

Descriptive Stats and Data Exploration

Anne Segonds-Pichon v2020-05

Quantitative data

- They take numerical values (units of measurement)
- Discrete: obtained by counting
 - Example: number of students in a class
 - values vary by finite specific steps
- or continuous: obtained by measuring
 - Example: height of students in a class
 - any values

https://github.com/allisonhorst/stats-illustrations#other-stats-artwork

- They can be described by a series of parameters:
 - Mean, variance, standard deviation, standard error and confidence interval

Measures of central tendency Mode and Median

• Mode: most commonly occurring value in a distribution

• **Median:** value exactly in the middle of an ordered set of numbers

Example 1: 18 27 34 52 54 59 6 68 78 82 85 87 91 93 100, Median = 68 Example 2: 18 27 27 34 52 52 59 61 68 68 85 85 85 90, Median = 60

Measures of central tendency Mean

- Definition: average of all values in a column.
- Example: mean of: 1, 2, 3, 3 and 4
 - -(1+2+3+3+4)/5 = 2.6
- The mean is a model because it summaries the data.
- How do we know that it is an accurate model?
 - Difference between the real data and the model created

Measures of dispersion

Calculate the magnitude of the differences between each data and the mean

Total error = sum of differences

$$= \Sigma(x_i - \overline{x}) = -1.6 - 0.6 + 0.4 + 0.4 + 1.4 = 0$$

No errors!

Positive and negative: they cancel each other out.

Sum of Squared errors (SS)

- To solve that problem: we square errors
 - Instead of sum of errors: sum of squared errors (SS):

$$(SS) = \Sigma(x_i - \overline{x})(x_i - \overline{x})$$

$$= (-1.6)^2 + (-0.6)^2 + (0.4)^2 + (0.4)^2 + (1.4)^2$$

$$= 2.56 + 0.36 + 0.16 + 0.16 + 1.96$$

$$= 5.20$$

- SS gives a good measure of the accuracy of the model
 - But: dependent upon the amount of data: the more data, the higher the SS.
 - Solution: to divide the SS by the number of observations (N)
 - As we are interested in measuring the error in the sample to estimate the one in the population, we divide the SS by N-1 instead of N and we get the variance (S²) = SS/N-1

Degrees of freedom

Mean Population (μ) = Mean Sample (\overline{x}) = 2.6

$$\bar{x}$$
= 2.6 = (1+2+3+3 +4)/5 = 2.6

First (n-1) values: whatever

n – 1 degrees of freedom

Variance and standard deviation

• variance
$$(s^2) = \frac{SS}{N-1} = \frac{\sum (x_i - \overline{x})^2}{N-1} = \frac{5.20}{4} = 1.3$$

- Problem with variance: measure in squared units
 - The square root of the variance is taken to obtain a measure in the same unit as the original measure:
 - the standard deviation

- S.D. =
$$V(SS/N-1) = V(s^2) = s = \sqrt{1.3} = 1.14$$

• The **standard deviation** is a measure of how well the mean represents the data.

Standard deviation

Standard Deviation (SD) or Standard Error Mean (SEM)?

Standard Deviation

- The SD quantifies how much the values vary from one another
 - scatter or spread
 - The SD does not change predictably as you acquire more data.

Standard Error Mean

$$SEM = \frac{SD}{\sqrt{N}}$$

- The SEM quantifies how accurately we know the true mean of the population.
 - Why? Because it takes into account: **SD** + sample size
- The SEM gets smaller as your sample gets larger
 - Why? Because the mean of a large sample is likely to be closer to the true mean than is the mean of a small sample.

The SEM and the sample size

SD or SEM?

- If the scatter is caused by biological variability, it is important to show the variation.
 - Report the SD rather than the SEM.
 - Better even: show a graph of all data points.

- If you are using an in vitro system with no biological variability, the scatter is about experimental imprecision (no biological meaning).
 - Report the SEM to show how well you have determined the mean.

Confidence interval

- Range of values that we can be 95% confident contains the true mean of the population.
 - Limits of 95% CI: [Mean 1.96 SEM; Mean + 1.96 SEM] (SEM = SD/VN)

A distribution is not something made, it is something observed.

To recapitulate

- The Standard Deviation is descriptive
 - Just about the sample.
- The Standard Error and the Confidence Interval are inferential
 - Sample → General Population

Graphical exploration of data

Categorical data

Quantitative data: Scatterplot

Quantitative data: Scatterplot/stripchart

Quantitative data: Boxplot

Quantitative data: Boxplot or Beanplot

Quantitative data: Boxplot and Beanplot and Scatterplot

Quantitative data: Histogram

Big sample

Small sample

Quantitative data: Histogram (distribution)

Data exploration ≠ plotting data

Plotting is not the same thing as exploring

- One experiment: change in the variable of interest between CondA to CondB.
 - ❖ Data plotted as a **bar chart**.

Plotting (and summarising) is (so) not the same thing as exploring

- <u>Five experiments</u>: change in the variable of interest between 3 treatments and a control.
 - ❖ Data plotted as a **bar chart**.

The truth (if you are into bar charts)

Plotting (and summarising and choosing the wrong graph) is (definitely) not the same thing as exploring

- Four experiments: Before-After treatment effect on a variable of interest.
- Hypothesis: Applying a treatment will decrease the levels of the variable of interest.
 - Data plotted as a bar chart.

