Analysis of Quantitative data

Introduction

Anne Segonds-Pichon
v2020-08
Outline of this section

• Assumptions for parametric data
• Comparing two means: Student’s t-test
• Comparing more than 2 means
 • One factor: One-way ANOVA
 • Two factors: Two-way ANOVA
• Relationship between 2 continuous variables:
 • Linear: Correlation
 • Non-linear: Curve fitting
 • Model diagnostics: Goodness-of-fit
• Non-parametric tests
Introduction

• **Key concepts to always keep in mind**
 – Null hypothesis and error types
 – Statistics inference
 – Signal-to-noise ratio
The null hypothesis and the error types

• The null hypothesis (H_0): $H_0 = \text{no effect}$
 • e.g. no difference between 2 genotypes

• The aim of a statistical test is to reject or not H_0.

<table>
<thead>
<tr>
<th>Statistical decision</th>
<th>True state of H_0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>H_0 True (no effect)</td>
</tr>
</tbody>
</table>
| Reject H_0 | Type I error α
 | False Positive | Correct | | |
| | | | True Positive |
| Do not reject H_0 | Correct | |
| | True Negative | Type II error β |
| | | False Negative |

• Traditionally, a test or a difference is said to be “significant” if the probability of type I error is: $\alpha \leq 0.05$

• High specificity = low False Positives = low Type I error
• High sensitivity = low False Negatives = low Type II error
Statistical inference

Sample → Difference → Meaningful? → Yes → Real? → Statistical test
Big enough? → Statistic e.g. t, F ...
= Difference + Noise + Sample
Stats are all about understanding and controlling variation.

If the noise is low then the signal is detectable ... = statistical significance

... but if the noise (i.e. interindividual variation) is large then the same signal will not be detected = no statistical significance

In a statistical test, the ratio of signal to noise determines the significance.
Analysis of Quantitative Data

• Choose the correct statistical test to answer your question:

• They are 2 types of statistical tests:

 • **Parametric tests** with 4 assumptions to be met by the data,

 • **Non-parametric tests** with no or few assumptions (e.g. Mann-Whitney test) and/or for qualitative data (e.g. Fisher’s exact and χ^2 tests).
Assumptions of Parametric Data

• All parametric tests have 4 basic assumptions that must be met for the test to be accurate.

First assumption: Normally distributed data

 • Normal shape, bell shape, Gaussian shape

 ![Histogram of Raven egg lengths](image)

 • Transformations can be made to make data suitable for parametric analysis.
Assumptions of Parametric Data

• Frequent departures from normality:
 • **Skewness**: lack of symmetry of a distribution

 ![Skewness Diagram]

 - Skewness < 0: Negatively skewed
 - Skewness = 0: Normal (no skew)
 - Skewness > 0: Positively skewed

• **Kurtosis**: measure of the degree of ‘peakedness’ in the distribution
 • The two distributions below have the same variance approximately the same skew, but differ markedly in kurtosis.

 ![Kurtosis Diagram]

 - More peaked distribution: kurtosis > 0
 - Flatter distribution: kurtosis < 0
Assumptions of Parametric Data

Second assumption: Homoscedasticity (Homogeneity in variance)

- The variance should not change systematically throughout the data

Third assumption: Interval data (linearity)

- The distance between points of the scale should be equal at all parts along the scale.

Fourth assumption: Independence

- Data from different subjects are independent
 - Values corresponding to one subject do not influence the values corresponding to another subject.
 - Important in repeated measures experiments
Analysis of Quantitative Data

• Is there a difference between my groups regarding the variable I am measuring?
 • e.g. are the mice in the group A heavier than those in group B?
 • Tests with 2 groups:
 • Parametric: Student’s t-test
 • Non parametric: Mann-Whitney/Wilcoxon rank sum test
 • Tests with more than 2 groups:
 • Parametric: Analysis of variance (one-way and two-way ANOVA)
 • Non parametric: Kruskal Wallis (one-way ANOVA equivalent)

• Is there a relationship between my 2 (continuous) variables?
 • e.g. is there a relationship between the daily intake in calories and an increase in body weight?
 • Test: Correlation (parametric or non-parametric) and Curve fitting