, especially when the samples are
not too small so you can get away with small departure from normality and small differences in
variances. Often the best approach is to transform the data and logarithms or reciprocals does the trick,
restoring equal variance.

As for the second assumption, it is tested by default. When we ask for a t-test, GraphPad will calculate
an F test to tell us if variances were different or not.

4-3 Student’s t-test

A bit of theory

The t-test assesses whether the means of two groups are statistically different from each other. This
analysis is appropriate whenever you want to compare the means of two groups.
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treatment

group
mean

The figure above shows the distributions for the treated (blue) and control (green) groups in a study.
Actually, the figure shows the idealised distribution. The figure indicates where the control and treatment
group means are located. The question the t-test addresses is whether the means are statistically
different.

What does it mean to say that the averages for two groups are statistically different? Consider the three
situations shown in the figure below. The first thing to notice is that the difference between the means
is the same in all three. But, we should also notice that the three situations don't look the same - they
tell very different stories. The top example shows a case with moderate variability of scores within each
group. The second situation shows the high variability case. The third shows the case with low
variability. Clearly, we would conclude that the two groups appear most different or distinct in the bottom
or low-variability case. Why? Because there is relatively little overlap between the two bell-shaped
curves. In the high variability case, the group difference appears least striking because the two bell-
shaped distributions overlap so much.

medium W
variability 1%
I I

| |

low L [
variability I ¥l
| |

high
variability

This leads us to a very important conclusion: when we are looking at the differences between scores
for two groups, we have to judge the difference between their means relative to the spread or
variability of their scores. The t-test does just that.

The formula for the t-test is a ratio. The top part of the ratio is just the difference between the two means
or averages. The bottom part is a measure of the variability or dispersion of the scores. We can see
below the formula for the t-test and how the numerator and denominator are related to the distributions.
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signal difference between group means
noise variability of groups
X,-% A

= ’ varT Varc
= t-value \

The t-value will be positive if the first mean is larger than the second and negative if it is smaller.

There are 2 types of t-test: Independent and Paired. The choice between the 2 is very intuitive. If we
measure a variable in 2 different populations, we choose the independent t-test as the 2 populations
are independent from each other. If we measure a variable 2 times in the same population, we go for
the paired t-test.

So, say we want to compare the weights of 2 breeds of sheep. To do so, we take a sample of each
breed (the 2 samples have to be comparable) and we weigh each animal. We then run an Independent-
samples t-test on our data to find out if the difference is significant.

We may also want to test the effect of a diet on the level of a particular molecule in sheep’s blood: to
do so we choose one sample of sheep and we take a blood sample at day 1 and another one say at
day 30. This time we would apply a Paired-Samples t-test as we are interested in each individual
difference between day 1 and day 30.

Now, we want to compare the body length between males and females in coyotes so we are going to
go for an independent-test.

Independent t-test

Let’'s go back to our coyotes.
We go =Analysis>Column analyses> t-tests.

The default setting here is good as we want to run an unpaired t-test.
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|

P I
1 |Table Analyzed Coyote
2 [Column A Female Though the males are
3 |vs w35
4 [Coumm B Male bigger than the females, the
5 difference between the 2
6 |Unpaired t test | —
7 | Pualue (D I genders does not reach
8 P value surmmar v . cp
9 Are means slgmf different? (P < 0.05) |No Slgnlﬁcance (p:01 045)
10 | One- or two-tailed P value? Twro-tailed
11 | t, df t=1.641 di=B4
12
13 |How big is the difference?
14 | Mean £ SEM of column A G571 £0.9985 N=43
15 | Mean + SEM of column B 9206 £1.021 N=43
16 | Difference between means -2.344 +1.428
17 | 95% confidence interval -5.190 to 0.50712
18 | R squared 0.03107 The variances of the 2 groups
14 .
20 |F test to compare variances are not Slgnlﬁcantly
21 | FDFn, Dfd LO4g 42, 42 7 -
e D) ~ different (p=0.8870) so the
23 | P value summary T— SeCOnd aSSumptiOn fOf'
24 | Arevariances significantly different? Mo . .
25 parametric test is met.
26

So, despite having collected the ‘recommended’ sample size, we did not reach significance. This is
because the difference observed in the collected sample is smaller than expected. If we now consider
the data as a pilot study and run the power analysis again, we would need a sample 3 times bigger to
reach a power of 80%. Now is the time to wonder whether a 2.3cm (<3%) is biologically relevant.
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Finally, a way to combine nicely the visual strength of a bar chart to the information given by a scatterplot
is the graph below.

110
°
°
100
'Y
o0
°
0o000
[ ] P °
g % —ood
5 o0
g ®e%s0
) °
> °3s
2 °
32 °
80 °
°
°
70
Males Females

Paired t-test

Now let’s try a paired t-test. As we mentioned before, the idea behind the paired t-test is to look at a
difference between 2 paired individuals or 2 measures for a same individual. For the test to be
significant, the difference must be different from 0.

A researcher studying the effects of dopamine (DA) depletion on working memory in rhesus monkeys,
tested working memory performance in 15 monkeys after administration of a saline (placebo) injection
and again after injecting a dopamine-depleting agent.

Example (File: working memory.x1lsx)
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From the graph above, we observe that performance is lower with DA depletion but the difference is
not very big. Before running the paired t-test to get a p-value we are going to check that the assumptions
for parametric stats are met. The box plots above seem to indicate that there is no significant departure
from normality and this is confirmed by the D’Agostino & Pearson test.
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Mormality and Lognormality Tests

Tabular results

Test for normal distribution
Anderson-Darling test
A"

P value

A
Placebo

0.1934
0.8731

Passed normality test (alpha=0.05)? Yes

P value summary

['Agostino & Pearson test
K2
P value

ns

0.6754
0.7134

Passed normality test (alpha=0.05)7 Yes

P value summary

Shapiro-Wilk test
W
P value

ns

0.9591
0.6774

Passed normality test (alpha=0.05)7 Yes

P value summary

Kolmogorov-Smirnov test
KS distance
P value

ns

0.09043
»0.1000

Passed normality test (alpha=0.05)7 Yes

P value summary

Number of values

ns

15

B
DA depletion

0.2562
0.6726
Yes

ns

0.9815
0.6122
Yes

ns

0.9427
0.4181
Yes

ns

0.09822
=0.1000
Yes

ns

Normality
15
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Table Analyzed Working memory Thereisa szgmﬁcant
difference between the 2

Column A Flacebo / groups [p<0,0001),

VS, V.

Column B DA depletion

/ On average, monkeys lose

Paired t test over 8 points in working
P value <00001) memory performance
P value summary = L. i
Significantly different? (P < 0.05) es after the m]ectlon Ofthe
One- or two-tailed P value? Two-tailed dopamine-depletion
t, df =516 di=14 agent.

Number of pairs 15
/

How big is the difference? K The confidence interval
e e M T
SEM of differences the significance.

95% confidence interval 6.308 to 10.49
R =guared 0.

The paired t-test turns out to be highly significant (see Table above). So, how come the graph and the
test tell us different things?

The problem is that we don’t really want to compare the mean performance of the monkeys in the 2
groups, we want to look at the difference pair-wise. In other words we want to know if, on average, a
given monkey is doing better or worse after having received the dopamine-depleting agent. So, we are
interested in the mean difference.

Unfortunately, one of the down sides of GraphPad is that we cannot manipulate the data much. For
instance, there is no equivalent of Excel’s Function with which one can apply formulae to join several
values. In our case, we want to calculate and plot the differences between the 2 conditions. But we can
do a few things. Such as work out the difference between values in adjacent columns. To do so we go:

Analyze>Transform>Remove baseline and column math.
The graph representing the difference is displayed below and one can see that the confidence interval

does not include 0, meaning that the difference is likely to be significantly different from 0, which we
already know by the paired t-test.

20
g 15 a
© ®
% 10.49
= L X ] .
E 10 / Confidence Interval
5 6.309
& /
8 5 ]
]
e
0
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Now try to run a One Sample t-test which we will find under Column Analysis > Column Statistics.

| uama ser-A

Y

Number of values 15
Minimum 2.000
25% Percentile §.000
Median 8.000
75% Percentile 12.00
Maximum 15.00
Mean 8.400
Std. Deviation 3776
Std. Error of Mean 0.574%

Lower 95% Clof mean  |5.305
Upper 95% Cl of mean 10,49

Same values as for

One sample t test

the paired t-test.

Theoretical mean 0.0
Actual mean 5400 ) 4|
Discrepancy -5, |
55% Cl of dizcrepancy{6.305 to 10.@

1, df tIoTEae |
- 0.0001) &7
Significant (alpha=0.05)7|ves

P value (two tailed)

Sum 126.0

i:hi'.ﬁ'-h'b'al-h'—'-'dcom-dmm-hum-cu“-‘w"”‘“"‘“*"“-‘k

We will have noticed that GraphPad does not run a test for the equality of variances in the paired t-test;
this is because it is actually looking at only one sample: the difference between the 2 groups of rhesus
monkeys.

4-4 Non-parametric data

What if the data do not meet the assumptions for parametric tests? Then, we should go for a non-
parametric approach. The choice between the two is not always easy, however. If the outcome is a rank
or a score, then it is clearly not Gaussian and going for a non-parametric approach is a no-brainer. The
difficulty is mostly with small samples, where it is often not easy to determine the distribution. In that
case, looking at previous data might help, as what matters is the distribution of the overall population,
not the distribution of the sample.

Non-parametric tests are not strictly speaking assumption-free. For instance, they assume a continuous
distribution, though scores are OK, but they are far less restrictive than their parametric counterparts.
Most of them are based on the principle of ranking: the smallest value has the lowest rank and the
highest value the highest rank.

Some may argue that, when in doubt, it is more valid to use nonparametric methods because they are
"always valid, but not always efficient," while parametric methods are "always efficient, but not always
valid" (Nahm, 2016).
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Independent groups: Mann-Whitney (= Wilcoxon’s rank-sum) test

The way the Mann-Whitney works is really cool. It groups all the data, regardless of which group it
belongs to, and ranks them. The difference, or absence of difference, between the two groups is based
on the sum of the ranks in each group. Hence, if there is a difference, the group with the highest values
will have the highest ranks and thus the highest sum of ranks. The Mann-Whitney statistic W is
calculated as follows:

W = sum of ranks (for each group so W1 and Wz) — mean rank. The smallest of the two Ws is chosen
and used to calculate the associated p-value as illustrated below.

Real values Ranks
Groupl Group2

Group1l Group2 3 1
5 g B : j, ;
7 9 6 3 1 .
3 6 7 4
o = sum 7 14
b | 6
Mean 3.5
* Statistic of the Mann-Whitney test: W (U)
* W =sum of ranks — mean rank: W;=3.5 and W,=10.5
¢ Smallest of the 2 Ws: W, + sample size — p-value
Let’s try an example.
Example (File: smelly teeshirt.xlsx) N
W EAbRiDeE 0XFORD

In a study designed to assess whether group body | (UNIVERSITY

odour is less disgusting when it is associated with an

in-group member versus an out-group member,

researchers presented two groups of Cambridge

University students with one of two smelly, worn t-

shirts. One t-shirt bore the logo of Cambridge University

and the other bore the logo of Oxford University. The students were asked to rate their disgust on a 7-
point ordinal scale. Higher ratings indicate greater levels of disgust. The disgust ratings for each group
are presented in the smelly teeshirt file.

smelly teeshirt

3-
(1]
6 4 (1]
[ [ 1]
2
9 4 [T ] [ X))
]
—...—
24 [ 1]
[
0

Cambridge Oxford
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?@ M ann-wWhitney test
a

1 |Table Analyzed smelly teeshirt
2

3 |Column B Oxford

4 |vs VE,

5 |Column & Cambridge
[

T |Mann Whitney test

& | Pvalue 0.0037

a Exact or approximate P value? Exact

10 | Pyalue summary tt

11 | significantty different (P < 0.05)7 Yes

12 | One- or two-tailed P value? Two-tailed
13 | Sumof ranks in column 4,8 41,95

14 | Mann-Whitney U g

15

So, not surprisingly (haha!), the Cambridge students find the smell of Oxford t-shirts significantly more
disgusting than that of Cambridge ones.

Note: depending on which order we enter the data, the function will give either the biggest or the

smallest W, which is confusing but does not affect the outcome of the test.

Dependent groups: Wilcoxon’s signed-rank test

This test is also based on ranks but this time the differences between the two members of the pair are
ranked (see example below). The zero differences are ignored and the sum of the positive and of the
negative differences are calculated (T* and T-). Following the same logic as for the Mann-Whitney, the
smallest of the two Ts is chosen and becomes the T statistic. This T will allow the calculation of the p-

value. Easy.

Before After

(7 I S - N7 R S S

Differences

b dhod = &b
OO o U U W W R o

Ranking Ranks

2.5
2.5
4.5
4.5

* Statistic of the Wilcoxon’s signed-rank test: T (W)
* Here: Wilcoxon’s T = 4.5 (smallest of the 2 (absolute value))

* Sample size N =9 (we ignore the O difference): T+ N — p-value

-1
-2.5
2.5

-4.5
-7
-7
-7

-31.5

Negative rank Positive rank

4.5

4.5
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Example (File: botulinum.x1sx)

A group of 9 disabled children with muscle spasticity (or extreme muscle
tightness limiting movement) in their right upper limb underwent a course
of injections with botulinum toxin to reduce spasticity levels. A neurologist
assessed levels of spasticity pre- and post-treatment for all 9 children
using a 10-point ordinal scale. Higher ratings indicated higher levels of

spasticity. The ratings are presented in the file botulinum. xlsx.

Before After

D persrsssrsrsssssnsrsssssrttsssssrttsssssrtssnsssttn 1 q
2 7
3 10
4 8
-2 1 5 9
o a 8
=] ooe® 7 7
‘o 8 9
@ 4 9 10
| -
& o0
-
<L
-6 - L X 1
3 L]
Difference
?@ Wilcoxon test
]
1 |Table Anabyzed botulinum
2
3 |Column B after
4 |ys. VS,
5 |Column A before
1]
T |Wilcoxon matched-pairs signed rank test
8 | Pvalus 0.003%
9 Exact or approximate P value? Exact
10 | Pvalue summary =
11 | significantly different (P = 0.05)? Yes
12 | One- or two-tailed P value? Two-tailed
13 | Sum of positive, negative ranks 0,-45
14 | Sum of signed ranks (W) -45
15 | Number of pairs ]

There was a significant difference pre- and post- treatment in ratings of muscle spasticity (p=0.008).

Please note that although the test reports T, it calls it V. Go figu

re.

[, I S A N I« T S A A
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Chapter 5: Comparing more than 2 means

5-1 Comparison of more than 2 means: One-way Analysis of variance
A bit of theory

When we want to compare more than 2 means (e.g. more than 2 groups), we cannot run several t-test
because it increases the familywise error rate which is the error rate across tests conducted on the
same experimental data.

To understand the following, it helps to remember one of the basic rules (“law”) of probability: the
Multiplicative Rule: The probability of the joint occurrence of 2 or more independent events is the product
of the individual probabilities.

P(A,B)=P(A) x P(B)

For example:

P(2 Heads) = P(head) x P(head) = 0.5 x 0.5 = 0.25

Now, let’'s take an example: say we want to compare 3 groups (1, 2 and 3) and we carry out 3 t-tests
(groups 1-2, 1-3 and 2-3), each with an arbitrary 5% level of significance, the probability of not making
the type | error is 95% (= 1 - 0.05). The 3 tests being independent, we can multiply the probabilities
(multiplicative rule), so the overall probability of no type I errors is: 0.95 * 0.95 * 0.95 = 0.857. Which
means that the probability of making at least one type | error (to say that there is a difference whereas
there is not) is 1 - 0.857 = 0.143 or 14.3%. So the probability has increased from 5% to 14.3%. If we
compare 5 groups instead of 3, the family wise error rate is 40% (= 1 - (0.95)")

To overcome the problem of multiple comparisons, we need to run an Analysis of variance (ANOVA)
followed by post-hoc tests. Actually, there are many different ways to correct for multiple comparisons
and different statisticians have designed corrections addressing different issues (e.g. unbalanced
design, heterogeneity of variance, liberal vs conservative). However, they all have one thing in
common: the more tests, the higher the familywise error rate: the more stringent the correction.
Tukey, Bonferroni, Sidak and others went for the FamilyWise Error Rate (FWER) mentioned above
while others like Benjamini-Hochberg chose the False Discovery Rate (FDR) approach.

In the former, as already mentioned, the stringency of the correction will be a direct function of the
number of comparisons (aadjust = 0.05/n comparisons). The problem with this approach is that it is quickly
very conservative, leading to a loss of power (lots of false negative). With only 10 comparisons, the
threshold for significance is down to 0.005 (0.05/10), so when running pairwise comparisons across
20,000 genes, the correction becomes over conservative.

One way to address this issue is to use the FDR approach which controls the expected proportion of
“discoveries” (significant tests) that are false (false positive). This allows for a less stringent control of
Type | Error than FWER procedures which control the probability of at least one Type | Error. It results
in more power but at the cost of increased numbers of Type | Errors.

The difference between FWER and FDR is that, with the former, a p-value of 0.05 implies that 5% of all
tests will result in false positives whereas a FDR adjusted p-value (or g-value) of 0.05 implies that 5%
of significant tests will result in false positives.
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The ANOVA is an extension of the 2 groups’ comparison of a t-test but with a slightly different logic. If
we want to compare 5 means, for example, we can compare each mean with another, which gives you
10 possible 2-group comparisons, which is quite complicated! So, the logic of the t-test cannot be
directly transferred to the analysis of variance. Instead the ANOVA compares variances: if the variance
amongst the 5 means is greater than the random error variance (due to individual variability for
instance), then the means must be more spread out than we would have explained by chance.

The statistic for ANOVA is the F ratio:

variance among sample means
variance within samples (=random. Individual variability)

also:
variation explained by the model (systematic)
variation explained by unsystematic factors

If the variance amongst sample means is greater than the error variance, then F>1. In an ANOVA, we
test whether F is significantly higher than 1 or not.

Imagine we have a dataset of 78 data points, we make the hypothesis that these points in fact belong
to 5 different groups (this is our hypothetical model). So we arrange the data into 5 groups and we run
an ANOVA.

Below, is a typical example of analysis of variance table

Source of variation | Sum of Squares df Mean Square | F p-value
Between Groups 2.665 4 0.6663 8.423 <0.0001
Within Groups 5.775 73 0.0791

Total 8.44 77

Let’s go through the figures in the table. First the bottom row of the table:
Total sum of squares = ¥ (xi — Grand mean)?

In our case, Total SS = 8.44. If we were to plot your data to represent the total SS, we would produce
the graph below. So the total SS is the squared sum of all the differences between each data point and
the grand mean. This is a quantification of the overall variability in our data. The next step is to partition
this variability: how much variability between groups (explained by the model) and how much variability
within groups (random/individual/remaining variability)?
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According to our hypothesis our data can be split into 5 groups because, for instance, the data come
from 5 cell types, like in the graph below.

So we work out the mean for each cell type and we work out the squared differences between each of
the means and the grand mean (3 ni (Meani - Grand mean)?). In our example (second row of the table):
Between groups SS = 2.665 and, since we have 5 groups, there are 5 — 1 = 4 df, the mean SS = 2.665/4
= 0.6663.

If you remember the formula of the variance (= SS / N-1, with df=N-1), you can see that this value
quantifies the variability between the groups’ means: it is the between-groups variance.

°
Between group variability
°
° °
°
° 0g0®
:.'. $ e Q! - :
Y —— vhe e
°® o0 ®
°
° e®

Within group variability

There is one row left in the table, the within-groups variability. It is the variability within each of the five
groups, so it corresponds to the difference between each data point and its respective group mean:
Within groups sum of squares = Y (xi- Meani)? which in our case is equal to 5.775.

This value can also be obtained by doing 8.44-2.665 = 5.775, which is logical since it is the amount of
variability left from the total variability after the variability explained by the model has been removed.

In our example the 5 groups sizes are 12, 12, 17, 17and 17sodf=5x(n—-1) =73

So the mean variability within groups: SS =5.775/73 = 0.0791. This quantifies the remaining variability,
the one not explained by the model, the individual variability between each value and the mean of the
group to which it belongs according to the hypothesis. From this value can be obtained what is often
referred to as the Pooled SD (=SQRT(MS(Residual or Within Group)). When obtained in a pilot study,
this value is used in the power analysis.
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At this point, we can see that the amount of variability explained by our model (0.6663) is far higher
than the remaining one (0.0791).
We can work out the F-ratio: F = 0.6663 / 0.0791 = 8.423

The level of significance of the test is calculated by taking into account the F ratio and the number of df
(degree of freedom) for the numerator and the denominator. In our example, p<0.0001, so the test is
highly significant and we are more than 99% confident when we say that there is a difference between
the groups’ means. This is an overall difference and even if we have an indication from the graph, we
cannot tell which mean is significantly different from which.

This is because the ANOVA is an “omnibus” test: it tells us that there is (or not) an overall difference
between our means but not exactly which means are significantly different from which. This is why we
apply post-hoc tests. Post-hoc tests could be compared to t-tests but with a more stringent approach,
a lower significance threshold to correct for familywise error rate. We will go through post-hoc tests in
more detail later.

Example (File: protein expression.xslx)

Let's do it in more detail. We want to find out if there is a significant difference in terms of protein
expression between 5 cell types.

As usual, we start by designing our experiment, we decide to go for an analysis of variance and then,
we get to the point where we have to decide on the sample size.

Power analysis with an ANOVA

" ~
[ G"Power3.13 = ]

File Edit View Testc Calculator Help

Analysis of variance

e
Output:  Noncentraity parameter = 127593998 Clear
= 2.5026565

v -4

Sensitivity Power Analysis Denominator of 7

- 70
o Save
Effect size f = 0.4126241

Print

Example case:

ssssss -

You cannot afford to have more than about ——
Vi of power analysis

TR

15 values percondition. P e e e -]
. e i

It means that you have to aim for R 127693998

a big effect (in effect size convention). 2.5026565
big ettect
4 .

Number of groups nominator df Q

X-Y plot for a range of values Calculate

We are quite confident in our hypothesis so we decide to go ahead.

First, we need to see whether the data meet the assumptions for a parametric approach. Well, it does
not look good: 2 out of 5 groups (C and D) show a significant departure from normality (See Table
below). As for the homogeneity of variance, even before testing it, a look at the box plots (see Graph)
tells us that there is no way the second assumption is met. The data from groups C and D are quite
skewed and a look at the raw data shows more than a 10-fold jump between values of the same group
(e.g. in group A, value line 4 is 0.17 and value line 10 is 2.09).
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101 10-
. [ ]
8 8
1S c
9 o
7] »
8 6 2 6
= e
8 X °
£ c
g 44 g o] [ ]
o s Y [ ]
T o ele
1 T T 2 @ o %o
‘0 w
— T O] - .
= = |E| . ° o
0 : T - L L) oo
A B D E o T
A E
A
1 Test for normal distribution
2 Anderson-Darling test
3 A2* 0.3797 0.3141 1.166 1.439 0.20M
4 P value 0.3446 0.5029 0.0035 0.0007 0.8590
5 Passed normality test (alpha=0.05)? Yes Yes No No Yes
6 P value summary ns ns = e ns
7
&  D'Agostino & Pearson test
9 K2 0.1236 0.7508 - 1.280
10 P value 0.9401 0.6870 0.0092 <0.0001 0.5274
1 Passed normality test (alpha=0.05)? Yes Yes Yes
12 P value summary ns ns = o ns
13
14 Shapiro-Wilk test
15 w 0.9295 0.9535 0.8197 0.7531 0.9671
16 P value 0.3752 0.6888 0.0029 0.0004 0.741
17 Passed normality test (alpha=0.05)? Yes Yes No No Yes
18 P value summary ns ns = e ns
19
20  Kolmogorov-Smirnov test
21 KS distance 0.1485 0.1704 0.1980 0.2058 0.1035
22 P value >0.1000 >0.1000 0.0603 0.0424 >0.1000
23 Passed normality test (alpha=0.05)? Yes Yes Yes No Yes
24 P value summary ns ns ns " ns
25
26 Number of values 12 12 18 18 18

A good idea would be to log-transform the data so that the spread is more balanced and to check again
on the assumptions. The variability seems to be scale related: the higher the mean, the bigger the
variability. This is a typical case for log-transformation. Let’'s see how our data behave on a log-scale.

To do that, we simply double-click on the y-axis and change linear for log.

Format Axes

| Frame and Origin I % awis | Left ¥ axis | Right Y asis I Titles & Fonts|

Gapz and Direction: [Standard v] Scale:
Autornatically determing the range and interval '
Range Log 2

. Frababilty (0..100%)
Minim.m: o Masimum:  Probabilty (0. 1)
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It looks much better. Now, the next step is to actually log-transform the data. To do so, we go to =
Analyse> Transform > Transform and we choose Y=Log(Y), we can then re-run the analysis.

= - - | A E C D E
B [ ¥ Y Y Y

1 [Mumber of valuss 12 12 18 18 18

2

3 |Minimum 0.4315 -0.5850 06198 -0.30%8 0.5229

4 |26% Percentile 01766 -0.3742 -0.3497 0.04117 01178

5 |Median 0.08089 -0.2609 -0.1025 0.2275 0.1642

6 |75% Percentile 0.1658 -0.1597 0.09514 0.4653 0.3237

T |Maximum 0.3201 -0.05061 0.4965 0.9694 0.5315

8

9 |Mean 0.004533 -0.2817 -0.1064 0.2740 01018

10 |Std. Dewiation 0.2280 0.1632 0.3307 0.3112 0.2873

11 [Std. Emor 0.08582 0.04711 0.07786 0.07336 0.06772

12

13 |Lower 95% Cl of mean -0.1403 -0.3854 -0.2709 0.1193 -0.04104

14 |Upper 95% Cl of mean 0.1494 -0.1780 0.05803 0.4208 0.2447

15

16 |D'Agosting & Pearson omnibus nommality t

17 (k2 2193 0.6527 0.5584 0.5869 2902

18 |P value 0.3332 0.7103 0.7455=""TI 110 ™ ==eQi4

19 |Passed normality test (alpha=0.05)7 Yes Yas ‘65 Yes Yes‘

20 |P value summary ne ns n\ ns y

21

22 |Sum 0.05439 -3.380 -1.916 4933 1.833

23

OK, the situation is getting better: the first assumption is met and from what we see when we plot the
transformed data (Box-plots and scatter plots below) the homogeneity of variance has improved a great
deal.

Now that we have sorted out the data, we can run the ANOVA: to do so we go =Analyze >One-way
ANOVA.

The next thing we need to do is to choose a post-hoc test. These post-hoc tests should only be used
when the ANOVA finds a significant effect. GraphPad is not very powerful when it comes to post-hoc
tests as it offers only 3 tests: the Bonferroni and Sidak tests which are quite conservative - so we should
only choose them when we are comparing no more than 5 groups - and the Tukey which is more liberal.
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Epementsl Dean I Joptons | Resuss| [Expern [ [
'Amryu Data Exparimentsl design Multiple comparisons test
 No mstchig o parrg & Corect
Eachrom resresents matched, o repested measres, data Tt B D =
Bultin anaysh, . [ GrowA | Gups | GrowC | Growd | | r :
’ 2 ly which 4 L ‘vﬂ - T - lvr - T ot v;" ‘ ‘Y‘ T T Two-stage step-up method of Benjamini, Krieger and Yekutiel (recommend ~
5 Transform, Normalize... +| [@aa G T . i aone.
Transform [@8:8 B Y T I 17 - .
Transform concentrations (X) @c:c - ¥ Multiple comparisons options
Normaize @o:0 Assume Gaussian distribution of residuals? E] Swap drection of comparisons (A-8) vs. (B-4).
Prune rows @EE  Yes. Use MNOVA, =
Remove baseine and column math 3 o, est. o), -
Transpose X and Y Assume cqual S057 , - s
Fraction of total = 1 Yes. Use crdnary ANOVA test. (oseme === X 005, z
[ XV analyses No. Uz Bronn-Forsythe and Weich AOvA te || | FoRwuP tests Graphing
) Column analyses @ there. [l Graph confidence intervals.
t tests (and nonparametric tests) Graph ranks (ponparametric).
One sample t and Wilcoxon test weat = Additional results
Desciptive statistics 14 SHsou et et VPamacid sy oy, 7] Desiriptve statistcs for each data set.
Normaity and Lognormali i == 7] Report comparison of models using AIC<.
e Ly vt on e s s, om 1| | e o s beeen sk e s et ckmmre, o i i ok
ROC Curve Which test?
8land-Altman method comparison
o
Identfy outiers presi
Analyze a stack of P values [ eam
5 Grouped analyses - —_—
“« m | »
S = 3
teom ] [Come ] (o]

- Anuva
2 . .

1 |Table Analyzed *Transform of Protein expression Analysls of varlance

H

5 oA Results

4 |F e

5 | Pvalue { 00001 Y

6 | Pvalue summary [aves _/

T | Are differences among means significant? (P < 0.05) Yes

8 | Rsquare 0.3081

9

10 |Brown-Forsythe test : : [

T F oot o 7 Homogeneity of variance

12 | Pualue (loseze ) &

13 | Pvalue summary Mo

14 | significantly different standard deviations? (P < 0.05) No

15

16 |Bartlett's test

17 | Bartletts statistic 5.829

18 | Pyalue 02123

19 | Pvalue summary ns F=0.6727I0.08278=8. 13

20 different standard deviations? (P = 0.05) No

Fil

22 |ANOVAtable 38 DF MS F (DFn, DFa) Pvalue

23 | Treatment (between columns) 2691 4 0.6727 F(4,73)=8.127 P <0.0001

24 | Residual (within columns) 6.043 73 0.08278

25 | Total 8.734 77

26

27 |Data summary = | |

28 | Number of reatments Number of families 1 | |

29 | Number of values (lotal) Number of comparisons per family| 10 Post hoc tests

30 Alpha 0.05

kL

Tukey's multiple comparisons test|Mean Diff. 95% Cl of diff. Significant?  |Summary  |Adjusted P Value
V.
Avs.B 0.2505 -0.07808 10 0.5790 No ns / 0.2177 \ A-B
Avs.C 0.07521 -0.2247 t0 0.3751 No ns I 0.9555 \ A-C
Avs.D -0.3053 -0.6052 to -0.005359 Yes " 0.0440 AD
Avs.E -0.1331 -0.4330 to 0.1669 No ns 0.7275 AE
Bvs.C -0.1753 -0.4752t0 0.1247 No ns 0.4807 B-C
Bvs.D -0.5557 -0.8557 to -0.2558 Yes e <0.0001 IB—D
Bvs.E -0.3835 -0.6834 to -0.08360 Yes - 0.0055 B-E
Cvs.D -0.3805 -0.6487 to -0.1122 Yes - \ 0.0015 C-D
Cvs.E -0.2083 -0.4765 o 0.05998 No ns \ (02021 f CE
Dvs.E 0.1722 -0.09604 to 0.4405 No ns 0.3539/ D-E
S

From the table above we can find out which pairwise comparison reaches significance and which does
not.
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5-2 Non-parametric data: Kruskal-Wallis test

What if the data do not meet the assumptions for ANOVA? We can choose to run the non-parametric
equivalent: the Kruskal-Wallis.

Example (File: creatine.x1lsx)

The data contain the result of a small experiment regarding
creatine, a supplement that's popular among body builders.
These were divided into 3 groups: some didn't take any creatine,

others took it in the morning only and still others took it in the TINE
morning and evening. After doing so for a month, their weight .
gains were measured. i) P &

The research question is: does the average weight gain depend on the creatine condition to which
people were assigned?

Creatine

5000+

4000+

3000+

2000+

Gain

1000-

-1000 I I I
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£

4

| NS =

L5 -1

Kruskal-Wallis test
AMOYA results

Table Analyzed Creatine

Kruskal-Wallis test

P value 0.1458
Exact or approximate P value? Exact
P value summary ns

Do the medians vary signif. (P < 0.058)7 No
MNumber of groups 3
Kruskal-Wallis statistic 3.668

Data summary
Mumber of treatments (columns) 3

MNumber of values (total) 15

So, this study did not demonstrate any effect from creatine (x? = 3.87, p = 0.14).

5-3 Two-way Analysis of Variance (File: goggles.x1sx)

So far, in the context of the t-test and the one-way ANOVA, we have considered the effect of a single
independent variable or predictor on some outcome. Like gender on body length for coyotes or cell lines
on protein expression. Sometimes, we may want to study the effect of more than one predictor on a
given outcome. In that case, we will want to use a multiple factor analysis, sometimes also referred to
as factorial ANOVA. In this section, we will see how to deal with 2 factors or 2 predictors and how to do

a two-way ANOVA.

We saw in the previous chapter that running an ANOVA is all about partitioning the variance as seen

below.
Source of variation Sum of Df Mean Square | F p-value
Squares
Variable A (Between Groups) 2.665 4 0.6663 2.42 <0.0001
Within Groups [Residual) 5.775 73 0.0751
Total 8.44 i
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One-way ANOVA= 1 predictor variable

SSm

Variance Explained by the Model

Within Groups

The logic is pretty much the same for a 2-way ANOVA as seen below.

Source of variation Sum of Squares | Df | Mean Square | F p-value
Variable A * Variable B

1978 2 989.1 Fi2 427=11.91] P =0.0001
Variable B [Between groups)

3332 2 1666  F (2 42)=2007] P = 0.0001
Variable A (Between groups)

168.5 1 1668.8) F(1.42)=2032| P=0.1614
Residuals

3458 42 53.04

2-way ANOVA= 2 predictor variables: A and B

SSm

Variance Explained by the Model

SSa SSs

Variable A Variable B

—

Variance Explained by Variance Explained by

Variance Explained by the
Interaction of A and B

SSax

However, there is an extra layer of complexity with the interaction. Let's see how it works through an

example.

Example (File: goggles.x1sx)

In the UK, there is something known as the beer-goggle effect: it is about subjective perception of
physical attractiveness and how it become less accurate after alcohol is consumed. An anthropologist
wanted to study the effects of alcohol, so in fact the beer-goggle effect, on mate selection at night-clubs.
She was also interested in whether this effect was different for men and women. So she picked 48
students and ran an experiment with results presented below. The scores are the levels of
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attractiveness (out of 100) from a pool of independent judges of the person that the participant was
chatting up at the end of the evening.

858388348
v = N = I
£888388q3
28300388 a
2833883 EG
ELBHGE8EY

As always, the first thing to do is to explore the data. To understand the concept of interaction, the best
way is to follow the logic of the 2-way ANOVAs: to look at the individual effects of the factors and then
the interaction between the 2.

Interaction
) ] between Alcohol and Gender
Main effect of Alcohol Main effect of Gender
100- 100+
L]
° w: LX) [ ]
3 :. ¢ e :Q: 80 ° L4
oo eeee . ssse sese (X ) @ Female
eeee eeeee c. 3“ s sese —:—:— [} [ ] ® o oo [ ] @ Male
H e oo (XXX} g . oo . e @ @ ee @ °
S L] [ ] *e o L]
8 ° — p . 604 wooe eo0e o )
7 . L3 ®° e o eoe o
LE X ] -
e o8 8 [ ] L] L
° » . (7] L] [
10 °
——
None 2 Pints 4Pints Female Male .o
20 ®
Nz;ne 2 Pilnts 4 Pints

Main effect of alcohol:

One can see that there is not much happening between None and 2 Pints, but after 4 Pints the level of
attractiveness drops quite a bit. We can also notice that there does not seem to be anything too worrying
about the data, in terms of distribution or homogeneity of variance.

Main effect of gender:
The gender effect does not appear very strong with only a slight decrease for the males. Variability
appears higher in males than females though.

The interaction is about the effect of one factor on the other. Or, put differently: is the effect of one factor
the same on all levels of the other? And here the answer is no: males are slightly higher than females
for the first 2 levels of alcohol but the gender effect is very different in the highest level of alcohol. This
is what an interaction is about and looking at the graph, it is likely that this interaction will be significant.
The concept of interaction becomes more intuitive when we try to formulate the answer to our original
guestions: is there an effect of alcohol consumption on the perception of physical attractiveness? The
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answer is: yes, but the effect is not the same for boys and girls. It is the ‘yes but’ that is about the
interaction. Similarly, we could say: yes there is gender effect on the perception of physical
attractiveness but the effect varies with the level of alcohol consumed.

Below is a graph, on fake data, where there would not be an interaction between the 2 factors.

1009
80

[ J

[ J
60 - B _ 2
o0

40 A

207 o Female

Male

Mean Attractiveness of Date (%)

343

0 T
None

2 Pints

4 Pints

Now try to answer the question about alcohol, looking at the graph above: the answer is just ‘yes’, there
is no ‘but’. For both genders, the attractiveness is affected by the consumption of alcohol, in a similar
way. And to the question about gender, the answer is ‘yes’, too: levels of attractiveness are higher for
males than females, regardless the level of alcohol. There is no interaction here and both factors are

independent from one another.

Let’s take a step back to understand how this interaction business works. Using a fake dataset we are
going to go through the different possibilities when it comes to interaction.

In our fake dataset, we have 2 factors: Genotype (2 levels) and Condition (2 levels).

Genotype

Genotype 1
Genotype 1
Genotype 1
Genotype 1
Genotype 1
Genotype 1
Genotype 2
Genotype 2
Genotype 2
Genotype 2
Genotype 2
Genotype 2

Condition

Condition 1
Condition 1
Condition 1
Condition 2
Condition 2
Condition 2
Condition 1
Condition 1
Condition 1
Condition 2
Condition 2
Condition 2

Value
74.8
65
74.8
75.2
75
75.2
87.8
65
74.8
88.2
75
75.2

We are going to use that fake dataset to explore different possible scenarios when it comes to the
relationship between 2 factors. The first possible scenario is single effect: either, in our case, Genotype

or Condition effect. It would look like below.
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Single Effect

90 90
x  Condition Condition

Condition 2 Condition 2
857 Condition 1 85 Condition 1

80 4 80

75 x *

Value
~
&
I
%
Value

65 - 65

60 - 60

Genotype 1 Genotype 2 Genotype 1 Genolype 2

Genotype Effect Condition Effect

Then there is the possibility that there is zero effect or both factors have an effect on the outcome
variable.

Zero or Both Effect

a0 90 4
Condition Condition

Condition 2 Condition 2
8 1 Condition 1 85 * Condition 1

80 80

75 X 75 4 x

Value
Value

70 - 70 4

65 1 65

60 - 60 4

Genotype 1 Genotype 2 Genotype 1 Genotype 2

Genotype Genotype

Zero Effect Both Effect

Now, if we look at the 4 graphs above we can answer the question is there an effect of Genotype? For
the Genotype effect graph, we can answers ‘yes’ and it is enough as the Genotype effect is the same
regardless of Condition. Same thing for the Condition effect graph. Is there an effect of Condition on
value, we can just say yes, as again the effect is the same within each Genotype. The same logic
applies for Zero and Both effects. In the Both effect graph, even though both factors have an effect on
Value, these effects are independent from one another. We can still answer ‘yes’ to both initial question
as the Condition effect is the same in both gender and vice-versa.

When there is an interaction, however, the patterns are quite different.
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Interaction

90 - 90
x  Condition x Condition

Condition 1 Condition 1

85 Condition 2 85 Condition 2

80 | 30

Value
~
=]
I
x
Value
~
=]
I

65 65 x

60 | 50

Genotype 1 Genotype 2 Genotype 1 Genotype 2

Genotype Genotype

On the left, there is an effect of Condition for the first Genotype but not the second one, and there is an
overall Genotype effect. On the right, there is a Condition effect but the direction is inversed from
Genotype to the other. And there is not Genotype effect. Now if we try to answer the question ‘is there
a Condition effect?’ like before, we can no longer answer it by a simple yes or no. On the left, we would
have to say yes BUT it depends on the Genotype. And same on the right. This BUT is pretty much the
marker for the presence of an interaction (not necessarily significant though).

If we consider the data from the other factor’s perspective, we can also say that there is an effect of
alcohol but it depends on the gender.

Now because the presence or absence of an interaction will affect our interpretation of the data, it also
affects the interpretation of the p-values. Below are the versions of the outcome of our analysis. The
first one is the real one, where there is an interaction. The second one is fake and presented for the
sake of understanding: how the output would look if there was no interaction.
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With significant interaction < 1007
]
X 80
ANOVA table SSDF MS F(DFn,DFd) P value 5 - Male
Interaction 1978 29891 F(2,42)=11.91 <0.0001 g 601 -e- Female
c
Alcohol Consumption 3332 2 1666 F (2,42)=20.07 <0.0001 g 20
Gender 168.8 1168.8 F(1,42)=2.032  0.1614 8
Residual 3488 4283.04 < 2
8
[
2 . ; ,
None 2 Pints 4 Pints
Without significant interaction (fake data)
— 80+
=
ANOVA table SSDF MS F (DFn, DFd) P value g
(=] i
Interaction 7.202 23.646 F(2,42)=0.06872 0.9337 5 60 -~ Male
Alcohol Consumption 5026 2 2513  F (2,42) = 47.37 <0.0001 a -~ Female
< 404
Gender 438.0 1438.0 F(1,42)=8.257 0.0063 g
Residual 2228 42 53.05 8
E 204
c
©
QO
Z . . .
None 2 Pints 4 Pints

In the case of the real data, we have a significant interaction. It means we just interpret and report that
interaction and we do not report the single effects. The reason is the same as when we are answering
the question about the effect of one particular factor: if there is an interaction we cannot simply say,
yes, there is a significant effect of alcohol, we also have to mention the fact that this effect is affected
by gender (the BUT thing). Hence, we cannot look at the p-value of Alcohol Consumption as it is
meaningless without the gender context (and vice-versa).

On the other hand, if there is no significant interaction, we can just interpret the 2 single effects as we
would with a one-way ANOVA. So for instance, we can simply say: there is a significant effect of Gender

on Attractiveness because that effect is the same regardless of the alcohol level.

Let’s run the actual analysis.
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Analyze Data = X =
Parameters: Two-Way ANOVA (or Mixed Model) X
Buitn analysis v
RMDesgn RM Analysis Factor names Multiple Comparisons  Options  Residuals
Which analysis? pat
S Transiorm, Normakrze_ rer— Parameters: Two-Way ANOVA (o Mixed Model) -y
Transform Grouped AMDesgn M Analysis Factor names  Mutple Comparisons  Optons  Residuals
Transform concentrations (X) AY)
Normalize [ Table format. Group A Group B Group C
Prune rows 2 | ey
Remove baseline and column math il SRR ETHEs Parametrs: Two-Way ANOVA (r Mired Mode) x
Transpose X and Y 7 7
Fraction of total e B RMDesgn R Ansyss Pt names | Mol Comparons Optons  Reshl
[ XY analyses 5 Parameters:Two-Way ANOVA (or Mised Model) Huliple comparisons test
3 Column analyses g:mm;::;h 4 | ° c[esr Sk (more power, recommended) e v
= Grouped analyses - RMDesign RMAnalysis Factornames Multple Comparisons Options  Resicual . .
e e e[| s et e e
Three-way ANOVA (or mixed model) B go= ! O it caect o it congersons. Each cueron stads e
Row means with SO or SEM Name e fctrtatefoes terons: [l | — o “Grows
Multiple t tests - one per row bject ‘i‘ Heltigle comparieons options
@ Contingency table anal | Aan | am BV BYZ [ Sueo drecton of comparscns (A8) v (B-A).
@ Survival analyses ] o s o b
[ Parts of whole analyses = 2 o . -
[ Multiple variable analyses Based on your choices (on) Graphing options
# Nested analyses il g : - = Clgrach condnce mrvl
[ Generate curve Aditional resshts
@ Simulate data How many comparisons? [Inarratve gesuts.
Conpare o (0] Show cellvom fcokumnorand means.
i l)uipul‘
Shgw this many signficant diits (for everything except P valves): |4 %
- P yabie stye: [GP: 0.1234 (1), 0.0332 (%), 0.0021 ("), 0L v
T e [vake psins on s tabbe the defactfor future Two-Hiay ANOVAS:
choxce the Options tab to choose the test, and the defauits for
e docesen 5 t choose the test, and t st the defod = =
=
'[:I 2way ANDVA
ANOVA results
4
1 Table Analyzed data for 2-way
2
3 Two-way ANOVA Ordinary
4 Alpha 0.05
5
6 Source of Variation % of total variation Pvalue P value summary  Significant?
7 Interaction 22.06 =0.0001 i Yes
8 Alcohal Consumption 37.16 =0.0001 i Yes
9 Gender 1.882 0.1614 ns Mo
10
11 ANOVA table S5 DF MS F (DFn, DFd) P value
12 Interaction 1978 2 9891 F (2, 42)=11.91 P<0.0001
13 Alcohol Consumption 3332 2 1666 F (2, 42) = 20.07 P<0.0001
14 Gender 165.8 1 168.8 F(1.42)=2.032 P=0.1614
15 Residual j488 42 83.04
16

So, there is a significant interaction between the 2 factors which is consistent with what we observed.
Now, in terms of interpretation, when an interaction between 2 factors is significant we don’t look at the
main effect. It is for the same reason as before: we cannot interpret the effect of one factor without
mentioning the other, so it is useless to look at the main effect: all the interpretation is about the

interaction.

Now, we may want to quantify the gender effect for each level of alcohol. Let’s look at the Tukey post-

hoc tests.

Sidak's multiple comparisons test

Female - Male
Maone

2 Pints

4 Pints

Mean Diff.

-6.250
-4.375
21.88

95.00% CI of diff.

-17.58 to 5.080
-15.70 to 6.955
10.55 to 33.20

Significant? Summary Adjusted P Value
No ns 0.4434

No ns 0.7157

Yes i =0.0001
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We can conclude that there is a significant effect of alcohol consumption on the way the attractiveness
of a date is perceived but it varies significantly between genders (p=7.99e-05). With 2 pints or less,
boys seem to be very slightly more picky about their date than girls (but not significantly so) but with 4
pints the difference is reversed and significant (p<0.0001).

100
)
80 [ ) [ ]
[ X ) ® Female
° C ) ) ) ® Male
. == .
60 .I.
& V) ) ﬁ [ ]
I} ° °
[&]
] ) )
40 ﬁ
M
20 [ ]
0 T T T
None 2 Pints 4 Pints

5-4 Non-parametric data

What if the data do not meet the assumptions for a 2-way ANOVA? Well, it is a problem as the equivalent
test: the Scheirer-Ray-Hare is not well documented nor well regarded, so we will not cover it in this
manual.

If we absolutely must, there is a not-so-elegant and a-bit-cumbersome way to deal with such a design:
build groups like we did in the 2-way ANOVA above so from a 2 groups by 3 groups design (2-way) we
get a 6 groups one (1-way). To this design, we can apply a Kruskal-Wallis approach.
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Chapter 6: Correlation

If we want to find out about the relationship between 2 variables, we can run a correlation.

Example (File: roe deer.xlsx).

When we want to plot data from 2 quantitative variables between which we suspect that there is a
relationship, the best choice to have a first look at our data is the scatter plot. So, in GraphPad, we go
> choose an XY table.

We have to choose between the x- and the y-axis for our 2 variables. It is usually considered that “x”
predicts “y” (y=f(x)) so when looking at the relationship between 2 variables, we must have an idea of
which one is likely to predict the other one.

In our particular case, we want to know how an increase in parasite load (PL) affects the body mass
(BM) of the host.

Roe Deer
30 -
-~ Male

—_ -o- Female
oy 25 -
=
w
% 20
S 20+
=
S
D 154

10 T T T L T 1

1.0 15 2.0 25 3.0 35 4.0

By looking at the graph, one can think that something is happening here. Now, if we want to know if the
relationship between our 2 variables is significant, we need to run a correlation test.

6-1: Pearson coefficient
A bit of theory

A correlation is a measure of a linear relationship (can be expressed as straight-line graphs) between
variables. The simplest way to find out whether 2 variables are associated, is to look at whether they
co-vary. To do so, we combine the variance of one variable with the variance of the other.

cov (¥, ¥) =

< [xz'_mu}z'_m
1 W I

1=

A positive covariance indicates that as one variable deviates from the mean, the other one deviates in
the same direction. In other words, if one variable goes up the other one goes up as well.
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The problem with the covariance is that its value depends upon the scale of measurement used, so we
won’t be able to compare covariance between datasets unless both data are measures in the same
units. To standardise the covariance, it is divided by the SD of the 2 variables. It gives us the most
widely-used correlation coefficient: the Pearson product-moment correlation coefficient “r”.

2% -50 =)

i=1

Ji (x:- - f:'gi 0’:‘ _fj'g

iml il

F=

Of course, we don’t need to remember that formula but it is important that we understand what the
correlation coefficient does: it measures the magnitude and the direction of the relationship between
two variables. It is designed to range in value between 0.0 and 1.0.

[ S I | I S B
10 -08 -06 04 02 00 +02 +04 405 +08 +1.0

—_— —_—
Negative Positive
Relationship Relationship
AX Y AX LY
WX AY XY

No relationship

The 2 variables do not have to be measured in the same units but they have to be proportional (meaning
linearly related).

One last thing before we go back to our example: the coefficient of determination r2: it gives us the
proportion of variance in Y that can be explained by X, as a percentage.

One way to run a correlation with GraphPad is simply to click on the little icon that represents a
regression line in the Analysis window but before that, don’t forget that we need to check the normality
of our data. In our case, we are good: D’Agostino and Pearson tests: males: p=0.3083 and females:
p=0.5084).

¢ Window Help
board Analysis Interpret
=|Analyze 7]

Fit a line with linear regression

If we look into the results section, we will find that there is a strong negative relationship (for the males)
and a weak one (for the females) between the 2 variables, the body mass decreasing when the parasite
burden increases (negative slopes).
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- A B
Linear reg. . B
] T abular resuits Male Female For the males the equation would be:
y Body Mass = 30.2 - 4.621*Parasite Burden.

1 Bestfitvalues It tells us that each time the parasite burden increases
Z | Shope by 1 unit, the body mass decreases by 4.621 units and
3 ¥-int t . .

niereep that the average male roe deer in that sample weights
4 H-intercept
- 30.2 kg.
2 1lslope
6
7 std. Error
5 Slope 1.287 1.721
9 Y-intercept 3.025 3.453
10
11 95% Confidence Intervals
12 Siope 7.480 to -1.753 5637 1o 1.861 A coefficient of determination r? = 0.56 means that
13| eintercept 23.46t0 36.94 17.51t0 32.58 56% of the variability observed in the body mass
14 | xi 5 infini . .

cintercept 480210 13.47 5738 to +infinity can be explained only by the parasite burden.
15
16 Goodness of Fit
17 Rsquare 0.5630 0.08119
18 Syx 15 555
19
20 Is slope significantly non-zero?
iyl F 12.89 1.204
22 [OFn, DFd . .
: : <«— Therelationship between body mass and

23 Pvale 0.0049 0.2840 te burden is sianifi .
24 Deviation from zero? 1T s b Ericant parasxte urden is Slgmﬁcantfor mates
25 (p=0.0049) but not for females (p=0.2940).
26 Equation Y =-46217% + 3020 Y =-1.888%K +25.04
27
28 |pata
29 Number of X values 12 25
30 | Maximum number of ¥ replicates 1 1
3 Total number of values 12 14
32 | Number of missing values 0 12

We may want to test whether there is a significant difference in the strength of the correlation between
males and females. Some packages, like SPSS, allow us to run an ANCOVA which is a cross between
the correlation and the ANOVA. It tests together the difference in body mass between males and
females, the strength of the relationship between the body mass and the parasite burden and finally the
‘interaction’ between parasite burden and gender i.e. the difference in the relationship between body
mass and parasite burden. We cannot run this analysis with GraphPad Prism.

However, we can test whether the 2 slopes are significantly different.

When we click on the regression line, we can choose to compare the slopes and the intercepts.

A

-

Parameters: Linear Regression

sl

Interpolate

Compare

re the slopes equal?

[ Interpolate unknowns from standard curve

Test whether slopes and intercepts are significantly different
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F =1.60371. DFn=1 DFd=22
P=0.2186

A key thing to remember when working with correlations is never to assume a correlation means that a
change in one variable causes a change in another. Sales of personal computers and athletic shoes
have both risen strongly in the last several years and there is a high correlation between them, but we
cannot assume that buying computers causes people to buy athletic shoes (or vice versa).

Power analysis with correlation

The data we analysed were actually from a pilot study. If we assume that the correlation observed in
the female group is a good representation, then to reach significance we would need: n=84.

i G*Power 313 = X

File Edit View Tests Calculator Help

Central and noncentral distributions | Protocol of power analyses

[1] -— Thursday, December 06, 2012 — 152256

Exact - Correlation: Bivariate normal model

Options:  exact distribution

Analysis: A priori Compute required sample size
Input: Tailis) = Two

Correlation p H1 = 03

o err prob = 005
Poer (1-8 err prob) = o
Correlation p HO =0

Output: Lower critical r -0.2145669

Upper critical r 0.2145669 m
Actual power = 0.8003390
Print

Test family statistical test

[Exact ] [correiation: Bivariate normal model -

Type of power analysis

[A priori: Compute required sample size - given &, power, and effect size v]

Input Parameters Output Parameters

Tail(s) Lower critical r -0.2145669
Corrlation 1 os uppercrmear 02145859

aerr prob 0.0s Total sample size 84
Power (1-6 err prob) 0.80 Actual power 0.8003390
Correiation p HO 0
Coefficient of determination p2 05
Correlation p H1 E
| caicutate ana transter to main window |
opons | [ x-vpiotrorarangeorvaes | [ caicuae |

We may also be interested in the level of power we have achieved with our sample.
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g »
i G*Power 313 [
File Edit View Tests Calculator Help {
Central and noncentral distributions | Protocol of power analyses
[(3) = Tuescay, November 27, 2012 — 160228 N ool
|Exact - Correlation: Bivariate normal model
Options: exact distribution
|Analysis:  Post hoc: Compute achieved power
Input: Tas(s) - Two
Correlation p H1 = 0.3000000
@ err prob = 005
Total sample size - 14 Clear
Correlation p KO -0
|Output: Lower critical r - ~0.5324128 -
Upper critical r = 05324128 v
Power (1-B err prob) - 01814126 8
s Print
Test family Statistical test
Exact o | Correlaton: Bivariate normal model v
Type of power analysis
Post hoc: Compute achieved power - given (, sample size, and effect size -
Input Parameters ~ Output Parameters
Tais) | Two b Lower critical r -0.5324128
Determine => | Correlation p H1 03000000 Upper critical r e &
err prod 0.05 Power (1 err prod) 01814126
Total sample size 4
Correlation p HO 0
Post-hoc power analysis:
-
P T Yy & Coefhicient of determination p? 0.09
. .
with a sample of 14 and quite a weak effect, R coises i =
3 0,
you only achieved a 18% power. Catculae and tansfer 10 main window
| Close
Options. | X-Y plot for a range of values Caiculate

6-2 Linear correlation: goodness-of-fit of the model

Now, R? helps with understanding how good the model is but what happens when there are values
which really misbehave.

We can identify them with Prism using XY analyses>Nonlinear regression. This allows us to access
the diagnostic tools we need, which are not accessible through Correlation or Linear regression. Even
though it is the non-linear section, one of the possible models is Line, which is exactly what we want.

Example (File: exam anxiety.xlsx).

In this dataset, we try to quantify the realtionship between time spent revising and exam anxiety. We
also want to know is there is a difference between boys and girls in that matter.
Visually, we can identify at least 2 values which look very much like outliers.
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Exam anxiety

100
o . * L4
®e
L]
80 o N - Anxiety F
. - Anxiety M
¢ ® Anxiety F
L
. A ® Anxiety M
60 ©
z
2
x
c
<
40
L
20 .
L]
0 T T T —&
0 20 40 60 80 100

Revise

From the nonlinear section, we go into Diagnostics.

Parameters: Monlinear Regression

Model Method Compare Constrain Initial values Range Output Confidence Diagnostics Flag

How to gquantify goodness-of-fit?

; Sy.x Sum-of-Squares
[[] adjusted R squared [Jrmse arce

Are residuals Gaussian (normal)?

[[] Anderson-Darling test

D'Agostino-Pearson omnibus normality test

[ shapiro-wilk normality test

[ kolmogorov-smirnoyv normality test with Dallal-wikinson-Liliefor P value
Are residuals dustered or heteroscedastic?

Runs test Replicates test [ Test for appropriate weighting {homoscedasticity)
What residual graph to create?

(®) Mo residual graph

(O Residual ve ¥ plot

(O Residual ve ¥ plot

() Homoscedasticity plot

O aQpht
Are the parameters intertwined, redundant or skewed?

|:| Covariance of parameters

[[] pependency

[JHougaard's measure of skewness

[Imake these diagnostics choices the default for future fits,

Learn Cancel
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Mormality of Residuals

D'Agostino & Pearson omnibus K2 [

L Tobed s Anx\’;l-' F mu-;u " Global ;s,narca- eRe ('E-Enp w

y = : = = - Passed normality test (alpha=0.05)2No. Mo
1 P value summary

‘Comparison of Fits

2z Null hypothesis Slope same for all data sets
3 | Aremative hypotnesis [Slagegiterentfor each dats set |Numoer of points
4 | Puale (Joozee ) # of A values 51 [103
§ | Condusion (alpha = 0.05) “TREretnull hypothesis #Y values analyzed 51 52
6 | Preferred model Slope different for each data set Outliers (not excluded. G=1%) (‘2 i)
7 | FDFn.DFg) 4852 (1,99) "

-
9 [Siope diflerant for each data set

19 estitvaluss Revise Revise Exam aniety
| vintercept e ] Canelation - .
12| siope 06238 ) € [0sa53) Ansiety F Anely M .
13 |std. Emor
4 Yintercept 2279 2621 4 P . K
eatson 1 -
15 | Siope 0.08173 0.1016 ' ( T ( T
16 [35% C (profile likalihood) 95% confidence inteval ; 07055 Qo 03T <
7 | vintercept 373610 06 52 7893 to 80.45 Rsquared 6745 03568 h
18 | Siope 00881006505 | 073041003312 .
19 |Goodness ol it P value
20 | Degrees of Freedom p— b— P (two-tailed) ( [-00001y (|-00001 Y
21 | Rsquare ([os7as [QED) Pyalie summary  Te— S— »
22 | Apsolule Sum of Squares = Toere Significant? (alpha = 0.05{ Ves Ves .
23 | syx [1042 133

Revise

Prism tells us several things here:

- there is a negative relationship between the 2 variables, and this relationship is stronger in girls
than in boys,

- the RZis way smaller for boys than for girls, which seems a bit suspicious looking at the graph,
- the residuals are not normal, which is bad,
- and there are 3 outliers.

Let’s talk about residuals for a minute. That word, residual, literally means what is left. In our case, the
lines of best fit are supposed to summarise, as in to model, the relationship between our data. We can
also say that it is supposed to predict, for example, the level of anxiety from a given time spent revising.
But of course, like in any model, the prediction comes with a measure of error and the individual error
associated with a particular prediction is the residual. This is the same error as the one we came across
when we went through the Sum of Squared Errors and the Standard Deviation.

So the residual is what is left after the model has been fitted.

Now, the idea is that these residuals should be normally distributed, which will reflect the good fit of the
model, with residuals symmetrically distributed on either side of the lines of best-fit.

So these residuals are used in all sorts of ways to check the assumptions.

Prism tells us which the 3 misbehaving students are.

X A B
Revise Anxiety F Anxiety M
d x X Y Y
24 84.000) 0.056
a7 42.000 95.970)
78 2.000 10.000)

And looking at the residual plot, we can easily spot them. Most of the residuals appear nicely and
consistently spread, apart from these 3 values.
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Residuals: Nonlin fit of Exam anxiety
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Revise

The next step is to remove the outliers. We can remove them all or perhaps, like here, keep student 24
as she seems to ‘belong’ more than the others.

d v ¥ Y
Comparison of Fits
Hull hypathesis Slope same for all data sets
Altemaive hypothesis. erent for each data sat
Fualue { 0008
el hypotesis
Preferred modsl Siope diferent for each data sat
F (DFn. OFd) 8.022 (1, 87)
‘Slops diferent for each data st
T |Bestit values
Wintercept 0225 8597
= = - Py o Slope 0875 04075
Revise i[5t Ermor
P Wintercent 1036 1648
Siope 007033 0.08320
i7]35% G iprofie lieiinood)
Residuals: Nonlin fit of Exam anxiety intercest | EETERT] |sass s 9028 _
® | siope 0161007336 |-0.7347 10 -0.4604 = —
1 |Goodness of it CoRm - .
soonE snsaty 1
1| Degrees of Freedom P
20 R square 0.7633 0653 | i i
e i Fearsont —
L. “ . . Absolute Sum of Squares . ) )
4 . & fross foze — )
2 PR B, > [ Romares 073 =
HE o - ] - e oo
K . . .
E e N * Normality of Residuals Py
‘g D'Agostino & Pearson omnibus K2 |0.5158 5132
Vs
Pvalue 0.7727) 0.0768 )
-3
Passed normality test (alpha=0.05)7| Yes Yes
P value summary ns ns
0
a hety F
o Aoty
m w0 ) [ 100
Revise

We can see now that the R? for the boys is way higher and there is no more departure from normality
for the residuals.

There is a strong and significant relationship between revising time and anxiety and that relationship is
significantly different between boys and girls.
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6-2 Non-parametric data: Spearman correlation coefficient

The truth is that Pearson coefficient behaves pretty well even if data are not normal. Spearman is
used mostly for ranked data. Spearman's correlation determines the strength and direction of the
monotonic relationship between your two variables rather than the strength and direction of the linear
relationship between your two variables, which is what Pearson's correlation determines.

The formula for p (rho, the equivalent of r) is the same for Pearson and Spearman, except that for
Spearman the values are ranks.

Example (File: dominance. x1sx)

After determining the dominance rankings in a group of 6
male colobus monkeys, Melfi and Poyser (2007) counted
eggs of Trichuris nematodes per gram of monkey faeces, a
measurement variable.

They wanted to know whether social dominance was associated with the number of nematode eggs,
so they converted eggs per gram of faeces to ranks and used Spearman rank correlation.

600017

50001

N
o
o
.

Eggs per gram
8
8

Erroll Milo Fraiser Fergus Kabul Hope
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i Dominance
i Comnelation Ve

Eggs per gram

F

1 Spearmanr

2 | r -0.9429
3 95% confidence interval

4

5 P value

6 | P (two-tailed) 0.0167

*

f P value summary
& | Exact or approximate P value? Exact
9 | Significant? (alpha = 0.08) Yes
10

11 'Number of XY Pairs 6

12

We will almost never use a regression line for either description or prediction when you do Spearman
rank correlation, so don't calculate the equivalent of a regression line.

As for the relationship between dominance and parasitism, it is significant (p=0.017) with high ranking
males harbouring a heavier burden.
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Chapter 7: Curve fitting: Dose-response

Dose-response curves can be used to plot the results of many kinds of experiments. The X axis plots
concentration of a drug or hormone. The Y axis plots response, which could be pretty much any
measure of biological function.

The term “dose” is often used loosely. In its strictest sense, the term only applies to experiments
performed with animals or people, where we administer various doses of drug. We don't know the actual
concentration of drug at its site of action—we only know the total dose that was administered.

However, the term “dose-response curve” is also used more loosely to describe in vitro experiments
where we apply known concentrations of drugs. The term “concentration-response curve” is a more
precise label for the results of these types of experiments.

Dose-response experiments typically use around 5-10 doses of agonist, equally spaced on a logarithmic
scale. For example, doses might be 1, 3, 10, 30, 100, 300, 1000, 3000, and 10000 nM. When converted
to logarithms (and rounded a bit), these values are equally spaced: 0.0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5,
and 4.0.

In a dose-response curve, the Y values are responses. For example, the response might be enzyme
activity, accumulation of an intracellular second messenger, membrane potential, secretion of a
hormone, change in heart rate, or contraction of a muscle.

IC50 or EC50

The agonist can be an inhibitor or a stimulator. The higher the concentration of the agonist, the stronger
the response.

IC50 (I=Inhibition): concentration of an agonist that provokes a response half way between the
maximal (Top) response and the maximally inhibited (Bottom) response.

EC50 (E=Effective): concentration that gives half-maximal response

This is purely a difference in which abbreviation is used, with no fundamental difference.

Many log(inhibitor) vs. response curves follow the familiar symmetrical sigmoidal shape. The goal is to
determine the IC50/EC50 of the agonist.

Top+ Top-

Bottom+ Bottom -

ek B AL B ERELL |

r -

ey —y parigs. .
log [agonist]
log [concentration]

Model: Y=Bottom + (Top-Bottom)/(1+10”((LogeC50-X)*HillSlope)) Model: Y=Bottom + (Top-Bottom)/(1+10"((X-LoglC50)))
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To run a curve fitting analysis in GraphPad, we first create an XY data table then we enter the logarithm
of the concentration of the agonist into X and the response into Y in any convenient units. We enter one
data set into column A, and use columns B, C... for different treatments, if needed.

We can enter either biological or technical repeats but we will have to treat them differently during the
analysis.

The sigmoid model assumes that the dose response curve has a standard slope, equal to a Hill slope
(or slope factor) of -1.0. This is the slope expected when a ligand binds to a receptor following the law
of mass action, and is the slope expected of a dose-response curve when the second messenger
created by receptor stimulation binds to its receptor by the law of mass action. If we don't have many
data points, consider using the standard slope model. If we have lots of data points, pick the variable
slope model to determine the Hill slope from the data.

2]

Mode |Meﬂ'|od | Compare | Constrain | Initial values | Range I Output | Confidence I Diagnostics | Flag |
I

Parameters: Nonlinear Regressicn

Fit | Compare I Constrain I ‘weights I Initial walues | Range

Choose an equation

Recently used

Standard curves to i p
Dose-response - Stimulation
Dose-response - Inhibition
Dose-response - Special
Binding - Saturation

Binding - Compelitive
Binding - Kinetics

Enzyme kinetics - Inhibition
Enzyme kinetics - Subtrate vs. Velocity
Exponential

Lines

Polynomial

Gaussian

Sine waves
Classic

FEEEHEEEEEEEBEEBEE

of Prism

from prior

Step by step analysis and considerations:

1- Choose a Model. This will come from our knowledge of the experiment we are running. Luckily,
GraphPad helps us by listing the possible experiments we might be running. One thing to keep
in mind is that it is not necessary to normalise to run a curve-fitting analysis, sometimes it is
better to actually show the real data. We should choose it when values for 0 and 100 are
precisely defined. Another thing: to go for a variable slope (4 parameters equation) is best when
there are plenty of data points.

2- Choose a Method: outliers, fitting method, weighting method and replicates.
3- Compare different conditions: depending on our questions, we choose between 4 options.

© No comparison

Diff in parameters

Diff between conditions for one or more parameters —»
Constraint vs no constraint

Diff between conditions for one or more parameters —»

For each data set, which of two equations [models) fits best?

Do the best-fit values of selected unshared parameters differ between data sets?

For each data set, does the best-fit value of a parameter differ from a hypothetical value?
Does one curve adequately fit all the data sets?
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4- Constrain: depends on the experiment, depends if the data define, or not, the top or the bottom
of the curve.

5- Initial values: defaults usually OK unless the fit looks funny
6- Range: defaults usually OK unless we are not interested in the x-variable full range (i.e. time)

7- Output: summary table presents same results in a summarised way.

8- Confidence: calculate and plot confidence intervals

9- Diagnostics: check for normality (weights) and outliers (but keep them in the analysis). Also
run the replicates test to see whether the curve gets too far from the points or not. Finally have
a look at the residual plots.

Example (File: inhibition data.xlsx).

The Y values are the raw response to the agonist concentrations and the X values are the log of the
concentration of the agonist. The replicates are biological replicates.

To run the analysis, we go >Analysis>Nonlinear regression (curve fit). We choose, log(agonist) vs.
response — Variable slope (four parameters).

L 1 A A L i "

.
| Parameters: Nonlinear Regression ﬁ

- Fit .Eompale | Constrain | ‘weights I Initial values I Hangel Output [ Confidence I Diagnastics | Flag ‘
n 1 e L L A

| Parameters: Nonlinear Regression @
+ Recently used |
User-defined equations ‘
Standard curves to interpolate
Daose-response - Stimulation | What question are you asking?
log{agonist] vs. response (thiee parameters) |

9 log{agonist] vs. response - Variable slope [four parameters) ]

r log(agonist] vs. normalized response

Choose an equation

Fit | Compare | Constrain | Weights | Initial values [ Range | Output ‘ Confidence | Diagnostics | Flag

"
=

() No comparison

() For each data set, which of two equations [madels] fits best?

log{agonist) vs. normalized response - Variable slope E @ Do the bestit values of selected unshared parameters differ between data sets?
| [4gonist] vs. response (thiee parameters) g () For each data set, does th I - 1
1 [4gonist] vs. response - Variable slope (four parameters) | ) Does ane curve adequate | Parameters: Nonlinear Regression

P [&gonist] vs. normalized response Comparison method

[&gonist] vs. normalized response - Variable slope i K .
1 5 Dose-response - Inhibition | () &kaike's Information Criter |
_— P A~ e mast likely to have genera__|

b @ Extra sum-of-squares F tes

Fit ‘ Eun'pala] Constrain l ‘weights I Initial valuesl Range l Output | Conlidence | Diagnastics |

Do the initial parameter values define a curve near the data?

Select the simpler model u—| ) Don't fit the curve. Instead plot the curve defined by the initial values of the parameters
Choose one or more paran | @ Fit the curve. Maximum number of iterations 1000 =
9 [BOtle | How to quantify goodness-of-fit?
Top — - ) - X X
3 LogEC50 ) VIR squate [ ]Adjusted R squared (V] Sum-of-Squares  [V] Sy [TIRMSE [Tl AICe
1 [CTHilSlope Residual tests. Are the residuals G ian with appropriate weighting?

V] Dégosting-Pearson omnibus nomality test (recommended)

| Shapiowilk nomality test

|| Kolmogorow-Smimoy romality test with D allal\w/ikinson-Lilliefor P value (not recommended)
3 || Test for appropriaste weighting [homoscedasticity)

— Does the curve systemalically deviate from the points?

— Runs test | Replicates test [ Residual plot [create a separate graph)
1 Are the i ined, redundant or skewed?
— (| Covariance of parameters [ Dependency "] Hougaard's measure of skewness

Could outliers impact the results?

3 V] Courit the: outliers

The results are shown below.
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LogECS0 same for all dala sets

Fesponm

LogECS0 different for each data set

< 0.0001

Reject null hypothesis
LogECS0 different for each data set

More normaized datad paramaters

ECH0

& Mainhibitor
& Inhibitor

T T T T T 1
43 40 43 A0 T4 70 84 A0 A3 A0 43 40 a3 Ag

40 logiAgonist
64.66 (1,48) it LogECs? | 75 J e

895% Confidence Intervals

Bottom -41.35 to 2454 -2215 to 31.58

Top 348310 3926 323110 373.0

LogECS0 -7.324 10 -6.991 -6.185 to -5.837

HilSlope 06347 to 1.158 0.6085 to 1,186

EC50 4.73%-008 to 1.020e-007  [5.538e-007 to 1.4552-006
| Rsquare [0.9883

1

i 0.9653
I

The way the graph looks is a good way to check if the model is a good fit. We have also run Replicate
tests to check that the curve does not deviate from the data. The p-value is small for the No Inhibitor
group indicating that the curve might not describe the data that well.

Mo inhibitor
Replicates test for lack of fit
3D replicates 2271
SO lack of fit 41.84
Discrepancy (F) 93
F value 0.0247
Evidence of inadequate model? Yes

One way to check about it is to look at the residuals. In Diagnostics:

What residual graph to create?
() No residual graph
@) Residual vs X plot

() Residual vs ¥ plot

Residual

() Homoscedasticity plot

2 QQ plat X

Inhibitor

2552
3233
1610
0.1989
No
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The scatter of the residuals looks random enough so we can accept the model.
We should also look

e at the parameters: are they plausible?

e at the confidence intervals: are they not too wide?

Non- normalized data 4 parameters

500
wof 3
3001
@
w
c
2 2001
]
x [ - Noinhibitor
o
1004 Ny i -® Inhibitor
'
________ 2
0 = "t ! .
- 95. 9024580 75 70 £5 60 55 50 45 40 35 30
N log(Agonist)
100

We can also

e Check for outliers and departure from normality (both OK here)
¢ Finally, we should have a look at the R2 and check that it is as close as possible to 1
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Chapter 8: Qualitative data
8-1 Comparing 2 groups

Qualitative data are non-numerical data and the values taken are usually names (also nominal data,
e.g. variable sex: male or female). The values can be numbers but not numerical (e.g. an experiment
number is a numerical label but not a unit of measurement). A qualitative variable with intrinsic order in
their categories is ordinal. Finally, there is the particular case of qualitative variables with only 2
categories, it is then said to be binary or dichotomous (e.g. alive/dead or male/female).

We are going to use an example to go through the analysis and the plotting of categorical data.

Example (File: cats and dogs.x1sx)

A researcher is interested in whether animals could be trained to line ”
dance. He takes some cats and dogs (animal) and tries to train them
to dance by giving them either food or affection as a reward (training)

for dance-like behaviour. At the end of the week a note is made of which animal
could line dance and which could not (dance). All the variables are dummy
variables (categorical).

The pivotal (!) question is: Is there an effect of training on dogs’ and cats’ ability \ ‘ \ \
to learn to line dance? We have already designed our experiment and chosen ' l l
our statistical test: it will be a Fisher’s exact test (or a Chi-square) :

Line Dancing

Power Analysis with qualitative data

The next step is to run a power analysis. In an ideal world, we would have run a pilot study to get some
idea of the type of effect size we are expecting to see. Let’s start with this ideal situation and concentrate
on the cats. Let’s say, in our pilot study, we found that 25% of the cats did line dance after they received
affection and 70% did so after they received food.

Using G*Power (see below), we should follow a 4 steps approach:
-Step 1: the Test family. We are going for the Fisher’s exact test, we should go for ‘Exact’.

-Step 2: the Statistical Test: we are looking at proportions and we want to compare 2 independent
groups.

-Step 3: the Type of Power Analysis: we know our significant threshold (a=0.05), the power we are
aiming for (80%), we have the results from the pilot study so we can calculate the effect size: we go for
an ‘a priori’ analysis.

-Step 4: the tricky one, we need to Input Parameters. Well, it is the tricky one when we have no idea
of the effect size but in this case we are OK. Plus if we enter the results for the pilot study, G*Power
calculates the effect size for us.
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So if we do all that, G*Power will tell us that we need 2 samples of 23 cats to reach a power of 80%. In
other words: if we want to be at least 80% sure to spot a treatment effect, if indeed there is one, we will

need about 46 cats altogether.

fit G*Power 3.1.9.2 = =
File Edit View Tests Calculator Help
Central and noncentral distributions | Protocol of power analyses
Test family Statistical test
[Exa(t v] lepumons Inequality, two independent groups (Fisher's exact test) V]
Type of power analysis
A priori: Compute required sample size — given o, power, and effect size ']
Input Parameters Output Parameters
Tail(s) Sample size group 1 23
Proportion p1 0.25 Sample size group 2 23
Proportion p2 0.7 Total sample size 45
o err prob 0.05 Actual power 0.8284631
Power (1-B err prob) 0.80 Actual o 0.0248526
Allocation ratio N2/N1 1
Options ] [ X-Y plot for a range of values ] [ Calculate

It is quite intuitive that after having run such an experiment, we are going to end up with a contingency
table that is going to show the number of animals who danced or not according to the type of training
they received. Those contingency tables are presented below.

Count

Type of training

Food | Affection | Total
Did they vyes 26 6 32
dance? no 6 30| 36
Total 32 36 68
Cat
Count

Type of training

Food | Affection | Total
Did they Yes 23 24 47
dance? no 9 10| 19
Total 32 34 66

Dog
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The first thing to do is enter the data into GraphPad. As mentioned before, while for some software it is
OK (or even easier) to prepare our data in Excel and then import them, it is not such a good idea with
GraphPad because the structure of the worksheets varies with the type of graph we want to do. So,
first, we need to open a New Project which means that we have to choose among the different types of

tables mentioned earlier. In our case we want to build a contingency table, so we
and we click on OK.
The next step is to enter the data after having named the columns and the rows.

choose ‘Contingency’

-

w Projectl:Data 1 - GraphPad Prism 8.0.2 (259), Beta - =
File Edit View Insert Change Arrange Family Window Help
Prism File Sheet Undo Clipboard Analysis
- (% | &~ - of IF bl <0 Sn
F .
HE (X +rw- | O- BB | Cweye 0 5|
Search.. - Tal:ul_e faimat: Outcome A | Outcome B | Outc
Contingency Dance es Dance Mo
w Data Tables » y x
Dog 1 |Food 73 9
*) New Data Table... 2 Affection 24 10
~ Infn il 3

The first thing we want to do is to look at a graphical representation of the data. GraphPad will have

prepared it for us and if we go into ‘Graphs’ we will see the results.

We can change pretty much everything on a graph in GraphPad and it is very easy to make it look like

either of the graphs below.

30+

Bl Dance Yes 1.0+
B3 Dance Mo 3 Dance No
204 0.8+ Bl Dance Yes
[
E c
é §o0s-
Q
104
Lo
0.2+
0-
Food Affection 00

Food

Affection

I will not go into much detail in this manual about all the graphical possibilities of GraphPad because it
is not its purpose, but it is very intuitive and basically, once we have entered the data in the correct way,

we are OK. After that all we have to do is click on the bit we want to change and,

pop up.

usually, a window will

To get the graph on the right however, we need to add extra step: Analyze>Contingency table
analyses>Fraction of total. This will produce a data table containing the data as proportions which we

can then plot.
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1 Analyze Data &J |

Built-in analysiz - R

Wihich analyzis? Analyze which data zets? B

Transform, Hormalize... J|&:Dance ves u
XY analyses 7| B:Dance Mo E
Column analyses

Grouped analyses
Contingency table analyses
Chi-zquare [and Fisher's exact] test —
Colurnn statistics

Row means with 50 or SEM
Fraction af tatal

T F HFEE

As mentioned before, to analyse such data we need to use a Fisher’s exact test but we could also use
a y? test (Chi-squared).

Both tests will give us similar p-values for big samples, but for small samples the difference can be a
bit more important and the p-value given by Fisher’s exact test is more accurate. Having said that, the
calculation of the Fisher’s exact test is quite complex, whereas the one for Xz is quite easy so only the
calculation of the latter is going to be presented here. Also, the Fisher’s test is often only available for
2x2 tables, as in GraphPad for example, so in a way the XZ is more general.

For both tests, the idea is the same: how different are the observed data from what we would have
expected to see by chance, i.e. if there were no association between the 2 variables. Or, looking at the
table we can also ask: knowing that 32 of the 68 cats did dance and that 36 of the 68 received affection,
what is the probability that those 32 dancers would be so unevenly distributed between the 2 types of
reward?

When we want to insert another sheet we have 2 choices. If the second sheet has the same structure
and variables’ names that the first one, we can right-click on the first sheet name (here ‘Dog’) and
choose ‘Duplicate family’ and all we have to do is change the values. If the second sheet has different
structure, we click on ‘New>New data table’ in the Sheet Menu.

A bit of theory: the Chi? test

It could be either:
- aone-way Xz test, which is basically a test that compares the observed frequency of a variable
in a single group with what would be the expected by chance.
- atwo-way Xz test, the most widely used, in which the observed frequencies for two or more
groups are compared with expected frequencies by chance. In other words, in this case, the Xz
tells us whether or not there is an association between 2 categorical variables.

An important thing to know about the XZ, and for the Fisher’'s exact test for that matter, is that it does
not tell us anything about causality; it is simply measuring the strength of the association between 2
variables and it is our knowledge of the biological system we are studying which will help us to interpret
the result. Hence, we generally have an idea of which variable is acting on the other.

The Chi? value is calculated using the formula below:
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(Observed Frequency - Expected Frequency)

Expected Fregquency

The observed frequencies are the one we measured, the values that are in our table. Now, the expected
ones are calculated this way:

Expected frequency = (row total)*(column total)/grand total

So, for the cat, for example, the expected frequency of cats line dancing after having received food as
reward would be : (32*32)/68 = 15.1

Now we can also choose a probability approach:
- probability of line dancing: 32/68
- probability of receiving food: 32/68

If the 2 events are independent, the probability of the 2 occurring at the same time (the expected
frequency) will be: (32/68)*(32/68) = 0.22 and 22% of 68 = 15.1

Did they dance? *Type of Training * Animal Crosstabulation

Type of Training
Food as |Affection as

Animal Rew Rew ard Total
Cat Did they Yes Count 26 6 32
dance? Expected Count ( 15.1 16.9 320
No Count 30 36
Expected Count 16.9 19.1 36.0
Total Count 32 36 68
Expected Count 32.0 36.0 68.0
Dog Did they Yes Count 23 24 47
dance? Expected Count 22.8 24.2 47.0
No Count 9 10 19
Expected Count 9.2 9.8 19.0
Total Count 32 34 66
Expected Count 32.0 34.0 66.0

Intuitively, one can see that we are kind of averaging things here, we try to find out the values we should
have got by chance. If we work out the values for all the cells, we get:

So for the cat, the %2 value is:

(26-15.1)%/15.1 + (6-16.9)%/16.9 + (6-16.9)? /16.9 + (30-19.1)%/19.1 = 28.4
Let's do it with GraphPad. To calculate either of the tests, we click on = Analyze in the tool bar menu,

then the window below will appear.
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-

1 Analyze Data

Built-in analyzis -

- ‘which analpgiz? Analyze which data sete?

Tranzform, Normalize... [¥]ADance Yes
XY analyzes B:Dance Mo
Column analyses
Grouped analyses
Contingency table analyzes
3 Chi-square [and Fiz
Column statistics
Fow means with S0ar SEM
Fraction of tatal
Survival analyses
Parts of whole analyses
Generate curve
Simulate data
Recently used

OEBEEH

HFEEHEBHE

GraphPad will offer us by default the type of analysis which goes with the type of data we have entered.
So, for the question, ‘Which analysis?’ for Contingency table, the answer is Chi-square and Fisher’s
exact test.

If we are happy with it, and after having checked that the data sets to be analysed are the ones we
want, we can click on OK. The complete analysis will then appear in the Results section.

Below are presented the results for the xz and the Fisher’s exact test for the dogs.

Table Analyzed Dog

P value and statistical significance

Test Chi-square
Chi-square, df 0.01331.1
z 0.1154

P value 0.9081 )
ns

P value summary

One- or two-sided Two-sided
Statistically significant (P = 0.05)7 |Mo

Table Analyzed Dog

P wvalue and statistical significance

Test Fishers exacttest
P value >0.9999 )

P wvalue summary ns

One- or two-sided Two-sided

Statistically significant (P =< 0.05)7MNo
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Let’s start with the XZ: there is only one assumption that we have to be careful about when we run it:

with 2x2 contingency tables we should not have cells with an expected count below 5 as if it is the case
it is likely that the test is not accurate (for larger tables, all expected counts should be greater than 1
and no more than 20% of expected counts should be less than 5). If we have a high proportion of cells
with a small value in it, then we should use a Fisher’s exact test. However, as | said before much
software - including GraphPad - only offers the calculation of the Fisher’s exact test for 2x2 tables. So
when we have more than 2 categories and a small sample we are in trouble. We have 2 solutions to
solve the problem: either we collect more data or we group the categories to boost the proportions.

If you remember the x?'s formula, the calculation gives us an estimation of the difference between our
data and what we would have obtained if there was no association between our variables. Clearly, the
bigger the value of the %2, the bigger the difference between observed and expected frequencies and
the more likely the difference is to be significant.

As we can see here the p-values vary slightly between the 2 tests (>0.99 vs.0.9081) though the
conclusion remains the same: the type of reward has no effect whatsoever on the ability of dogs to line

dance. Though the samples are not very big here, the assumptions for the %2 are met so we can choose
either test.

As for the cats, we are more than 99% confident (p< 0.0001) when we say that cats are more likely to
line dance when they receive food as a reward than when they receive affection.

]
1 |Table Analyzed Cat
2
3 |Fisher's exact test
4 P
5 | Pwalue (< 0.0001)
6 P walue summary -
T | One- or two-sided Two-sided
8 Statistically significant? (alpha<0.05) Yes
L]

Table Analyzed Cat

P value and statistical significance

Test Chi-square
Chi-square, df 28.36.1

z 5326

P value (=0.0001)
P value summary wEE

One- or two-sided Two-sided

Statistically significant (P = 0.05)7 Yes
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Graphically, we can choose to plot the actual counts:

Dog Cat

307 304
Il Dance Yes

Il Dance Yes
B pance No B pance No

201 20

Counts
Counts

10 10

Food Affection Food Affection

Or we can plot the percentages or fractions. Though it fails to tell us about the sample size, which is
pivotal information for a correct interpretation of the results, it can be more intuitive visually to identify
differences.

Cat Dog

1004 1004

80

60 B pance No

- Dance Yes

401

Percentage
Percentage

204

Food Affection Food Affection

8-1 Comparing more than 2 groups

Now, if we want to compare more than 2 groups as in more than 2 proportions, it is a bit of an issue as
GraphPad Prism does not allow for it. At least not directly not the way we would do it.

The type of analysis we are after here, like a logistic regression for instance, is not supported by Prism,
at least not yet.

So let’s go through an example to show how we can overcome that problem.

Example (File: cane toads)

In this example, which takes us to Australia, a researcher decided
to check the hypothesis that the proportion of cane toads with
intestinal parasites was the same in 3 different areas of
Queensland.
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The question is: Is the proportion of cane toads infected by intestinal parasites the same in 3 different
areas of Queensland?

Infected Uninfected

Rockhampton 12 8
Bowen 4 16
Mackay 15 5

Easy enough, we enter the data in Prism, and we run a Chi2. This time, we don’t have a choice: Prism
does not allows for the Fisher’s test with a 3x2 table. We get the result below:

J
Table Analyzed Cane toad
Chi-sgquare
Chi-zgquare, df 1285 2
P value 0.0015
P walue summary b
One- or two-tailed MA

Statisticalty =ignificant? (alpha<0.05) |Yes

! |[rata analyzed
Number of rows 3

Number of columns 2

OK, so this p-value tells us that there is a significant difference in infected cane toads in these 3 areas.
Which is consistent with what the graph below tells us.

=3 Uninfected
Bl Infected

15+

Number of Cane toads

Rockhampton Bowen Mackay

Itis basically the equivalent to the omnibus phase of the ANOVA. However Prism does not allow for the
post-hoc tests here so we have to do it manually. We have no choice but to run 2 separate analyses to
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get the pairwise comparisons and then apply a correction for multiple comparisons (here | went for a
Bonferroni correction). We can do it by either excluding the values we don’t want to include or by
creating 2 new tables each containing the data of interest. We could go for the 3 pairwise comparisons
but Mackay vs Rockhampton is a pretty done deal.

P value and statistical significance P value and statistical significance
Test Fisher's exact test Test Fisher's exact test
P value 0.0225 P value 0.0012
=0.0024
p=0.045 _ p=RURsR
1.0 =3 Uninfected
0.8 B [nfected
S 0.6-
ke
4]
L 0.4-
0.2+
0.0-

Rockhampton Bowen Mackay
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Chapter 9: Survival analysis

There is a particular type of categorical data: dichotomous outcome over time, namely survival data.
Survival analyses are applied to data generated by experiments where the outcome is time until death
(or some other one-time event). Most of the time it will be about determining whether a treatment or a
condition changes survival.

To run such an analysis, you need to know:

- about time to event data and censoring

- what is a survivor function and a Hazard function and how to plot a Kaplan-Meier estimate
- how to use log-rank tests and simple Cox regression models.

Time to event and censoring

Time to event data can be applied to a wide range of data but it is always about time until a defined
event. Examples are: time to death, time to progression of cancer, time to development of diabetes,
time to recover from diarrhoea. Time to event data are typically collected in cohort studies (time between
study baseline and event of interest) and clinical trials (time between randomisation and event of
interest). These data are also referred to as survival data.

Survival data are non-negative values and often not normally distributed (usually positively skewed)
which is why the median is much more often used in survival context than the mean.

bdean .
bdedian e dian ke dian
hdode bode bdean bdean MMode
- 1T [ T1
Symmetrical Positive Megative
Distribution Skew Skew

The event of interest is not usually observed for all individuals during the study. An observation is
censored if an individual does not experience it during the study. Censoring time is defined as the time
from baseline/randomisation until the latest date at which the individual is known to be still alive and
event-free. There are several types of censoring:
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INustration of survival data

- Fixed censoring: the event has not occurred when the study has
ended or data analysis is performed.

- Loss to follow-up: individual has been lost to follow-up (e.g. he/she
no longer wished to take part in the study)

- Competing risks: another event occurs which prevents or changes X
risk of occurrence of the event of interest.

study study
opens closes

® — censored observation
X = cvent

Survival analysis methods make use of information from censoring as in all the subjects of a study
(censored or not) are used for probability calculations.

Also survival analyses assume that censoring is non-informative as in if an individual is censored
his/hers subsequent risk of the event of interest in unaffected.

The aims of a survival analysis are usually to:
- To estimate the probability of not experiencing the event of interest (not dying = “surviving”)
over a given period of time (e.g. 5 year survival rate)
- To compare overall survival experience between different groups of individuals (e.g. between
groups in a randomised clinical trial).

A survivor function is often presented as in the graphs below. For example, the probability to survive up
to 2 years is 0.37. The information people are usually after is the median survival time: it is the time
(expressed in days, months, years ...) when half the patients are expected to be alive. It means that
the chance of surviving beyond that time is 50%. For example, in the diagram below the median survival
time = 1.4 years, since the probability of surviving up to 1.4 years is 0.5.

Probability of surviving up to time t
]

Probability of surviving up to time t

0 2 4 6 8 10 0 . . . i ;
t= time (years) 0 2 4 6 8 10
t=time (years)
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Example of time to event data

Example (File: ‘tumours’ in Survival data.xlsx)

Here is a first example of survival data: weeks to deaths or censoring (*) in 20 adults with recurrent
astrocytoma (Data reproduced from BMJ 2004; 328:1073).

weeks astro
6 13 21 30 31% 37 38 47* 49 50 E
63 79 80* 82* 82* 86 98 149 202 219 21

=1}
L
slolo|lalalololo|lalalalalo|lalalo|la]|a]a]s

Usually, the first step of a survival analysis is to build a survival curve using the product limit method of
Kaplan and Meier.

Here are the steps to build such a curve, often referred to as Kaplan-Meier estimation of survivor
function.

First death

There are 20 individuals at t=0 and the first death occurs at t=6 weeks. The probability of dying for each
individual is 1/20=0.05. Therefore the probability of surviving beyond t=6 is (1-0.05)=0.95=19/20

6 13 21 30 31% 37 38 47% 49 50
63 79 80* 82* 82* 86 98 149 202 219

Weeksin | N atrisk | N of deaths at Prob. of | Prob. of no Prob. of surviving up
follow-up | attimet timet death at death at | to and including time t
(t) timet timet
0 20 0 0 1 1
6 20 1 0.05 0.95 1x0.95=0.95
1/20 19/20

“Risk set” at time t
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Second death:

There are 19 individuals in the study between t=6 and t=13 when the second death occurs. No individual
is censored during that period so the probability of dying for each individual is 1/19=0.053. Therefore
the probability of surviving beyond t=13 is 0.95*0.947=0.9 with 0.95=19/20=(1-(1/20) and 0.947=18/19
=(1-(2/19)).

13 21 30 31* S, 38 47* 49 50
63 79 80* 82* B82* 86 98 149 202 219

Weeks in N at risk | N of deaths at Prob. of | Prob. of no Prob. of surviving up
follow-up | attimet death at death at | to and including time t
(t) timet timet
6 20 1 0.05 0.95 0.95
1ie] 19 1 0.053 0.947 0.95x0.947 =0.90
1/19 1-(1/19)

Third and fourth death:

Eighteen individuals are in the study between t=13 and t=21 and the probability of dying for each
individual is 1/18=0.056. The probability to survive beyond t=21 is 0.9*%(1-(1/18))=0.85 with 0.9 coming
from t=13. There are 17 individuals in the study between t=21 and t=30 so the probability of death for
each individual is 1/17=0.059. Hence the probability of surviving beyond t=30 is 0.85*(1-(1/17))=0.8.

21 30 31* 37 38 47* 49 50
63 79 80* 82* 82* 86 98 149 202 219

Weeksin | N atrisk | N of deaths at Prob. of | Prob. of no Prob. of surviving up
follow-up | attimet death at death at | to and including time t
(t) timet timet
13 19 1 1/19=0.053 0.947 0.90
21 18 1 1/18=0.056 0.944 0.85
30 17 1 1/17=0.059 0.941 0.80

Fifth and sixth death:

Sixteen individuals are in the study between t=30 and t=31 but one individual censored at t=31: the
probability of surviving beyond t=31 remains at 0.8. So there are 15 individuals left between t=31 and
t=37 and the probability of surviving beyond t=37 is 0.8*(1-(1/15))=0.747.
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31* 37 38 47* 49 50
63 79 80* 82* 82* 86 98 149 202 219

Weeksin | N atrisk | N of deaths at Prob. of | Prob. of no Prob. of surviving up
follow-up | attimet death at death at | to and including time t
(t) timet timet
30 17 il 0.059 0.941 0.80
il 16 0 0 1 0.80x1=0.80
2/ 15 1 1/15=0.067 0.933 0.80 x0.933 =0.747

The calculations continue until reaching the longest event time and K-M curve can be drawn as a step
function.

First death: t=6, survival probability=0.95

/ Second death: t=13, survival probability=0.90
1001 / Third death: t=21, survival probability=0.85

/

:

:

0.404

0.20 |

0.00

0 26 52 78 104 130 156 182 208
t =time (weeks)

Probability of surviving up to time t

Let's do it with GraphPad. Create a new table in Survival format and enter the data as in page 18. Then
go Analyze>Survival Curve (the default is OK). The Data summary tells you the median survival is 79
weeks. And you get a graph similar to the one above.

100+
90
804
704
60
50

40

Percent survival

30 1

204

101

0 20 40 60 80 100 120 140 160 180 200 220
weeks
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Comparing 2 samples

Example (File: tumours in Survival data.xlsx)

We are going to compare survival in adults with recurrent astrocytoma (n=20) to the one of a group of
patients with recurrent glioblastoma (n=31).

6 13 21 30 31* 37 38 47* 49 50
63 79 80* 82* 82* 86 98 149 202 219

10 10 12 13 14 15 16 117/ 18 20
24 24 25 28 30 33  34* 35 37 40
40 40* 46 48 70* 76 81 82 o112
181

Here is the thing: from the graph below, survival chances appear better in individuals with astrocytoma
than with glioblastoma, but is the difference between groups statistically significant?

100 4=y
& astro
904 1
- qli
80. b glio
_g 704 Y
£ 604
@
50
c |
S 401
]
o 301 P
201
10
0 ; . . . . : : : r |
0 20 40 60 80 100 120 140 160 180 200 220

weeks

It is possible to compare the median survival times and the probability of surviving up to any particular
time. It is usually better to use a test which compares survivor functions over whole follow-up period.
The Log rank test does such a thing: it tests the null hypothesis of no difference between samples in
probability of an event (death in this example) at any time point during follow-up. The log rank statistic
is basically a XZ and is based on calculating expected number of events that would occur under the null
hypothesis at each event time and compares it to the observed number of events.
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" pstro | Death " " Death
___ =l — l=111 Week Overall |Expected Deaths—|Expected Deaths—|  Observed Observed
5] 1 . -
Observed Astro Remainder — -
13 i 10 1 Deaths I_I,,,m Glio l
21 1 12 a
20 I = 5 6 1/51 0.392157 0.607843 19 31
31 0 14 1 10 2/50 0.76 1.24 19 29
37 1 15 1 12
38 1 16 1 13
a7 0 17 1 4
43 1 18 1 s
50 1 20 1
63 1 24 1
73 1 24 1 Total (Expected) Sum Sum
80 0 25 1 Total (Observed) 14 28
82 0 28 1
82 ] 30 1
86 1 33 1
98 1 34 0
143 0 35 1
ettt Log rank test statistic has a Chi? distribution:
- =14 deaths | :g ;
46 1 J
s [ > i=1(01; — Eyj)
70 0 7 =
76 1 m
81 1 . .
a2 1 Z j=1"17
51 1
112 1
181 1

=28 deaths

A log rank-test is unlikely to detect a difference between groups if survivor functions cross over during
follow-up (graph below). It assumes non-informative censoring and can be extended to compare more

than 2 groups.

1.0

Cumulative Surnvival

—

0 5 10 15 20 25 30 35 40 495 50

But it only provides a p-value, not an estimate of size difference between groups or a confidence
interval. To get an estimate of the size of the difference, you need the hazard ratio.

Hazard function

Hazard is defined as the slope of the survival curve: a measure of how rapidly subjects are dying. The
hazard function describes how hazard varies over time.
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The hazards may vary over time but it is assumed that the hazard ratio (HR) is constant over time. HR
is not directly related to the ratio of median survival times as it is calculated in a different way.
In the context of comparing 2 groups (a and b), as part of the Kaplan-Meier calculations, the number of
expected events (Ea and Eb) are calculated assuming a null hypothesis of no difference in survival.

With the numbers of observed events (deaths) in each group (Oa and Ob), HR is obtained from Cox

regression: HR=(Oa/Ea)/(Ob/Eb)

No assumption is needed about shape of hazard functions or underlying distribution of time to event

data.

Let's do it with GraphPad: Analyze>Survival Curve and again
the default is OK. We can see that there is a significant
difference between the survivals (p=0.0062).

Also:

HR = 2.3 (95% CI [1.32;4.44])

(Hazardaiio (t) = Hazardastro(t) x HR)

It means that, at any point in time, hazard (i.e. instantaneous
rate) of dying in individuals with recurrent glioblastoma is 2.3
times higher than in individuals with recurrent astrocytoma.

Comparing more than 2 samples

Comparison of Survival Curves

Log-rank (Mantel-Cox) test

Chi square

7.457

df 1 A

P value o.odgz )

P value summary  —

Are the survival curves sig different? es
Gehan-Breslow-Wilcoxon test

Chi sguare 5.828

df 1

P value 0.0158

P value summary

Are the survival curves sig different? res
Median survival
astro 75.00
glio 33.00

Ratio (and its reciprocal) 2394 0.4177

95% Cl of ratio 1.260 to 4.547 0.2198 to 0.7934
Hazard Ratic (Mantel-Haenszel} AJB BiA

Ratio (and its reciprocal) 0.4132 2.420

95% Cl of ratio 02194 t0 0.7779 [1.286 fo 4 557
Hazard Ratio (logrank) AB BiA

Ratio (and its reciprocal)

0.4341

2304

95% Cl of ratio

0.2253 to 0.7577

1.320 fo 4438

Example (File: 1ung infection in Survival data.xlsx)

Now the issue with GraphPad is that we cannot compare 2 samples directly. It is like when we want to

compare more than 2 proportions: the xz test will give us a general p-value (like in the omnibus step for

the ANOVA) but will not allow for pairwise comparisons. To get it, we need to be proactive, namely do
as many Fisher’s tests we need and then apply a correction by hand, usually Bonferroni. This what we

have to do with survival analysis as well in GraphPad.

The first step is the same as the one for the 2 samples comparisons: Analyze>Survival Curve




Babrm Introduction to Statistics with GraphPad Prism

Bioinformatics

102

Percent survival

100

80

60

40

20

-

== Control

== Treatment1

== Treatment2

Time (Hours)

50 100 150

200

4

Comparizon of Survival Curves

Log-rank (Mantel-Cox) test (recommended)

Chisquare

7112

df

P value (

0.0286 )

P value summary

Are the survival curves sig different? es
)} |Logrank test for trend (recommended)
I'| Chisquare 7.044
| odf 1
P | Pvale 0.0080
b | Pvalue summary =
3 | Sig. trend? Yes
H
" |Gehan-Breslow-Wilcoxon test
b} | chisquare 6.743
1| af 2
V| Pvale 0.0343
I'| Pwvalue summary t
Y | Are the survival curves sig different? e
h

250



Babraham ) ) |ntroduction to Statistics with GraphPad Prism

Bioinformatics

103

The second is about duplicating the dataset the corresponding number of pairwise comparisons and
then run them as in the first step.

Control vs. T1

I~

Comparison of Survival Curves.

Control vs. T2

Comparison of Survival Curves

T1 vs. T2

Log-rank (Mantel-Cox) test

Log-rank (Mantel-Cox) test

P value summary

| Aesessaics Adjusted pevalue

0.5394

Chi square 1.800 Chi square 6.101

df df jj F—

P value (Jo7se ) P valve (loons )
Fore—r" P value summary —

AU Agjusted pvatue 00405 )

e
d
Ci of Survival Curves
Log-rank (Mantel-Cox) test
Chi square 2214
df e
P value 0.1367 )
P value summary n

| #rethesuival Adinsted p-value =(0.4101 ) [

95% Cl of ratio

TTTeet o 4.560

0.2193 to 1.267

95% Cl of ratio

e 9.751

0.1026 to 0.7383

95% Cl of ratio

ot o 5767

017234 to 1.246

) |Gehan-Breslow-Wicoxon test Gehan-Bresiow-Wikcoxon test Gehan-Breslow-Wilcoxon test

I' | chisquare 2.227 Chi square 5.825 Chi square 1,528

K 1 dt 1 df 1

b | Pvalue 0.1356 P value 0.0158 P value 0.2164

b | Pvalue summary ns P value summary - P value summary ns

i | Are the survival curves sig different?|No Are the survival curves sig different?] Yes Are the survival curves sig ditferent?|No

i

" |Median survival Wedian survival Wedian survival

3 |Control 50.50 Control 50.50 Treatment! 76.50

3 [Treatment! 76.50 Treatment2 1820 Treatment2 182.0

V| Ratio {and its reciprocal) 06601 1515 Ratio (and its reciprocal) 0.2775 3.604 Ratio (and its reciprocal) 0.4203 2379

| | 5% Clof ratio 0.2804 to 1.554  |0.6433 to 3.567 95% Cl of ratio 0102610 0.7502  [1.333 10 9.745 95% Cl of ratio 0.1528t0 1.157  |0.8647 to 6.545
7

) |Hazard Ratio (Mantel-Haenszel) AB BiA Hazard Ratio (Mantel-Hagnszel) AT Cis Hazard Ratio (Mantel-Haenszel) BIC /B

} | Ratio (and its reciprocal) 1.898 0.5270 Ratio (and its reciprocal) 3642 0.2745 Ratio {and its reciprocal) 2.151 0.4849
3 | 95% Clof ratio 0744310 4838 |0.2067 to 1.344 95% Clof ratio 1.306 to 1018 0.09847 to 0.7658 95% Cl of rafio 0.7843 t0 5.899  |0.168510 1.275
H

"' |Hazara Ratio (logrank) . BiA Hazard Ratio (legrank} = Hazard Ratio (logrank) e B

} | Ratio (and s reciprocal) Qo ) 05813 Ratio (and ts reciorocal) [dEED) 03185 Rati (and ts reciprocal (2o ) 04757
¥

V

The adjusted p-values are obtained by applying a Bonferroni correction: multiply the p-values by the
number of comparisons (e.g. Control vs. T1: p=0.1798 * 3 = p=0.5394).
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Parametric Assumptions
1. Data normally distributed
2. Homogeneity of variance

3. Linearity
4. Independence

Parametric

Single means vs hypothetical /
Multiple means, single variable \ Mon-parametric

Relationships

Parametric Non-parametric

“n"“w

Mare than
two groups

Parametric Non-parametric

Non-parametric

If significant, do a
post hoc test, e.g.
Bonferroni's, Tukey's etc




