Analysis of Qualitative data

Anne Segonds-Pichon v2020-08

Qualitative data

- = not numerical
- = values taken = usually names (also nominal)
- e.g. genotypes

- Values can be numbers but not numerical
- e.g. group number = numerical label but not unit of measurement
- Qualitative variable with intrinsic order in their categories = ordinal
- Particular case: qualitative variable with 2 categories: binary or dichotomous
- e.g. alive/dead or presence/absence

Fisher's exact and Chi ${ }^{2}$

Example: cats and dogs.xlsx

- Cats and dogs trained to line dance
- 2 different rewards: food or affection

- Question: Is there a difference between the rewards?
- Is there a significant relationship between the 2 variables?
- does the reward significantly affect the likelihood of dancing?
- To answer this type of question:
- Contingency table
- Fisher's exact or Chi ${ }^{2}$ tests

	Food	Affection
Dance	$?$	$?$
No dance	$?$	$?$

But first: how many animals do we need?

Exercise: Power calculation

- Preliminary results from a pilot study: $\mathbf{2 5 \%}$ line-danced after having received affection as a reward vs. 70\% after having received food.
- How many cats do we need?

Exercise: Power calculation

Output:

If the values from the pilot study are good predictors and if we use a sample of $\mathbf{n}=\mathbf{2 3}$ for each group, we will achieve a power of $\mathbf{8 3 \%}$.

Chi-square and Fisher's tests

- Chi ${ }^{2}$ test very easy to calculate by hand but Fisher's very hard
- Many software will not perform a Fisher's test on tables $>2 \times 2$
- Fisher's test more accurate than Chi^{2} test on small samples
- Chi ${ }^{2}$ test more accurate than Fisher's test on large samples
- Chi ${ }^{2}$ test assumptions:
- 2×2 table: no expected count <5
- Bigger tables: all expected > 1 and no more than 20% < 5

Chi-square test

- In a chi-square test, the observed frequencies for two or more groups are compared with expected frequencies by chance.

$$
\chi^{2}=\sum \frac{(O-E)^{2}}{E}
$$

- O = Observed frequencies
- E = Expected frequencies
- Example with 'cats and dogs'

How are the expected frequencies calculated?

Example: expected frequency of cats line dancing after having received food as a reward.

Direct counts approach:

Expected frequency $=($ row total $) *($ column total $) /$ grand total $=32 * 32 / 68=15.1$

Probability approach: The Multiplicative Rule
Probability of line dancing: 32/68
Probability of receiving food: 32/68
Expected frequency:(32/68)*(32/68)=0.22: 22\% of $68=15.1$

Observed frequencies

	Food	Affection	Total
Dance	$\mathbf{2 6}$	6	32
No dance	6	30	36
Total	32	36	68

Expected frequencies

	Food	Affection
Dance	15.1	16.9
No dance	16.9	19.1

Chi ${ }^{2}$ test

$$
\chi^{2}=\sum \frac{(O-E)^{2}}{E}
$$

Observed frequencies

	Food	Affection
Dance	26	6
No dance	6	30

Expected frequencies

	Food	Affection
Dance	15.1	16.9
No dance	16.9	19.1

Chi $^{2}=(26-15.1)^{2} / 15.1+(6-16.9)^{2} / 16.9+(6-16.9)^{2} / 16.9+(30-19.1)^{2} / 19.1=28.4$

Is 28.4 big enough for the test to be significant?

Is 28.4 big enough for the test to be significant?

The old fashion way

> Degree of freedom: df $\mathrm{df}=($ row -1$)($ col -1$)=1$

Critical value

	Food	Affection
Dance	26	6
No dance	6	30

	Tail probability p								
df	. 25	. 20	. 15	:10	05	. 025	. 02	. 01	. 005
1	1.32	1.64	2.07	2.71	3.84	5.02	5.41	6.63	7.88
2	2.77,	3.22	3.79	4.61	5.99	7.38	7.82	9.21	10.60
3	4.11	4.64	5.32	6.25	7.81	9.35	9.84	11.34	12.84
4	5.39	5.99	6.74	7.78	9.49	11.14	11.67	13.28	14.86
5	6.63	7.29	8.12	9.24	11.07	12.83	13.39	15.09	16.75
6	7.84	8.56	9.45	10.64	12.59	14.45	15.03	16.81	18.55
7	9.04	9.80	10.75	12.02	14.07	16.01	16.62	18.48	20.28
8	10.22	11.03	12.03	13.36	15.51	17.53	18.17	20.09	21.95
9	11.39	12.24	13.29	14.68	16.92	19.02	19.68	21.67	23.59
10	12.55	13.44	14.53	15.99	18.31	20.48	21.16	23.21	25.19
							0		5

Fisher's exact and Chi ${ }^{2}$ tests with Prism 8

Fisher's exact and Chi² tests Results

Odds Ratio = 21.7

If you are a dancing cat, you are almost 22 times more likely to have received food than affection as a reward ($p<0.0001$).

Fisher's exact and Chi ${ }^{2}$ tests with Prism 8 Beyond significance

- Two super important things to keep in mind:
* Qualitative data can be presented as percentages but the tests should always be run on actual counts. * Power!
* A p-value should always be interpreted in the context of the experiment.
* Power!

Let's do it with the dogs

Results for cats and dogs

Fisher's exact test: results

- In our example:
cats are more likely to line dance if they are given food as reward than affection ($p<0.0001$) whereas dogs don't mind ($p>0.99$).

Exercise: Cane toads

	Infected	Uninfected
Rockhampton	12	8
Bowen	4	16
Mackay	15	5

- A researcher decided to check the hypothesis that the proportion of cane toads with intestinal parasites was the same in 3 different areas of Queensland.

From Statistics Explained by Steve McKillup

- Question: Is the proportion of cane toads infected by intestinal parasites the same in 3 different areas of Queensland?

Exercise: Cane toads

Table Analyzed	Cane toad		
Chi-square	$12.95,2$		
Chi-square, df	0.0015		
P value	सz		
P value summary	NA		
One- or two-tailed	Yes		
Statistically significant? (alpha<0.05)			
Data analyzed	2		
Number of rows			
Number of columns			

- Uninfected
- Infected

Answer:

The proportion of cane toads infected by intestinal parasites varies significantly between the 3 different areas of Queensland ($p=0.0015$), the animals being more likely to be parasitized in Rockhampton and Mackay than in Bowen.

Exercise: Cane toads

 \square Uninfected

- Infected

New question:

Is the proportion of infected cane toads different in Bowen than in the other $\mathbf{2}$ areas?

Exercise: Cane toads

P value and statistical significance	
Test	Fisher's exact test
P value	0.0225

P value and statistical significance	
Test	Fisher's exact test
P value	0.0012

Is the proportion of infected cane toads different in Bowen than in the other 2 areas? Yes, it is.

