Descriptive Stats and Data Exploration

Anne Segonds-Pichon v2020-05

Quantitative data

- They take numerical values (units of measurement)
- Discrete: obtained by counting
- Example: number of students in a class
- values vary by finite specific steps
- or continuous: obtained by measuring
- Example: height of students in a class
- any values

https://github.com/allisonhorst/stats-illustrations\#other-stats-artwork
- They can be described by a series of parameters:
- Mean, variance, standard deviation, standard error and confidence interval

Measures of central tendency

Mode and Median

- Mode: most commonly occurring value in a distribution

- Median: value exactly in the middle of an ordered set of numbers

Example 1: 182734525459666888285879193 100, Median $=68$ Example 2: 1827273452525961686885858590 , Median $=60$ \uparrow

Measures of central tendency

Mean

- Definition: average of all values in a column.
- Example: mean of: 1, 2, 3, 3 and 4
$-(1+2+3+3+4) / 5=2.6$
- The mean is a model because it summaries the data.
- How do we know that it is an accurate model?
- Difference between the real data and the model created

Measures of dispersion

- Calculate the magnitude of the differences between each data and the mean
- Total error = sum of differences

$$
=\Sigma\left(x_{i}-\bar{x}\right)=-1.6-0.6+0.4+0.4+1.4=0
$$

No errors !

- Positive and negative: they cancel each other out.

Sum of Squared errors (SS)

- To solve that problem: we square errors
- Instead of sum of errors: sum of squared errors (SS):

$$
\begin{aligned}
(S S)= & \sum\left(x_{i}-\bar{x}\right)\left(x_{i}-\bar{x}\right) \\
& =(-1.6)^{2}+(-0.6)^{2}+(0.4)^{2}+(0.4)^{2}+(1.4)^{2} \\
& =2.56+0.36+0.16+0.16+1.96 \\
& =5.20
\end{aligned}
$$

- SS gives a good measure of the accuracy of the model

- But: dependent upon the amount of data: the more data, the higher the SS.
- Solution: to divide the SS by the number of observations (N)
- As we are interested in measuring the error in the sample to estimate the one in the population, we divide the SS by $\mathrm{N}-1$ instead of N and we get the variance $\left(\mathrm{S}^{2}\right)=\mathrm{SS} / \mathrm{N}-1$

Degrees of freedom

Mean Population $(\mu)=$ Mean Sample $(\bar{x})=2.6$

$n^{\text {th }}$ value: fixed
First ($\mathrm{n}-1$) values: whatever

$$
\mathrm{n}-1 \text { degrees of freedom }
$$

Variance and standard deviation

- $\operatorname{variance}\left(s^{2}\right)=\frac{S S}{N-1}=\frac{\Sigma\left(x_{i}-\bar{x}\right)^{2}}{N-1}=\frac{5.20}{4}=1.3$
- Problem with variance: measure in squared units
- The square root of the variance is taken to obtain a measure in the same unit as the original measure:
- the standard deviation

$$
-\mathrm{S} . \mathrm{D} .=\mathrm{v}(\mathrm{SS} / \mathrm{N}-1)=\mathrm{v}\left(\mathrm{~s}^{2}\right)=\mathrm{s}=\sqrt{1.3}=1.14
$$

- The standard deviation is a measure of how well the mean represents the data.

Standard deviation

S. mean is a good fit of the data

data distant from the mean:
mean is not an accurate representation

Standard Deviation (SD) or Standard Error Mean (SEM)?

Standard Deviation

- The SD quantifies how much the values vary from one another
- scatter or spread
- The SD does not change predictably as you acquire more data.

Standard Error Mean

$\mathbf{S E M}=\frac{\mathbf{S D}}{\sqrt{N}}$

- The SEM quantifies how accurately we know the true mean of the population.
- Why? Because it takes into account: SD + sample size
- The SEM gets smaller as your sample gets larger
- Why? Because the mean of a large sample is likely to be closer to the true mean than is the mean of a small sample.

The SEM and the sample size

SD or SEM ?

- If the scatter is caused by biological variability, it is important to show the variation.
- Report the SD rather than the SEM.
- Better even: show a graph of all data points.
- If you are using an in vitro system with no biological variability, the scatter is about experimental imprecision (no biological meaning).
- Report the SEM to show how well you have determined the mean.

Confidence interval

- Range of values that we can be 95% confident contains the true mean of the population.
- Limits of 95\% CI: [Mean-1.96 SEM; Mean + 1.96 SEM] (SEM = SD/VN)

A distribution is not something made, it is something observed.

This is a tree

This is a normal distribution

To recapitulate

- The Standard Deviation is descriptive
- Just about the sample.
- The Standard Error and the Confidence Interval are inferential
- Sample \rightarrow General Population

Standard Error(SE) (Inferential) Q 's between populations: Are they "different"?

Graphical exploration of data

Data Exploration

Categorical data

Data Exploration

Quantitative data: Scatterplot

Data Exploration

Quantitative data:

Scatterplot/stripchart

Data Exploration

Quantitative data: Boxplot

Data Exploration

Quantitative data:

Boxplot or Beanplot

Data density mirrored by the shape of the polygon

Data Exploration

Quantitative data:

Boxplot and Beanplot and Scatterplot

Data Exploration

Quantitative data: Histogram

Data Exploration

Quantitative data: Histogram (distribution)

Data exploration \neq plotting data

Data Exploration

Plotting is not the same thing as exploring

- One experiment: change in the variable of interest between CondA to CondB. * Data plotted as a bar chart.

The fiction

The truth

Data Exploration

Plotting (and summarising) is (so) not the same thing as exploring

- Five experiments: change in the variable of interest between 3 treatments and a control.
* Data plotted as a bar chart.

The truth (if you are into bar charts)

Data Exploration

Plotting (and summarising and choosing the wrong graph) is (definitely) not the same thing as exploring

- Four experiments: Before-After treatment effect on a variable of interest.
- Hypothesis: Applying a treatment will decrease the levels of the variable of interest.
* Data plotted as a bar chart.

The fiction

