

Analysis of Qualitative data

Anne Segonds-Pichon v2020-08

Qualitative data

- = not numerical
- = values taken = usually names (also *nominal*)
 - e.g. genotypes
- Values can be numbers but not numerical
 - e.g. group number = numerical label but not unit of measurement
- Qualitative variable with intrinsic order in their categories = *ordinal*
- Particular case: qualitative variable with 2 categories: *binary* or *dichotomous*
 - e.g. alive/dead or presence/absence

https://github.com/allisonhorst/stats-illustrations#other-stats-artwork

Fisher's exact and Chi²

Example: cats and dogs.xlsx

- Cats and dogs trained to line dance
- 2 different rewards: food or affection
- Question: Is there a difference between the rewards?
- Is there a significant relationship between the 2 variables?
 - does the reward significantly affect the likelihood of dancing?
- To answer this type of question:
 - Contingency table
 - Fisher's exact or Chi² tests

But first: how many animals do we need?

	Food	Affection
Dance	?	?
No dance	?	?

Exercise: Power calculation

- Preliminary results from a pilot study: **25%** line-danced after having received affection as a reward vs. **70%** after having received food.
 - How many cats do we need?

Exercise: Power calculation

G*Power 3.1.9.2 Image: State Sta

Output:

If the values from the pilot study are good predictors and if we use a sample of **n=23 for each group**, we will achieve a power of 83%.

Test family Statistical test			
Exact Proportions: I	nequality, two indep	endent groups (Fisher's exact test)
Type of power analysis			
A priori: Compute required sample	e size – given α, pov	ver, and effect size	
Input Parameters		Output Parameters	
Tail(s)	Two 🔻	Sample size group 1	2
Determine => Proportion p1	0.25	Sample size group 2	2
Proportion p2	0.7	Total sample size	4
α err prob	0.05	Actual power	0.828463
Power (1-β err prob)	0.80	Actual α	0.024852
Allocation ratio N2/N1	1		

Chi-square and Fisher's tests

- Chi² test very easy to calculate by hand but Fisher's very hard
- Many software will not perform a Fisher's test on tables > 2x2
- Fisher's test more accurate than Chi² test on small samples
- Chi² test more accurate than Fisher's test on large samples
- Chi² test assumptions:
 - 2x2 table: no expected count <5
 - Bigger tables: all expected > 1 and no more than 20% < 5

Chi-square test

• In a chi-square test, the observed frequencies for two or more groups are compared with expected frequencies by chance.

$$\chi^2 = \sum \frac{(O-E)^2}{E}$$

- O = Observed frequencies
- E = Expected frequencies
- Example with 'cats and dogs'

How are the expected frequencies calculated?

<u>Example</u>: expected frequency of cats line dancing after having received food as a reward.

Direct counts approach:

Expected frequency = (row total)*(column total)/grand total

= 32*32/68 = 15.1

Probability approach: The Multiplicative Rule

Probability of line dancing: **32/68** Probability of receiving food: **32/68**

Expected frequency: (32/68)*(32/68)=0.22: 22% of 68 = 15.1

Observed frequencies

	Food	Affection	Total
Dance	26	6	32
No dance	6	30	36
Total	32	36	68

Expected frequencies

	Food	Affection
Dance	15.1	16.9
No dance	16.9	19.1

Chi² test

 $\chi^2 = \sum \frac{(O-E)^2}{E}$

Observed frequencies

	Food	Affection
Dance	26	6
No dance	6	30

Expected frequencies

	Food	Affection
Dance	15.1	16.9
No dance	16.9	19.1

 $Chi^{2} = (26-15.1)^{2}/15.1 + (6-16.9)^{2}/16.9 + (6-16.9)^{2}/16.9 + (30-19.1)^{2}/19.1 = 28.4$

Is 28.4 big enough for the test to be significant?

Is 28.4 big enough for the test to be significant? The old fashion way

Degree of freedom: df df = (row-1)(col-1)=1

TABLE C: X2 CRITICAL VALUES

\frown	• • •	1	- 1	
(r	ΙΤΙΛ	ัล เ	ึงลเ	UР
			v MI	MC

	Food	Affection
Dance	26	6
No dance	6	30

	Tail probability p										
df	.25	.20	.15	:10	.05	.025	.02	.01	.005		
1	1.32	1.64	2.07	2.71	3.84	5.02	5.41	6.63	7.88		
2	2.77	3.22	3.79	4.61	5.99	7.38	7.82	9.21	10.60		
3	4.11	4.64	5.32	6.25	7.81	9.35	9.84	11.34	12.84		
4	5.39	5.99	6.74	7.78	9.49	11.14	11.67	13.28	14.86		
5	6.63	7.29	8.12	9.24	11.07	12.83	13.39	15.09	16.75		
6	7.84	8.56	9.45	10.64	12.59	14.45	15.03	16.81	18.55		
7	9.04	9.80	10.75	12.02	14.07	16.01	16.62	18.48	20.28		
8	10.22	11.03	12.03	13.36	15.51	17.53	18.17	20.09	21.95		
9	11.39	12.24	13.29	14.68	16.92	19.02	19.68	21.67	23.59		
10	12.55	13.44	14.53	15.99	18.31	20.48	21.16	23.21	25.19		

χ² = 28.4 > 3.84 so Yes!

Fisher's exact and Chi² tests with Prism 8

Fisher's exact and Chi² tests Results

					Search ~	8	Contingency	Α	В
Search ~		Contingency	A	B	✓ Data Tables >>		contingency		
		Contingency			— C -4-				
✓ Data Tables >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>						1	Table Analyzed	Cats	
E Cats	1		Cats		Hew Data Table	2			
🕀 New Data Table	2	habic Analyzed	Cuis		✓ Info »	3	P value and statistical significance		
v Info »	3	P value and statistical significance			 Project info 1 	4	Test	Chi-square	
 Project info 1 	4	Test	Fisher's exact test		① New Info	5	Chi-square, df	28.36, 1	
① New Info	5	P value	<0.0001		✓ Results »	6	Z	5.326	
✓ Results »	6	P value summary	****		Contingency of Cats	7	P value	<0.0001	
Contingency of Cats	7	One- or two-sided	Two-sided		Contingency of Cats	8	P value summary	****	
Contingency of Cats	8	Statistically significant (P < 0.05)?	Yes		🕀 New Analysis	9	One- or two-sided	Two-sided	
① New Analysis	9				✓ Graphs »	10	Statistically significant (P < 0.05)?	Yes	
❤ Graphs »	10	Effect size	Value	95% CI	🗠 Cats	11			
🗠 Cats	11	Odds ratio	21.67	6.431 to 68.72	New Graph	12	Effect size	Value	95% CI
🕀 New Graph	12	Reciprocal of odds ratio	0.04615	0.01455 to 0.1555	✓ Layouts »	13	Odds ratio	21.67	6.431 to 68.72
1	10			1	① New Layout	14	Reciprocal of odds ratio	0.04615	0.01455 to 0.1555
						15			

	Food	Affection
Dance	26	6
No dance	6	30

Odds of dancing on Food group = 26/6 Odds of dancing on Affection group = 6/30

O.R. = ratio of the odds = $\frac{26}{6}/\frac{6}{30} = 21.7$

Odds Ratio = 21.7

If you are a dancing cat, you are almost 22 times more likely to have received food than affection as a reward (p<0.0001).

Fisher's exact and Chi² tests with Prism 8 Beyond significance

- Two super important things to keep in mind:
 - Qualitative data can be presented as percentages but the tests should always be run on actual counts.
 Power!
 - ✤ A p-value should always be interpreted in the context of the experiment.
 - Power!

Let's do it with the dogs

Results for cats and dogs

4			
	Table Analyzed	Cat	
	P value and statistical significance		
	Test	Chi-square	
	Chi-square, df	28.36, 1	
	z	5.326	
	P value	<0.0001	
	P value summary	****	
	One- or two-sided	Two-sided	
	Statistically significant (P < 0.05)?	Yes	

1	Table Analyzed	Cat	
2			
3	Fisher's exact test		Γ
4			
5	P value	< 0.0001	Τ
6	P value summary	***	Γ
7	One- or two-sided	Two-sided	
8	Statistically significant? (alpha<0.05)	Yes	Τ
0		1	

Table Analyzed	Dog		
P value and statistical significance			
Test	Chi-squa	ire	
Chi-square, df	0.01331,	1	
z	0.1154		
P value	0.9081		
P value summary	ns		
One- or two-sided	Two-side	d	
Statistically significant (P < 0.05)?	No		
	1		

4			
	Table Analyzed	Dog	
	P value and statistical significance		
	Test	Fisher's exact test	
	P value	>0.9999	
	P value summary	ns	
	One- or two-sided	Two-sided	
	Statistically significant (P < 0.05)?	No	

Fisher's exact test: results

Cat 30 30 20 20 10 0 Food Cat Dance Yes Dance No

cats are more likely to line dance if they are given food as reward than affection (p<0.0001) whereas dogs don't mind (p>0.99).

	Infected	Uninfected
Rockhampton	12	8
Bowen	4	16
Mackay	15	5

• A researcher decided to check the hypothesis that the proportion of cane toads with intestinal parasites was the same in 3 different areas of Queensland.

From Statistics Explained by Steve McKillup

• **Question**: Is the proportion of cane toads infected by intestinal parasites the same in 3 different areas of Queensland?

	Table Analyzed	Cane toad	
	Chi-square		Γ
	Chi-square, df	12.95, 2	Γ
	P value	0.0015	Γ
	P value summary	**	Γ
	One- or two-tailed	NA	Γ
	Statistically significant? (alpha<0.05)	Yes	Γ
			Γ
	Data analyzed		Γ
	Number of rows	3	Γ
:	Number of columns	2	
		1	1

Answer:

The proportion of cane toads infected by intestinal parasites varies significantly between the 3 different areas of Queensland (p=0.0015), the animals being more likely to be parasitized in Rockhampton and Mackay than in Bowen.

Table Analyzed	Cane toad	
Chi-square		
Chi-square, df	12.95, 2	Γ
P value	0.0015	Γ
P value summary	**	
One- or two-tailed	NA	
Statistically significant? (alpha<0.05)	Yes	Γ
		Γ
Data analyzed		Γ
Number of rows	3	Γ
Number of columns	2	
		1

New question:

Is the proportion of infected cane toads different in Bowen than in the other 2 areas?

P value and statistical significance	
Test	Fisher's exact test
P value	0.0225

	P value and statistical significance	
	Test	Fisher's exact test
	P value	0.0012
_		

Is the proportion of infected cane toads different in Bowen than in the other 2 areas? Yes, it is.