

Analysis of Quantitative data Non parametric statistics

Anne Segonds-Pichon v2020-09

Comparison between 2 groups Non-Parametric data

Non-parametric test: Mann-Whitney = Wilcoxon rank test

- Non-parametric equivalent of the *t*-test (and not).
- Not meeting the assumptions for parametric tests is not enough to switch to a non-parametric approach.
 - Like always, data exploration is key.
- How does the Mann-Whitney test work?

• Statistic of the Mann-Whitney test: U (W)

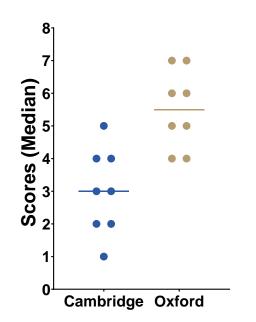
 $U_1 = 7-6 = 1$ and $U_2 = 14-6 = 8$

• Smallest of the 2 Us: U_1 + sample size \rightarrow **p-value**

$$U_1 = R_1 - \frac{n_1(n_1 + 1)}{2}$$
$$U_2 = R_2 - \frac{n_2(n_2 + 1)}{2}$$

Where:

R = sum of ranksn = sample size.


Exercise: smelly T-shirt.xlsx

- Hypothesis: Group body odour is less disgusting when associated with an in-group member versus an outgroup member.
- Study: Two groups of Cambridge University students are presented with one of two smelly, worn T-shirts with university logos.
- **Question**: Can Cambridge students tell the difference between worn smelly T-shirts from Oxford or Cambridge? Disgust score: 1 to 7, with 7 the most disgusting
 - Explore the data with an appropriate combination of 2 graphs
 - Answer the question with a non-parametric approach
 - What do you think about the design?

• **Question**: Can Cambridge students tell the difference between worn smelly T-shirts from Oxford or Cambridge? Disgust score: 1 to 7, with 7 the most disgusting

	I I I	1
Ħ	Mann-Whitney test	
1	Table Analyzed	smelly teeshirt
2		
3	Column B	Oxford
4	VS.	VS.
5	Column A	Cambridge
6		
7	Mann Whitney test	
8	P value	0.0037
9	Exact or approximate P value?	Exact
10	P value summary	**
11	Significantly different (P < 0.05)?	Yes
12	One- or two-tailed P value?	Two-tailed
13	Sum of ranks in column A,B	41,95
14	Mann-Whitney U	5
15		

Answer:

- Cambridge students can tell the difference between Oxford and Cambridge (U = 5, p = 0.0037).
- A paired design would have been better.

Exercise: smelly T-shirt.xlsx

Non-parametric test: Wilcoxon's signed-rank

- Non-parametric equivalent of the paired *t*-test (ish).
- How does the test work?

2+3=5/2=2.5: average rank

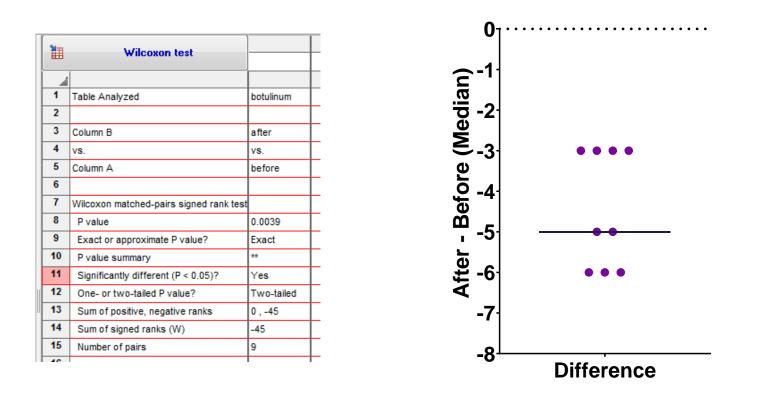
efore	After	D	ifferences
	Э	3	-6
	7	4	-3
1	D	4	-6
	3	5	-3
	5	6	1
	3	2	-6
	7	7	0
	Ð	4	-5
1	0	5	-5

- Statistic of the Wilcoxon's signed-rank test: Sum of signed ranks = W
 - Here: W = -35 + 1 = -34
 - Statistic W + sample size → **p-value**

Exercise: botulinum.xlsx

	Before	After	
1	9	3	
2	7	4	
3	10	4	
4	8	5	
5	9	6	
6	8	2	5
7	7	4	
8	9	4	
9	10	5	

A group of 9 disabled children with muscle spasticity (or extreme muscle tightness limiting movement) in their right upper limb underwent a course of injections with botulinum toxin to reduce spasticity levels. A neurologist (blinded) assessed levels of spasticity pre- and post-treatment for all 9 children using a 10-point ordinal scale.


Higher ratings indicated higher levels of spasticity.

- **Question**: do botulinum toxin injections reduce muscle spasticity levels?
 - Score: 1 to 10, with 10 the highest spasticity

Exercise: botulinum.xlsx

	Before	After	
1	9	3	
2	7	4	
3	10	4	No. of Concession, Name
4	8	5	
5	9	6	
6	8	2	Botulinum.
7	7	4	Borox
8	9	4	1 10 BOTEX
9	10	5	

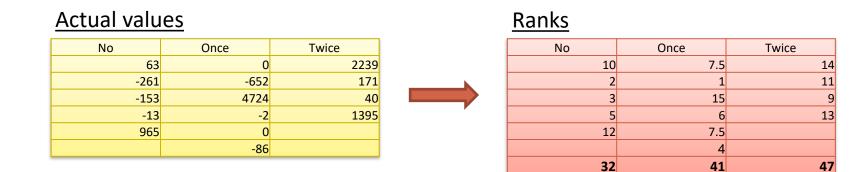
• **Question**: do botulinum toxin injections reduce muscle spasticity levels?

Answer: There was a significant difference pre- and post- treatment in ratings of muscle spasticity (W = -45, p = 0.0039).

Comparison between more than 2 groups One factor Non-Parametric data

Kruskal-Wallis and Friedman tests

- Non-parametric equivalents of the One-Way ANOVA
 - Also based on ranks
 - Kruskal-Wallis: independent measures
 - Friedman: repeated measures
- Statistic associated with Kruskal-Wallis is H
- Statistic associated with **Friedman** is **Q** or **T1** or **FM**
- The statistics have a Chi² distribution
 - Kruskal-Wallis H = Friedman statistic = One-Way ANOVA F
- Post-hoc test associated with Kruskal-Wallis and Friedman: **Dunn's test**
 - The Dunn's test works pretty much like the Mann-Whitney test.


Kruskal-Wallis test: Example

- Creatine, a supplement popular among body builders
- Three groups: No creatine; Once a day; and Twice a day.
- <u>Question</u>: does the average weight gain depend on the creatine group to which people were assigned?

Kruskal-Wallis

Example: creatine.xlsx

$$H = \left[\frac{12}{n(n+1)}\sum_{j=1}^{c}\frac{T_{j}^{2}}{n_{j}}\right] - 3(n+1)$$

$$\mathbf{H} = \left[\frac{12}{15(15+1)} \left(\frac{32^2}{5} + \frac{41^2}{6} + \frac{47^2}{4}\right)\right] - 3(15+1) = \mathbf{3.868}$$

Where:

•n = sum of sample sizes for all samples,

- •c = number of samples,
- •T_j = sum of ranks in the jth sample,
 •n_j = size of the jth sample.

Friedman test: Example

- An auction house is putting three violins, A, B, and C, up for bidding. Ten violinists are blindfolded are asked to rate the instruments and each player plays the violins in a randomly determined sequence (BCA, ACB, etc.).
- After each violin is played, the violinist rates the instrument on a 10-point scale of overall excellence (1=lowest, 10=highest).
- **Question**: which violin is the best according to the 10 violinists?

Friedman test Example: violin.xlsx

Actual values

Violinists	Violin A	Violin B	Violin C
1	9	7	6
2	9.5	6.5	8
3	5	7	4
4	7.5	7.5	6
5	9.5	5	7
6	7.5	8	6.5
7	8	6	6
8	7	6.5	4
9	8.5	7	6.5
10	6	7	3

<u>Ranks</u>

Violinists	Violin A	Violin B	Violin C
1	3	2	1
2	3	1	2
3	2	3	1
4	2.5	2.5	1
5	3	1	2
6	2	3	1
7	3	1.5	1.5
8	3	2	1
9	3	2	1
10	2	3	1
Sum	77.5	67.5	57

Q or T1 or FM =
$$\frac{n(k-1)\left[\sum_{i=1}^{k} \frac{R_i^2}{n} - C_F\right]}{\sum r_{ij}^2 - C_F}$$

$$C_F = \left(\frac{1}{4}\right)nk(k+1)^2$$

Where:

•n = sum of sample sizes for all samples,

•k = number of samples,

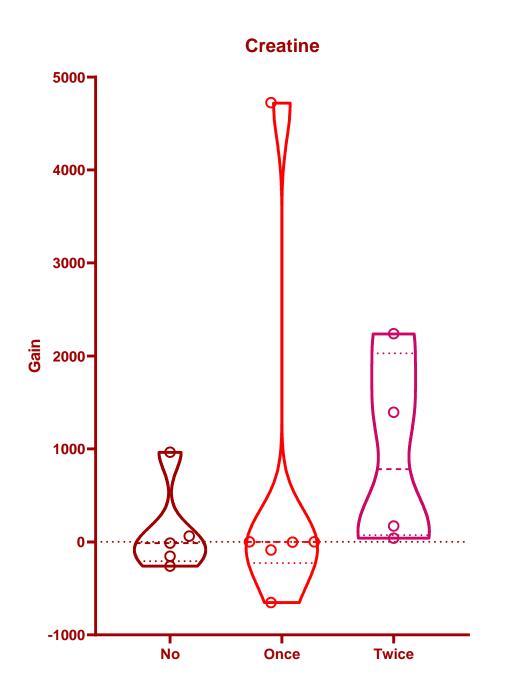
• R_j = sum of ranks in the jth sample,

• r_{ij} = rank i of the jth sample.

Kruskal-Wallis and Friedman tests

• Have a go!

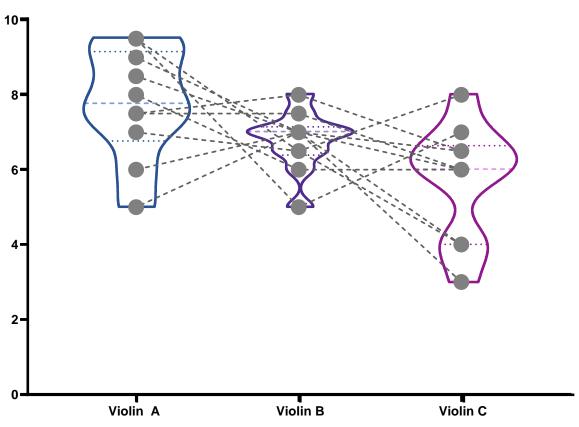
Exercise: creatine.xlsx


 <u>Question</u>: does the average weight gain depend on the creatine group to which people were assigned?

Exercise: violin.xlsx

• **Question**: which violin is the best according to the 10 violinists?

Kruskal-Wallis Example: creatine.xlsx Results


1	Kruskal-Wallis test ANOVA results	
1	Table Analyzed	Creatine
2		
3	Kruskal-Wallis test	
4	P value	0.1458
5	Exact or approximate P value?	Exact
6	P value summary	ns
7	Do the medians vary signif. (P < 0.05)?	No
8	Number of groups	3
9	Kruskal-Wallis statistic	3.868
10		
11	Data summary	
12	Number of treatments (columns)	3
13	Number of values (total)	15
14		

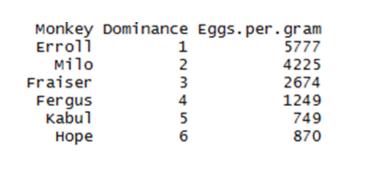
Friedman Example: violin.xlsx Results

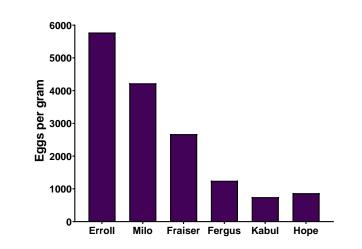
4		
	Table Analyzed	violin
	Friedman test	
	P value	0.0033
	Exact or approximate P value?	Exact
	P value summary	**
	Are means signif. different? (P < 0.05)	Yes
	Number of groups	3
	Friedman statistic	10.47
)		
1	Data summary	
2	Number of treatments (columns)	3
3	Number of subjects (rows)	10
-		

Dur	n's multiple	comparisons test	Rank sum diff.	Significant?	Summary	Adjusted P Value
V	iolin A vs.	Violin B	5.500	No	ns	0.6563
V	iolin A vs.	Violin C	14.00	Yes	**	0.0052
, I	Violin B vs.	Violin C	8.500	No	ns	0.1720

violin

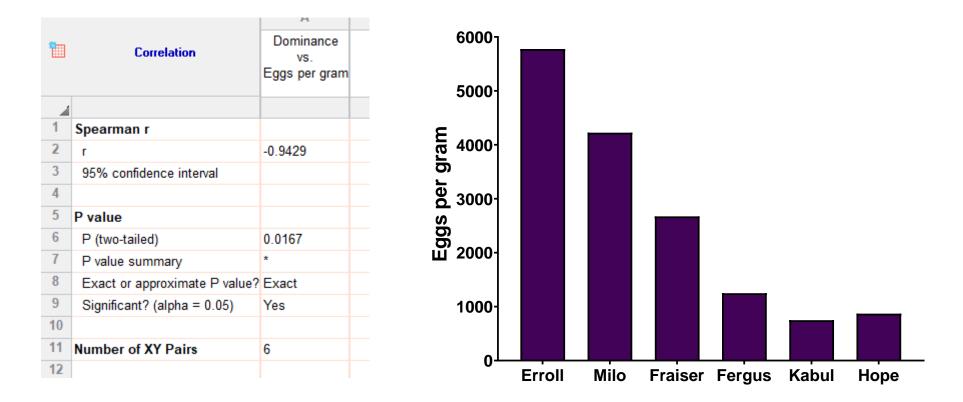
Association between 2 continuous variables Linear relationship Non-Parametric data


Non-Parametric:


Spearman Correlation Coefficient

Only really useful for ranks (either one or both variables)
ρ (rho) is the equivalent of r and calculated in a similar way

• <u>Example</u>: Dominance.xslx


- Six male colobus monkeys ranked for dominance
- Question: is social dominance associated with parasitism?
 - Eggs of *Trichirus* nematode per gram of monkey faeces

Non-Parametric: Spearman Correlation Coefficient

• **Answer**: the relationship between dominance and parasitism is significant ($\rho = -0.94$, p = 0.017) with high ranking males harbouring a heavier burden.