

Advanced Python

Further Python programming concepts

Version 2020-08

 Advanced Python

2

Licence
This manual is © 2020, Steven Wingett & Simon Andrews.

This manual is distributed under the creative commons Attribution-Non-Commercial-Share Alike 2.0
licence. This means that you are free:

• to copy, distribute, display, and perform the work

• to make derivative works

Under the following conditions:

• Attribution. You must give the original author credit.

• Non-Commercial. You may not use this work for commercial purposes.

• Share Alike. If you alter, transform, or build upon this work, you may distribute the resulting
work only under a licence identical to this one.

Please note that:

• For any reuse or distribution, you must make clear to others the licence terms of this work.
• Any of these conditions can be waived if you get permission from the copyright holder.
• Nothing in this license impairs or restricts the author's moral rights.

Full details of this licence can be found at
http://creativecommons.org/licenses/by-nc-sa/2.0/uk/legalcode

 Advanced Python

3

Table of Contents	
Licence .. 2
Table of Contents .. 3
Introduction ... 5

What this course covers ... 5
Chapter 1: writing better code .. 6

Comprehensions – succinct alternatives to conditionals and loops ... 6
List Comprehensions .. 6
Set Comprehensions .. 6
Dictionary Comprehensions .. 7
Conditional Comprehensions .. 7

Ternary Expressions .. 7
Building and using more complex data structures ... 8

The zip() function.. 9
A note on scope ... 9
An overview of object-oriented programming .. 12

The concepts of object-oriented programming ...12
Objects in Python ..13
Inheritance ..14
OOP Summary ..14

Generators – a better way to generate data ... 15
Exception handling .. 16

Chapter 2 – modules and packages ..19
Introducing modules and packages .. 19

The datetime module ...20
The math module ..22
The sys module ...22
The time module..23
The argparse module ..23
The subprocess module ..23
The os module ..24
The tempfile module ..25
The glob module..25
The textwrap module ...26
The string module ..27
The csv module ...27
The zlib and gzip modules ...27

Installing Modules and Packages ... 28

Installation ...28
Installation locations ..29

Virtual Environments .. 30

Biopython .. 30
Chapter 3 – regular expressions ...32

 Advanced Python

4

Introducing the re module .. 32

Simple String Matching with the re Module .. 32
Querying the match object ... 33

Metacharacters .. 34
Character classes ..34
Start and ends ...34
Backslash..34
Escaping Using Backslashes ...35
Raw String Notation...35
Repetition ..36
Greedy vs non-greedy matching ..37
Groups ..38
Compilation flags ...39

Modifying Strings ... 39
Concluding remarks ...41

 Advanced Python

5

Introduction
What this course covers
This course is an immediate continuation of the topics laid out in the Babraham Bioinformatics
Introduction to Python syllabus. While it is not essential that you have taken part in that course, you
will nevertheless need to have at least working knowledge of the concepts covered in that primer on
Python programming.

This advanced course builds on the knowledge covered in that introductory course and it is assumed
participants are familiar with basic Python concepts, as listed below.

Assumed prior knowledge

• how to write and run Python scripts (using Thonny)
• Python datatypes
• names (variables)
• functions and methods
• collections (ranges, tuples, lists, dictionaries)
• conditionals
• loops and iterations
• reading from and writing to files

From this starting point, this advanced Python course covers the topics listed below.

Advance Python course overview

• writing better-structured and more robust code
• introducing object-oriented programming
• using Python modules
• pattern-recognition with Regular Expressions

Having successfully completed the lectures and exercises, participants should consider themselves
able programmers, with a broad understanding of Python concepts. And what is more, participants
should be in a position to tackle more complex, real-world challenges commonly encountered in the
research arena.

 Advanced Python

6

Chapter 1: writing better code

Comprehensions – succinct alternatives to conditionals and loops
In the Introduction to Python course we met conditional expressions, loops and the closely related
iterations. When used together these key components of the Python language prove extremely
versatile when it comes to modifying data. In addition, Python has an elegant way achieving these
same tasks but in single lines of code in what are known as comprehensions. These comprehensions
can be used to create sets, lists or dictionaries from using a collection as a starting point. It is worth
taking the time to become familiar with the syntax of comprehensions, since by using them you should
be able to write more succinct elegant code.

List Comprehensions
List comprehensions generate lists as output and have the following template syntax:

[expression for item in collection]

That is to say, this comprehension will perform the specified expression on every item in the collection.
To illustrate this point, look at the next example in which we generate square numbers using 0 to 10 as
the root values. Sure, we could use a loop to achieve the same task, but a one-line list comprehension
is a succinct Pythonic way to manipulate collections.

S = [x**2 for x in range(11)]

print(S)

>>>

[0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100]

We created a collection object with the term range(11), and we iterated over this range, assigning
each element to x. Each value of x is subsequently squared and added to the list generated by the
comprehension. This list is then assigned to the name S.

Set Comprehensions
Set comprehensions are similar to list comprehensions and have a similar syntax, but are enclosed
in curly brackets rather than round brackets. As their name suggests, they generate sets as output.

{expression for item in collection}

It is worth bearing in mind that sets only contain unique items, and so you cannot be sure that the output
will have the same number of elements as the input. We see in the following example a list containing
duplicates of the letter ‘C’. Using the set comprehension, every value from the list (assigned the name
x) is allocated to the newly generated set. The set has no duplicate values.

my_list = ['A', 'B', 'C', 'C', 'C']

my_set = {x for x in my_list}

print(my_set)

 Advanced Python

7

print(type(my_set))

>>>

{'B', 'C', 'A'}

<class 'set'>

Dictionary Comprehensions
Essentially the same rules apply to dictionary comprehensions as for set comprehensions, but of
course dictionaries are produced as output. Dictionary comprehensions have the template:

{key-expression: value-expression for key, value in collection}

Consider the code below that transposes dictionary keys for values.

my_dict = {1:"Red", 2:"Green", 3:"Blue"}

print(my_dict)

print({value:key for key, value in my_dict.items()})

>>>

{1: 'Red', 2: 'Green', 3: 'Blue'}

{'Red': 1, 'Green': 2, 'Blue': 3}

Conditional Comprehensions
Conditional comprehensions are an excellent way to filter a comprehension. These comprehensions
have the code structure:

[expression for element in collection if test]

In the example below a range of integers from 0 to 9 is generated, but only those with values less than
3 are printed to the screen, owing to the conditional comprehension.

print([x for x in range(10) if x < 3])

>>>[0, 1, 2]

Conditional comprehensions can also be used in other ways, such as for filtering dictionaries and
creating generators, but we shall not discuss this in more detail in this course.

Ternary Expressions
The Introduction to Python course described how to write if-else conditional blocs to structure code.
For simple expressions, this bloc structure is not necessary however, and can be simplified into a one-
line expression. The template for such an expression is:

value = true-expression if condition else false-expression

 Advanced Python

8

Either the true expression or the false expression will be assigned to value, depending on the

result of the condition test

Or to give a specific example, see the if-else bloc below:
x = 2

if x > 1:

 value = "Greater than 1"

else:

 value = "Not greater than 1"

print(value)

>>>

Greater than 1

Can be simplified to a one-line conditional:
x = 2

value = "Greater than 1" if x > 1 else "Not greater than 1"

print(value)

>>>

Greater than 1

Building and using more complex data structures
In the Introduction to Python course we met data structures known as collections. While these are
versatile, sometimes they may not meet all your requirements. You may need instead to create a
collection that contains other collections. This concept in illustrated below, in which two tuples have
been created. These tuples are then added to list, creating a list of tuples.

t1 = (1, 2, 3)

t2 = (4, 5, 6)

l1 = [t1, t2]

print(l1)

print(type(l1[1]))

>>>

[(1, 2, 3), (4, 5, 6)]

<class 'tuple'>

Hopefully the syntax makes sense. We shan’t be describing all the possible permutations for creating
such collections of collections, but if you sub-divide the task by creating the inner data structure and
then the encapsulating outer data structure (or vice versa) using the syntactic rules already described,
you should be able to create any data structure you like. In reality, it is not typical to create data

 Advanced Python

9

structures of more than two “levels” of complexity. If you are creating data structures more complex
than this, it might be worth re-evaluating whether you have adopted the correct programmatic approach.

The zip() function
The zip() function is a useful way to group elements of lists, tuples and other collections to form a list
of tuples. The zip() function returns a zip object, which is an iterator of the combined tuples. By
passing this zip object to the list() function, a list of tuples may be generated. Please note: if the
passed collections have different lengths, the collection with the fewest elements decides the length
of the zip iterable created:

num1 = [1, 2, 3, 4]

num2 = ['One', 'Two', 'Three']

zipped = zip(num1, num2)

print(zipped)

print(list(zipped))

>>>

<zip object at 0x10fe07d20>

[(1, 'One'), (2, 'Two'), (3, 'Three')]

A note on scope
We have discussed that assigning names to values and then using these values in subsequent
calculations and manipulations. However, just because we have created a name, it does not mean it
is accessible to every part of a script. We list some example of how scoping works in Python. These
may be particularly interesting for people familiar with other languages (such as Perl) who may get
caught out by Python’s behaviour.

Variables created in out outer bloc of code will be accessible to the inner bloc of code
You can see below that h is in scope inside the for loop, since it is successfully added to the value of
i and then printed to the screen.

h = 10

for i in range(2):

 print(h+i)

>>>

10

11

Likewise, variables declared outside a function are available within that function:

def test_function():

 print(x)

 Advanced Python

10

x = 1

test_function()

>>>

1

Loops can modify variables “external” variables, but functions cannot
You see in the example below that, as expected, the toplevel name x is accessible within a loop and
a function. However, these control structures have different behaviour with regards to modifying x.

x = 1

for i in range(2):

 x = x + 1

print(x)

>>>

3

def test_function():

 x = x + 1

 print(x)

x = 1

test_function()

>>>

Traceback (most recent call last):

 File "C:\Users\wingetts\Desktop\mypy.py", line 8, in <module>

 test_function()

 File "C:\Users\wingetts\Desktop\mypy.py", line 5, in test_function

 x = x + 1

UnboundLocalError: local variable 'x' referenced before assignment

Variables created within a function will not be accessible outside that function
In the two examples below, the code prints the names x or y, which have been declared within a
function. In both cases an error is generated.

def add_one(x):

 return(x + 1)

 Advanced Python

11

print(add_one(1))

print(x)

>>>

2

Traceback (most recent call last):

 File "C:\Users\wingetts\Desktop\mypy.py", line 5, in <module>

 print(x)

NameError: name 'x' is not defined

def add_one(x):

 y = x + 1

 return(y)

print(add_one(1))

print(y)

2

Traceback (most recent call last):

 File "C:\Users\wingetts\Desktop\mypy.py", line 6, in <module>

 print(y)

NameError: name 'y' is not defined

Variables created in a loop will be accessible outside that loop
In the example below, the names i, j and k are declared within a loop (or a pair of nested loops).
Despite this, all these names are accessible to the toplevel coding area.

for i in (range(1)):

 for j in (range(10, 11)):

 print(i)

 print(j)

 k = i + j

 print(k)

 print()

print("Outside loop i:" + str(i))

print("Outside loop j:" + str(j))

print("Outside loop k:" + str(k))

>>> %Run mypy.py

 Advanced Python

12

0

10

10

Outside loop i:0

Outside loop j:10

Outside loop k:10

Just to make you aware that there is a keyword global that can modify Python scoping, but we shall
not discuss this further in this course.

An overview of object-oriented programming
The concepts of object-oriented programming
A strength of Python and a feature that makes this language attractive to so many, is that Python is
what is known as an object-oriented programming language (OOP). (You may occasionally see this
written as “orientated” in British English.)

The alternative programming style is procedural, which may be thought of as a set of ordered
instructions. Giving someone geographical directions makes a good analogy to procedural instructions:
e.g. 1) take the second right, 2) go straight on at the roundabout and 3) turn left at the lights. This style
is what most people think of by the term programming and indeed, this is how we have approached
programming up until now in this course, since it is a simple and effective way to complete tasks of
basic-to-intermediate complexity. As you build more complex programs, however, you may find it
becomes ever more difficult to keep track in your own mind as to what is going on. What does a
particular function or variable do? How should I arrange my many pages of code? Should I make a
value accessible to all parts of my code? These questions you may ask yourself as your codebase
increases in size.

OOP is easier for humans to understand, particulary as a program increases with size, because it
models our everyday world. That is to say, it categorises its components into objects, which may be
thought of as self-contained entities that have their own properties. Different objects may interact with
one another and related objects constitute groups know as classes.

In reality, the distinction between an OOP language and a procedural language is somewhat blurred.
Perl (previously the most popular bioinformatics language) for example has an OOP component, but it
is quite common for even experienced aficionados to hardly ever use this aspect of the language. The
statistical programming language R is similar in this regard, but many users will only explicitly deal with
R objects when processing the output from external modules. In contrast, Java was designed as OOP
from the ground up, and learners will be introduced to these concepts right from the start. Python falls
between Perl and Java in that it is quite possible for programmers to write code with only a passing
familiarity with objects, such as when executing methods on particular objects. However, with a little
bit more experience it is quite possible to build complex object-orientated software in a style more typical
to Java.

In this advanced course we shall introduce the key concepts of OOP, yet steer away from an in-depth
explanation of the subject. For more details on OOP, please consult the Babraham Bioinformatics
course dedicated to this area of the Python language.

 Advanced Python

13

Objects in Python
Simply put, an object is a data structure that has values and associated methods. In Python, almost
everything is an object: a string for example stores values, and may be queried or manipulated by a
number of methods. In addition to objects native to the Python language, a programmer may create
their own novel objects. More specifically, a programmer would actually define a class (a group of
related objects). For example, a particular dog is but an instance of the dog class.

[The following sentences may sound strange at first, but please bear with me.] If we wanted to create
a dog in our program, we would define the dog class, and then make a specific dog from that class.
Each dog would constitute a separate Python object, in a sense modelling the real world. (Technically
speaking, in Python even the abstract concept of a class is an object in its own right.)

To understand further the basics of building a class, please look at the code below. You don’t need to
understand everything in the code, but just get an idea of how the code is structured. What is more
important is that you understand how to interact with an object in the main body of your code (i.e. create
an instance of an object and use object’s methods).

class Dog:

 def get_mood(self):

 return self.mood

 def set_mood(self, data):

 self.mood = data

 def animate(self):

 if self.mood == 'Happy':

 return('Wag Tail')

 elif self.mood == 'Angry':

 return('Bite')

 else:

 return('Bark')

snoopy = Dog()

snoopy.set_mood("Happy")

print(snoopy.get_mood())

snoopy.set_mood("Sad")

print(snoopy.mood)

snoopy.set_mood("Angry")

print(snoopy.get_mood())

print(snoopy.animate())

>>>

Happy

Sad

 Advanced Python

14

Angry

Bite

Firstly, we would define our dog class using the keyword class. To make an instance (snoopy) of the
dog class, the class is called (as one would call a function):

snoopy = Dog()

Instances of a class may have methods (such as already seen with built-in objects) and store
information in what is known as fields. Collectively, methods and fields are known as attributes. Both
of these may be accessed using the now familiar dot notation.

In the example, you see that the field mood is set using the set_mood method. We firstly set Snoopy’s
mood to “Happy”. The mood field can either be accessed from the main script via the get_mood()
method, or directly on the instance snoopy, using dot notation (snoopy.mood).

If you look at the Dog class some more, you will notice that each method is defined internally within the
class as a function. The animate method for example, corresponds the animate function. The code
within this function should be quite familiar, for it comprises a series of conditionals taking a dog’s mood
as input.

Inheritance
The concept of inheritance is central to object orientated programming and allows programmers to
write code much more efficiently. The rationale owes much to the phenomenon of the same name
observed in biology, in which organisms with a certain set of traits produce offspring with largely the
same characteristics. In OOP, once we have defined a class, we can easily define a subclass that
automatically “inherits” the code of its parent class (now referred to as the superclass). We can then
change the properties of the subclass, so while it resembles the superclass in many ways, it also has
its own distinct functionality.

This ability of OOP is advantageous as it allows coders to produce objects (remember, all classes are
objects) with a wide range of functions with a much-reduced code base. It also prevents duplication of
code, which is good since if we subsequently need to make changes, we should only have to make the
modification in one place and not in many different locations. The process of inheritances may take
place over many generations i.e. it is possible to make a subclass and then make a subclass of that.

OOP Summary
So, to summarise:

1) Python is an object orientated programming language, which means almost everything in
Python is an object.

2) Objects are data structures with values and methods.
3) Programmers can make custom Python objects.
4) Related objects constitute classes.
5) A specific version of a class in an instance.
6) The data stored in an instance (fields) may be accessed or modified using methods (or even

directly using the dot operator).
7) Sub-classes may be created from a class via a process termed inheritance.

 Advanced Python

15

Generators – a better way to generate data
We previously alluded briefly to the Python object known as a generator, which produces a stream of
data. In many cases this is preferable to an alternative strategy of keeping a very large list in memory,
and then selecting a value from the list as required. The syntax for making a generator is almost
identical to that of declaring a function, except that code defining a generator ends with the keyword
yield instead of return. When called, a generator object is returned. The keyword next instigates
each iteration of the generator object.

In the following example we create a generator that produces even numbers. Each time the next
command is run in the loop, the generator yields the next even number in the sequence. Importantly,
notice that once we leave the loop, but call the generator once more, we produce the next even number
in the sequence (i.e. the generator keeps track of “where it has got to”).

def all_even():

 n = 0

 while True:

 yield n

 n += 2

even_number_generator = all_even()

for i in range(5):

 even_number = next(even_number_generator)

 print(even_number)

print("And again...")

print(next(even_number_generator))

>>>

0

2

4

6

8

And again...

10

Generators don’t have to produce an infinite number of values (they do in this example, because we
have constructed an infinite while loop). We could specify some a limit to the number of values that
can be returned (e.g. only produce numbers while n is less than a specified value). Once this is
reached, further iteration will not be possible and a StopIteration error will occur.

It is also possible to pass arguments to generators in the same fashion as when passing arguments to
functions:

 Advanced Python

16

def my_generator(argument1, argument2, …):

So to recap, generators constitute a clear and concise way to make data. They are memory efficient
as compared to regular functions that need to create an entire sequence in memory before returning
the result. Owing to these reduced memory overheads, generators are generally more efficient in such
instances.

Exception handling
No doubt by now when trying to run code you have written, the Python interpreter will have responded
by outputting to the screen a traceback message of some kind, meaning that there is some kind of
error in your code. It is worth pointing out that taking the time to read the traceback message is certainly
worthwhile, as the output gives an explanation why the code failed. Although it not always obvious
what the output means, with time and experience the traceback message should help you identify most
bugs (coding errors) in a relatively short amount of time. Despite any initial misgivings you may have,
you will soon find out that the traceback message is the Python coders’ friend.

Even if you write perfect code, however, there are events which will be entirely beyond a programmer’s
control. Suppose you write a script that takes input from a file, but unfortunately, for whatever reason,
that file was deleted from the computer running the Python script and so when the program tries to open
the file, an error will result. However, a good programmer will plan for those eventualities and although
you cannot stop your script failing, when it does fail, you can ensure it fails as gracefully as possible.

Errors can be categorised into different types: trying to open a file that is not on your system you would
generate an IOError. In contrast, a NameError would result if trying to use a name that had not yet
been declared within your script.

Fortunately, Python has a feature available to a programmer to deal with such unexpected errors. This
capability is known as exception handling, and enables a programmer to provide instructions to the
script to be on the “look out” for certain types of error, and provides a “contingency plan” of what to do
if such an error is encountered. So, an exception is an error that is handled by the Python code,
and will be dealt with in a pre-specified manner. Unhandled exceptions are errors and will result in a
traceback message.

The basic way to deal with errors is to use a try statement followed by an except clause. Listed
below is a standard template for handling exceptions:

try:

 statements we try to run

except ErrorClass:

 what to do if an error of this class is encountered

Let’s illustrate this with an example:

my_list = ['A', 'B', 'C']

print(my_list[3])

>>>

Traceback (most recent call last):

 Advanced Python

17

 File "C:\Users\wingetts\Desktop\thonny.py", line 4, in <module>

 print(my_list[3])

IndexError: list index out of range

We have generated a “list index out of range error” by trying to get the value at index 3 from my_list.
Although my_list has 3 elements, the numbering of indices starts at 0, so there is no value at position
3 in our list. We could write an exception handler for this:

try:

 my_list[3]

except IndexError:

 print("That index is outside the list!")

>>>

That index is outside the list!

Now, thanks to the exception handler, the code does not terminate with a traceback, but rather prints
to the screen a user-friendly description of what went wrong. Furthermore, if this code were part of a
larger program, the program should carry on running while conversely, without the exception handler,
the program would terminate abruptly.

Many error handlers are more complex than the example above, catching many different types of errors,
and potentially handling each type of error differently. Look at the following template:

try:

 statements we try to run

except ErrorClass1:

 what to do if an error of class 1 is encountered

except ErrorClass2:

 what to do if an error of class 2 is encountered

except (ErrorClass3, ErrorClass4):

 what to do if an error of class 3/class 4 is encountered

except ErrorClass5 as err:

 what to do if an error of class 5 is encountered

except:

 statement to execute if error occurs

finally:

 statement carried out if exception is/is not made

The above template shows that the error handling reporting process can be tailored to the type of error
generated, for example ErrorClass1 and ErrorClass2 will result in different responses.
ErrorClass3 and ErrorClass4 will generate the same response. The response to ErrorClass5
generates an error object called err using the as keyword. This object may then be processed by the
script as required. The statement following the last except, in which the error type is not defined, will
be performed if an error takes place, but has not been specified previously in the error handling block

 Advanced Python

18

of code. The finally statement will be carried our regardless, irrespective of the type of error, or
indeed if any error, has occurred. To illustrate a more complex error handling process, look at the code
below:

my_dict = {"Aardvark":1, "Baboon":2, "Cougar":3}

try:

 value = my_dict["Dandelion"]

except TypeError:

 print("This index is unhashable")

except KeyError:

 print("This key is not in the dictionary!")

except:

 print("Some other error occurred!")

finally:

 print("Let's carry on")

>>>

This key is not in the dictionary!

Let's carry on

The code creates a dictionary containing three values which are animals, but then tries to retrieve a
value (i.e. “Dandelion”) not in the dictionary. This returns a KeyError leading to message “This key is
not in the dictionary!” being printed to the screen. The finally clause is then executed after the rest
of the code.

(While Python has a wide range of built-in errors, when developing more complex code there may be
times when you need to define custom errors. It is possible to write code to create an exception object,
which may be returned should an error occur. We shall not cover this in this course, but so you are
aware: exceptions in Python are instances of the built-in class Errors. To create your own error, you
would need to import that class and then define your custom error as a subclass.)

 Advanced Python

19

Chapter 2 – modules and packages

Introducing modules and packages
By using the Python techniques already described in this course, and by making use of the language’s
built-in functions and methods, it is possible to perform a wide variety of calculations and manipulations
with a small amount of code. This capability is extended substantially by making use of modules and
packages.

(Note: strictly speaking a module is a single Python file that can be imported, while packages comprise
multiple Python files and can even include libraries written in different languages. It is not uncommon
for these terms to be used interchangeably and simply refer to the anything that extends the functionality
of a Python script by using the import command.)

Modules make available to the user a much greater range of data types, functions, and methods. Under
the hood, modules are actually files placed in a library directory during Python installation. Modules
can also be obtained from external sources and added to Python’s library. There are also a wide variety
of bioinformatics modules available that can be installed to assist with your data analysis. To import a
module, use the import command:

>>> import os

This will import the os module, which allows Python to communicate with your operating system. Now
the os module is installed it is possible to run functions within this module:

>>> os.getcwd()

'/Users/wingetts'

The getcwd()function returns the user’s current working directory. To call a function within a module,
enter the module name (e.g. os), followed by a dot, then the required function’s name (e.g. getcwd)
and then a pair of round brackets as above.

Sometimes you may want to just import specific names from a module, rather than everything found
within that module. The following example shows how to import only getcwd from the os module. Use
this syntax for other importing specific names from other modules.

from os import getcwd

Importing only what you need often makes more sense as it can be overkill to import a whole module
simply for one function, or similar. Importing in this way means you can refer to getcwd directly, rather
than by using os.getcwd (although either syntax is acceptable). Anyway, don’t worry about this
distinction, the take home message is that there are many modules available that can be imported by
a script to instantly extend the functionality of that script. This chapter discusses some of these modules
and once you have become familiar with these, you should be able to use a wide variety of additional
modules. Some of these modules have bioinformatics functionality, while others are linked solely
computational in nature, extending the capabilities of a Python script, or how it interacts with your
computer.

 Advanced Python

20

In Thonny, it is possible to import modules using the package manager which can be accessed via the
main menu bar: Tools -> Manage Packages.

The datetime module
Some programs may need to retrieve the current time and date information, or they may need to
manipulate times and dates in some way. The datetime module was written specifically for such
tasks. Suppose then that you wanted to use this datetime module, how would you go about using it?
Well, in the first place you should check the documentation for the module, which can be found at:
https://docs.python.org/3/library/datetime.html

The documentation is quite technical and there will undoubtedly be parts that you don’t understand, but
with growing familiarity and practice you will be able to understand much of what is being described and
extract from the document all that is required to write your own code. The text below is taken from the
documentation (for Python 3.2). The text lists the classes contained within the datetime module.

Available Types
class datetime.date
An idealized naive date, assuming the current Gregorian calendar always was, and always will be, in
effect. Attributes: year, month, and day.

class datetime.time
An idealized time, independent of any particular day, assuming that every day has exactly 24*60*60
seconds. (There is no notion of “leap seconds” here.) Attributes: hour, minute, second, microsecond,
and tzinfo.

class datetime.datetime
A combination of a date and a time. Attributes: year, month, day, hour, minute, second, microsecond,
and tzinfo.

class datetime.timedelta
A duration expressing the difference between two date, time, or datetime instances to microsecond
resolution.

class datetime.tzinfo
An abstract base class for time zone information objects. These are used by the datetime and time
classes to provide a customizable notion of time adjustment (for example, to account for time zone
and/or daylight saving time).

class datetime.timezone
A class that implements the tzinfo abstract base class as a fixed offset from the UTC.

The module is versatile and enables the user to perform a wide variety of calculations. Here are some
examples of how to use the module to achieve some commonplace date/time-related tasks. In this first
example we have imported the datetime module, we then instantiate a datetime object using the
current time as time stored by the object. This value is then printed to the screen as a single-line
timestamp, using the print function.

import datetime

my_datetime_object = datetime.datetime.now()

 Advanced Python

21

print(my_datetime_object)

>>>

2019-12-16 17:40:35.218147

It is worth pointing out the all the attributes of a module can be achieved using the dir function. You
should see that the resulting list of attributes corresponds to that listed in the documentation

import datetime

print(dir(datetime))

>>>

['MAXYEAR', 'MINYEAR', '__builtins__', '__cached__', '__doc__', '__file__',

'__loader__', '__name__', '__package__', '__spec__', 'date', 'datetime',

'datetime_CAPI', 'sys', 'time', 'timedelta', 'timezone', 'tzinfo']

It is also possible to create a date object that corresponds to a user specified date:

import datetime

my_date = datetime.date(1966, 7, 30)

print(my_date)

>>>

1966-07-30

In addition, the module can be used to add or subtract dates to determine the amounts of time
accumulated in different situations. In the example below, we import the datetime and date classes.
We then create to date objects, set to dates of our choosing. Then, by simply using the minus operator,
we are able to deduce the length of time between them.

from datetime import datetime, date

my_start = date(year = 2016, month = 7, day = 12)

my_end = date(year = 2019, month = 7, day = 24)

my_term = my_end - my_start

print(my_term)

>>>

1107 days, 0:00:00

As mentioned before, when you want to perform a task with an additional module, there is often some
degree of research involved. Firstly, you may need to find out if a module that meets your programming
requirements actually exists. Typically, programmers will refer to modules they have used previously

 Advanced Python

22

to see if their required functionality is available. If that proves not to be the case, it is common then to
search the Python documentation or using Google (or another favourite search engine) to find a module
that appears suitable. Next will be the phase of reading the module’s documentation to see how that
particular module works, and then finally trying the module out and incorporating it into the codebase.

The exercises for this chapter were designed to help you go through this process yourself. The rest of
the chapter briefly discusses other useful modules and how they are typically used. We shall not go
into detail with regards to their implementation, since this will be handled as part of the exercises.

The math module
As the name implies, this module provides many trigonometric and hyperbolic functions, powers and
logarithms, angular conversions and well as mathematical constants such as pi and e. Further
information on this module can be found at: https://docs.python.org/3/library/math.html. This module
should be your starting point if you wish to perform some kind of mathematical operation beyond that
available to you in standard Python. With what you know already, much of the syntax of the module
should be relatively straight forward to pick up, such as the following code used to calculate the base-
10 logarithm of 1000.

import math

print(math.log10(1000))

>>> %Run test.py

3.0

The sys module
The sys module contains information pertaining to the Python implementation being used. Below is a
list of commonly used values and examples of the output you would expect to see if you print them to
the screen.

sys.argv
Description: this name is a list of strings containing the elements of the command line used to run the
script. As we might expect, the first element of sys.argv (sys.argv[0]) reports the name of the
script being run.

Printing to the screen:
['thonny.py']

sys.modules
Description: This is a dictionary in which the keys name the currently loaded modules.

Printing to the screen:
thonny.py ('_abc', '_ast', '_bisect', '_blake2', '_codecs', '_codecs_cn',

'_codecs_hk', '_codecs_iso2022', '_codecs_jp', '_codecs_kr', '_codecs_tw',

'_collections', '_csv',…

The first part, thonny.py, is the name of the script and then the modules are listed between the brackets.

 Advanced Python

23

sys.path
Description: A list of the directories into which Python looks for modules following the import
command in a script.

Printing to the screen:
['C:\\Users\\wingetts\\Desktop',

'C:\\Users\\wingetts\\AppData\\Local\\Programs\\Thonny\\python37.zip',

'C:\\Users\\wingetts\\AppData\\Local\\Programs\\Thonny\\DLLs',

'C:\\Users\\wingetts\\AppData\\Local\\Programs\\Thonny\\lib',

'C:\\Users\\wingetts\\AppData\\Local\\Programs\\Thonny',

'C:\\Users\\wingetts\\AppData\\Local\\Programs\\Thonny\\lib\\site-

packages']

sys.exit()
This is a function that will cause a Python program to exit. It is the standard practice to pass the
argument 0 if the program exits without error. Numerical values other than 0 signify some kind or error.
The sys.exit() function is preferable in scripts to the exit() or quit() commands, which are only
intended for use when using the interactive Python interpreter.

The time module
Although the time module contains many time-related functions, you are most likely to encounter the
function: time.sleep(). This instructs the Python script to wait for the specified number of seconds
passed as an argument to the function. Why would you want to do this? Well, sometimes slowing
down a program is a useful way to check output written to the screen at a pace that is readable by a
human. In addition, sometimes we may add a delay to a script to ensure some other process has
finished before we run the next part of the script.

The argparse module
Maybe you have seen already when running scripts on the command line that they may take as input a
series of options, each one prefixed by one or two hyphens. Python scripts may also be passed options
this way, and this is made possible by using the argparse module. The module enables the user to
specify what flags may be used be a script, what (if any) argument these flags take, and the type of
arguments associated with each flag. For example, the flag --length may only take integers while
the flag --mode may take a string. What is more, the argparse module will automatically generate
instructions regarding the script and its options, which can be viewed by specifying --help (or -h)
when running the script.

python3 myPythonScript.py --length 500 --mode fast file1.txt file2.txt

file3.txt

There are many ways in which to setup and use argparse and we recommend looking at the official
Python documentation to learn how to implement this module

The subprocess module
The command line is a versatile and convenient environment in which to manipulate your system and
run scripts and software. Since pipeline development (the joining separate processes into a single
workflow) is a common use of Python for bioinformaticians, it would be useful to incorporate some of

 Advanced Python

24

the functionality of the command line into a Python script. The subprocess module makes this
possible by allowing a shell command to be executed directly from a Python script.

For example, the following Python script could be run directly from the command line, and will print
“Hello World” as output.

import subprocess

print(subprocess.getoutput('echo "Hello World!"'))

user$ python3 subprocess_example.py

Hello World!

The os module
The os module is an operating system interface and is most commonly used in Python scripts for
interacting with files and directories in the filesystem. The selected example below illustrates how the
os module may be used to interact with your filesystem.

os.chdir(path)

Sets path to the working directory

os.getcwd()

Lists the current working directory

os.mkdir(path)

Creates a directory at specified location

os.mkdirs(path)

Creates all the directories in the path specified

os.rmdir(path)

Removes the specified directory

os.removedirs(path)

Removes all the directories in the path specified

os.remove(path)

Delete the specified file

os.rename(sourcepath, destpath)

Rename the file at sourcepath to destpath

os.path.dirname(path) Return the directory name of pathname path. So, if path =

'/home/User/Desktop/myfile.py', then '/home/User/Desktop' would be returned.

 Advanced Python

25

os.path.basename(path) Returns the basename of the path. So, if path =

'/home/User/Desktop/myfile.py', then ‘myfile.py’ would be returned.

The tempfile module
In the future you may write a script that during processing writes out a temporary file to a specified
directory. This may sound straightforward, but what happens if you are running multiple instances of
the same script? There is a danger that one instance of the script could overwrite a temporary file
created by another instance of the script. The solution may seem simple, such as numbering the
temporary output files. However, in reality, these solutions that may seem logical can fail and
guaranteeing that output files from one process are not overwritten by another process is not a trivial
process. Fortunately, the tempfile module handles this all for you.

The glob module
Suppose there is a file or a list of files on your computer that needs processing in some way.
Unfortunately, you don’t know the names of the files in advance (you may only know, for example, that
the files are found in a certain folder). You will therefore need some way for your script to search the
filesystem, return the relevant filenames and process these. The glob module allows you to do this.

To use glob, simply specify the pattern you wish to match:

glob.glob(pattern)

The operation of the pattern matching is similar to using the command line in that it also allows
wildcards:
* match 0 or more characters
? match a single character
[agct] match multiple characters
[0-9] match a number range
[a-z], [A-Z], [a-Z] match an alphabet range

In the simple example below, the script will identify all files is the current working directory, and then all
text files in that folder. The glob.glob command generates a list, which is then printed to the screen.

import glob

all_files = glob.glob('*')

text_files = glob.glob('*.txt')

print(all_files)

print(text_files)

>>>

[''make a better figure.pptx', 'one_hundred_lines.txt',

'subprocess_example.py']

['one_hundred_lines.txt']

 Advanced Python

26

The textwrap module
Writing code to format text in a consistent, neat and logical manner is surprisingly difficult, but once
again Python modules come to the rescue. The textwrap module does just that, providing a list of
functions to format text in a variety of ways.

Perhaps the most commonly used components of the textwrap module are the textwrap.wrap and
the textwrap.fill functions that serve as convenient ways to handle, format and print out long
strings, such as encountered in FASTA files. In the example below you will see how a lengthy string
may be converted into a list by textwrap.wrap, which may be subsequently printed out using a for
loop. In contrast, the input may be formatted into a new string using textwrap.fill. Both these
functions take optional integer arguments specifying the maximum character length of each line.

import textwrap

quote = """It was the best of times, it was the worst of times, it was the

age of wisdom, it was the age of foolishness, it was the epoch of belief,

it was the epoch of incredulity, it was the season of Light, it was the

season of Darkness, it was the spring of hope, it was the winter of

despair, we had everything before us, we had nothing before us, we were all

going direct to Heaven, we were all going direct the other way – in short,

the period was so far like the present period, that some of its noisiest

authorities insisted on its being received, for good or for evil, in the

superlative degree of comparison only."""

formatted_quote = textwrap.wrap(quote, 50)

for line in formatted_quote:

 print(line)

print("\n")

print(textwrap.fill(quote , 70))

>>> %Run subprocess_example.py

It was the best of times, it was the worst of

times, it was the age of wisdom, it was the age of

foolishness, it was the epoch of belief, it was

the epoch of incredulity, it was the season of

Light, it was the season of Darkness, it was the

spring of hope, it was the winter of despair, we

had everything before us, we had nothing before

us, we were all going direct to Heaven, we were

all going direct the other way – in short, the

 Advanced Python

27

period was so far like the present period, that

some of its noisiest authorities insisted on its

being received, for good or for evil, in the

superlative degree of comparison only.

It was the best of times, it was the

worst of times, it was the age of

wisdom, it was the age of foolishness,

it was the epoch of belief, it was the

epoch of incredulity, it was the season

of Light, it was the season of Darkness,

it was the spring of hope, it was the

winter of despair, we had everything

before us, we had nothing before us, we

were all going direct to Heaven, we were

all going direct the other way – in

short, the period was so far like the

present period, that some of its

noisiest authorities insisted on its

being received, for good or for evil, in

the superlative degree of comparison

only.

The string module
The string module (not to be confused with the str data type) contains a range of useful values and
functions. For example, it contains all the upper- and lowercase letters in the names
string.ascii_uppercase and string.ascii_lowercase respectively. There are also names
representing digits, punctuation and a range of other string values.

The csv module
If you have ever worked with data file storing text values, the chances are you will have encountered
the comma-separated values (CSV). This format stores a table or matrix (with layout similar to that
of MS Excel), only it uses commas to separate columns. (As may be expected, rows are separated by
newlines.) A very similar format uses tabs instead of commas to separate columns; this is known as
tab-separated values (or tab-delimited) format. The csv module enables a Python script to read
from or write to these types of file. Again, the official Python documentation should be consulted for
guidance on how to used this module.

The zlib and gzip modules
Modern life science data files are often are very large. To assist with their storage, they are often
compressed as either zip or gzip files. The zlib and gzip modules are available for reading from or
writing to these file types, respectively. The syntax for their usage is generally similar to that for opening
a regular file. One important difference is that data returned from the file will be a sequence of bytes
(note the b before the quotation mark when printing to the screen in the example below.) We have not
discussed this bytes datatype before, but simply put it is a machine-readable format that can be directly

 Advanced Python

28

stored on the disk (in contrast to strings, which are in human-readable but cannot be saved directly to
disk). The bytes datatype can be decoded to a string with the decode method decode('utf-8').
UTF-8 is the type of Unicode format to which the bytes should be decoded.

import gzip

with gzip.open('test_file.txt.gz', 'rb') as f:

 file_content = f.read()

print(type(file_content))

print(file_content)

print()

file_content_string = file_content.decode('utf-8')

print(type(file_content_string))

print(file_content_string)

<class 'bytes'>

b'Hello.\nI am a compressed file.\n'

<class 'str'>

Hello.

I am a compressed file.

When writing to binary files, create a file object with the parameter 'wb' passed to gzip.open (instead
of 'rb'- used for reading files).

Although this section is now at an end, this does not mean that we covered all the in-built Python
modules. We have tried to identify the modules that will be most useful to you, but as you write more
sophisticated Python, you should bear in mind that the code you need to complete a particular task may
only be a simple import away. With that in mind, it is a good idea to spend the odd occasion reading
more about Python modules in the official and documentation and elsewhere to improve your coding
proficiency.

Installing Modules and Packages
Up until now the modules discussed are distributed with Python and so can be simply be made
accessible via the import command. There are many modules, however, particularly in the fields of
bioinformatics or some other specialist area of biology, that require downloading and installation. If all
goes well, this process should be quite simple thanks to the pip installer program, which is included by
default with Python binary installers since version 3.4.

Installation
The following command shows how to use pip to install the latest version of a package (a collection of
modules) and its dependencies:

python3 -m pip install SomePackage

 Advanced Python

29

If you have Python2 installed, you may need to type “python3” instead of “python” to clarify the version
of python that should be used; we used python3 here for clarity. The flag -m instructs the python to run
the module install. After running this command, and if everything proceeds successfully, you should
see a message similar to: “Successfully installed SomePackage-1.2.3”. (It is possible to install
packages using the pip3 command directly, but we shall use the methods described above.)

It is possible to specify an exact or minimum version directly on the command line. To install a specific
version (say 1.1.2) try:

python3 -m pip install SomePackage==1.1.2

To specify a minimum version (say, 1.0.2), try:

python3 -m pip install "SomePackage>=1.0.2"

(Don’t forget the double quotes as the character “>” may cause unintended behaviour when run on the
command line.)

Should the desired module be already installed, attempting to install it again will have no effect.
Upgrading existing modules must be requested explicitly:

python3 -m pip install --upgrade SomePackage

It is worth bearing in mind that up-to-date copies of the setuptools and wheel projects are useful to
ensure you can also install from source archives. To update these, run the command below:

python3 -m pip install --upgrade pip setuptools wheel

You can read up some more on setuptools and wheel files if you wish, but all the typical coder
needs to bear in mind is that these facilitate the installation of packages.

Installation locations
So, where are Python packages installed? Well, to find this out, type the command:

python3 -m site

This should return information, similar to that listed below:

sys.path = [

 '/Users/wingetts',

 '/Library/Frameworks/Python.framework/Versions/3.8/lib/python38.zip',

 '/Library/Frameworks/Python.framework/Versions/3.8/lib/python3.8',

 '/Library/Frameworks/Python.framework/Versions/3.8/lib/python3.8/lib-

dynload',

 '/Users/wingetts/Library/Python/3.8/lib/python/site-packages',

 Advanced Python

30

 '/Library/Frameworks/Python.framework/Versions/3.8/lib/python3.8/site-

packages',

]

USER_BASE: '/Users/wingetts/Library/Python/3.8' (exists)

USER_SITE: '/Users/wingetts/Library/Python/3.8/lib/python/site-packages'

(exists)

ENABLE_USER_SITE: True

The Python packages will be stored in the sys.path section, in the path ending site-packages. If
you take a look in that folder, you should see your installed packages.

It is quite likely, however, that on the system you are using, you will not have administration rights to
install the package you desire i.e. you may not write to the site-packages folder listed above. Not
to worry, you should be able to install packages that are isolated for you by adding the --user flag:

python3 -m pip install SomePackage --user

This package will now be installed in the site-packages folder, to which you will have access, listed
in the USER_SITE: section.

Using pip is the most common way to install modules and should work in most instances. However,
not every software developer will make their tools available via pip. In such circumstances, the desired
module should give instructions regarding how it should be installed.

Virtual Environments
Although not described in this course in detail, you should be aware of Python virtual environments
that allow Python packages to be installed in an isolated location for a particular application, rather than
being installed globally. This means that you can install Python packages expressly for one (or several)
particular applications without changing the global setup of your system. You then simply start the
virtual environment when trying the application of interest, and then exit when done.

Biopython
Biopython is a set of freely available Python tools for biological computation and as such provides a
useful resource for the life sciences community. This may be one of the packages that are not
distributed with Python that you will need to install to help you complete some computational task. Of
course, with your new-found skills in Python you may be able to write the necessary application yourself,
but there is no point re-inventing the wheel and if what you require is already available using Biopython,
then this should be a good starting point for your analysis. The Biopython homepage is found at:
https://biopython.org/

As you might expect, to install the package, enter on the command line one of the following commands
(in accordance with your administration privileges):

python3 -m pip install biopython

python3 -m pip install biopython --user

 Advanced Python

31

Below is an example given in the Biopython documentation, which shows how the SeqIO standard
Sequence Input/Output interface for Biopython may be used to parse a Genbank format file into a
FASTA file. In a relatively small amount of code a useful task can be accomplished, highlighting how
Python and its large, active community of developers can be harnessed so you can achieve tasks much
more efficiently than if you were starting writing code from scratch.

from Bio import SeqIO

with open("cor6_6.gb", "r") as input_handle:

 with open("cor6_6.fasta", "w") as output_handle:

 sequences = SeqIO.parse(input_handle, "genbank")

 count = SeqIO.write(sequences, output_handle, "fasta")

print("Converted %i records" % count)

 Advanced Python

32

Chapter 3 – regular expressions
Sequence data – whether that is derived from DNA, RNA or protein samples – constitutes an ever more
important and burgeoning area of research. Identifying, extracting or modifying specific sequences
from the vast pools of data that is commonly generated in modern experiments is no trivial task.
Fortunately, the world of computer science has already developed a toolkit with the pattern matching
capabilities suited to this formidable challenge. These tools, which constitute a language in their own
right, are known as regular expressions (or more familiarly known as regexes or REs). There is a
substantial amount of new and dense material to cover in this chapter, so this section may take some
effort and practice to become confident at pattern matching. But do take heart, even though regexes
may first appear to be impenetrable lines of hieroglyphics, once you can use them, they will form a
powerful and succinct way to scrutinise sequences. Moreover, the same ideas and notation are used
in different programming languages (e.g. R, Perl and Java), allowing you to also build skills outside of
Python.

Introducing the re module
The Python re module provides an interface with the regular expression engine, allowing you to
compile regexes and then perform matching operations.
As you may expect, to use the re module, simply enter import re towards the top of your Python
script.

Simple String Matching with the re Module
So now we have introduced the re module, let’s try some simple pattern matching of strings. Take a
look at the code below in which we intend to identify the HindIII restriction enzyme cut site (AAGCTT)
in three different sequences.

import re

pattern = 'AAGCTT'

p = re.compile(pattern)

seq1 = 'AAGCTTNNAAGCTT'

seq2 = 'GGGGGG'

seq3 = 'NNAAGCTT'

print(p.match(seq1))

print(p.match(seq2))

print(p.match(seq3))

print(p.search(seq3))

>>>

<re.Match object; span=(0, 6), match='AAGCTT'>

None

None

<re.Match object; span=(2, 8), match='AAGCTT'>

 Advanced Python

33

We firstly import the re module. After that, we then compile the regular expression (the pattern we wish
to identify) into a complied pattern object (named p). We now run the match method on this object,
taking seq1, seq2 and then seq3 as arguments. The first time we do this (with seq1), we achieve a
match and a match object is returned. We can tell this has happened by printing out this newly
generated object, for we can now see displayed the match string and the position of the match. In
contrast, no match was achieved for seq2 and seq3, resulting in None being retuned. It is quite clear
that seq2 does not contain the HindIII site, but seq3 does – so why wasn’t a match object returned?
Well, the method match only matches at the start of sequence. In contrast, the search method allows
matches anywhere in the sequence, and so the match was successful.

The table below lists the compiled pattern object methods.

Method Purpose
match() Determine if the regex matches at the beginning of the string.
search() Scan through a string, looking for any location where this regex matches.
findall() Find all substrings where the regex matches, and returns them as a list.
finditer() Find all substrings where the regex matches, and returns them as an iterator of

match objects (i.e. the match object may be retrieved one at a time using a
for loop)

Querying the match object
The match object returned after a successful match has methods which may be executed to retrieve
useful information, as listed in the following table.

Method Purpose
group() Return the string matched by the RE
start() Return the starting position of the match
end() Return the ending position of the match
span() Return a tuple containing the (start, end) positions of the match

The code printed below illustrates this ability to query the match object with these methods. The code
is a modification of the previous example, and here we use search to identify a HindIII site within our
DNA sequence. We then print matched sequences, the start position of the match, the end position of
the match by retrieving this information from the match object.

import re

pattern = 'AAGCTT'

p = re.compile(pattern)

seq = 'NNAAGCTT'

m = p.search(seq)

print(m.group())

print(m.start())

 Advanced Python

34

print(m.end())

>>>

AAGCTT

2

8

You may be wondering at this point as to the usefulness of being able to print the matched sequence;
after all we already know the identity of our sequence, since we passed this to our regular expression
object to achieve the match. Well, that is true for this simple example, but often we will not know the
exact sequence that will be matched in advance since we may be trying to match a range of different
sequences. In the next sections we shall describe how to construct these more complex regex look-up
terms.

Metacharacters
There are special characters, termed metacharacters, in regular expressions that represent other
types of characters. The list of metacharacters is:

. ^ $ * + ? { } [] \ | ()

We shall now provide an overview of how these are used.

Character classes
The metacharacters [and] are used to define classes of characters. For example [abc] means
match the letters a, b or c. The character class [a-c] will achieve the goal. Similarly, you may match
against all lowercase characters with the class [a-z] or against any digit with [0-9]. Metacharacters
generally lose their special properties inside the square brackets and instead become literal
representations of themselves.

The caret character ^ is used to complement the set. So, for example, [^7], will match any character
except 7.

On a related note, the pipe character (|) essentially means ‘or’ within a regex. The pattern a|b
therefore will constitute a match on either a or b.

Start and ends
When found outside of the character class, the caret (^) denotes the start of the string. Similarly, the
dollar symbol ($) denotes the end of a string. So, for example, the regex ^ABC$ would mean a matching
pattern should contain ABC and have nothing either side (i.e. the start character is A, and the end
character is B). Or for example, the regex ^pi would match pi, pike, and pill, but not spill. This
is because a successful match requires the string to start with a p.

Backslash
The backslash is commonly used in regular expressions and serves multiple purposes. Firstly, the
backslash is often followed by a letter character, and together those two characters represent a whole
range of different characters. As seen before, the character pair \d represents numerical (base-10)
digits. The table below describes the backslash letter pairs.

 Advanced Python

35

Backslash Letter Meaning
\d Matches any decimal digit; this is equivalent to the class [0-9]
\D Matches any non-digit character; this is equivalent to the class [^0-9]
\s Matches any whitespace character; this is equivalent to the class [\t\n\r\f\v]
\S Matches any non-whitespace character; this is equivalent to the class [^

\t\n\r\f\v]
\w

Matches any alphanumeric character; this is equivalent to the class [a-zA-Z0-
9_]

\W Matches any non-alphanumeric character; this is equivalent to the class [^a-
zA-Z0-9_]

The above pattern matches may be used inside character classes to increase their power.

Another very useful metacharacter is the dot (.), which matches any character, except newline
characters.

Escaping Using Backslashes
You may have noticed a problem with the regular expression we have introduced so far. One such
problem involves using the dot (.) as a metacharacter. While this is undoubtedly useful, what happens
if we want to explicitly match a full stop (or period)? We can’t use this character itself, since it will match
everything. The solution is a technique known as escaping. Preceding a metacharacter with backslash
will cause it to be interpreted literally, rather than as a metacharacter. For example:

pattern1 = '.'

pattern2 = '\.'

The regular expression pattern1 will match everything except new line character, while pattern2
matches full stops. This “escaping” technique may be used for other metacharacters, even the
backslash itself, as shown that pattern3 matches the backslash character itself.

pattern3 = '\\'

Raw String Notation
An alternative to escaping characters (which may become very difficult to read) is to use raw string
notation. This is quite easy to implement and all that one needs to do is place the character r before
the string for it be interpreted literally.

For example, to read the text \\matchme literally, use the notation: r"\\matchme".

 Advanced Python

36

Repetition
Regular expressions allow the user to denote that a phrase needs to be repeated a specified number
of times for a match to occur. Specifically, the metacharacters asterisk (*), plus (+) and question
mark (?) achieve this in closely related, but slightly different ways (see the table below).

Metacharacter Action
* the preceding character should be occur zero or more times
+ the preceding character should be occur one or more times
? the preceding character should be occur zero or one times

The small sample code below should illustrate this functionality. The code creates a regular expression
to match the pattern CAR*T. As should be expected, matching against the letters CART will generate a
successful match. Essentially the required pattern is CART, although the letter R may be “present” zero
or more times. In the second pattern match we test whether the word CAT matches the specified criteria.
It does, since the asterisk means the R may be omitted. Removing the letter R from CART makes CAT,
and so we create a match object.

import re

pattern = 'CAR*T'

p = re.compile(pattern)

letters1 = 'CART'

letters2 = 'CAT'

m1 = p.search(letters1)

m2 = p.search(letters2)

print(m1)

print(m2)

>>> %Run regext.py

<re.Match object; span=(0, 4), match='CART'>

<re.Match object; span=(0, 3), match='CAT'>

Another method to denote repetition involves placing an integer between curly brackets: {n}. This
denotes the exact number of times the preceding character should be displayed. Placing two integers
between these brackets is another way to specify repletion: {m,n}. This repeat qualifier means there
must be at least m repetitions, and at most n of the preceding character. For example, a/{1,3}b will
match a/b, a//b, and a///b. It won’t match ab, which has no slashes, nor a////b, which has four.
In fact, you don’t need both the m and n, since by default omitting m is interpreted as a lower limit of 0
{ , n}, while omitting n results in an upper bound of infinity {m, }.

So, we have at our disposal different techniques to denote the repetition of individual characters. But
these techniques are even more powerful, since they may used to denote repetition of character
classes (rather than simply individual characters).

 Advanced Python

37

import re

pattern = '[aeiou]+'

p = re.compile(pattern)

word = 'euouae'

match = p.search(word)

print(match)

>>>

<re.Match object; span=(0, 6), match='euouae'>

Greedy vs non-greedy matching
In addition to the techniques of specifying repetition, there are a set of related techniques that work in
the same way, except these perform non-greedy matching as opposed to greedy matching. The non-
greedy qualifiers are the same as those for greedy matching (described previously), except that they
are followed by a question mark:
*?
+?
??
{m,n}?

Greedy matching matches as many characters and possible, while nongreedy matching matches the
fewest allowed characters. Please review the code below to see how adding the qualifier ? to the
pattern Pneu.*s modifies its matching behaviour.

import re

pattern_greedy = 'Pneu.*s'

pattern_nongreedy = 'Pneu.*?s'

p_greedy = re.compile(pattern_greedy)

p_nongreedy = re.compile(pattern_nongreedy)

word = 'Pneumonoultramicroscopicsilicovolcanoconiosis'

m_greedy = p_greedy.search(word)

m_nongreedy = p_nongreedy.search(word)

print(m_greedy)

print(m_nongreedy)

 Advanced Python

38

>>>

<re.Match object; span=(0, 45),

match='Pneumonoultramicroscopicsilicovolcanoconiosis'>

<re.Match object; span=(0, 19), match='Pneumonoultramicros'>

Groups
Suppose we want to capture individual components (i.e. groups) of a pattern. For example, let’s
imagine that a particular identifier comprises a word, then a numerical value and then another word.
Well we can do this by creating groups within the regex using round brackets. See the code below:

import re

pattern= '^([A-z]+)(\d+)([A-z]+)$'

p = re.compile(pattern)

seq = 'The6Hundred'

m = p.search(seq)

print(m)

print(m.group(0))

print(m.group(1))

print(m.group(2))

print(m.group(3))

>>>

<re.Match object; span=(0, 11), match='The6Hundred'>

The6Hundred

The

6

We have developed a more complex regex than encountered before, but once you break it down, it is
quite intelligible. The first component of our serial are letters, as represented by the character class
[A-z]. Since there will be at least one of these letters, we suffix the character class with a +. Then
we have 1 or more digits, represented by \d+. Finally, we end with [A-z]+ once more, representing
another word. Since there should be nothing else within our serial number we ensure that only this
pattern was retrieved (i.e. there is nothing either side) by delimiting the regex with ^ and $. We now
define our groups by surrounding [A-z]+ and \d+ with rounds brackets.

To retrieve the value associated with each of the three groups, use the group method of the match
object. The value at position 0 will be the whole matched term (i.e. The6Hundred), while values 1-3
correspond to each of the predefined groups, proceeding in order, from left to right of the regex.

 Advanced Python

39

Compilation flags
Compilation flags allow you to modify how certain aspects of a regular expression works. The more
commonly used flags are IGNORECASE (I) and MULTILINE (M). The former causes the regular
expression to perform case-insensitive matches on text characters. The latter flag modifies the mode
of action of the metacharaters ^ and $. The caret (^) now matches at the beginning of the string and
at the beginning of each line within the string, immediately following each newline. In a similar fashion,
the $ metacharacter matches either at the end of a string and at the end of each line. Add the
appropriate flag when creating the regular expression, for example:

import re

pattern= 'AAGCTT'

p = re.compile(pattern)

p_ignore_case = re.compile(pattern, re.IGNORECASE)

seq = 'aagctt'

m = p.search(seq)

m_ignore_case = p_ignore_case.search(seq)

print(m)

print(m_ignore_case)

>>> %Run regext.py

None

<re.Match object; span=(0, 6), match='aagctt'>

You can see how applying the IGNORECASE has modified the action of the regular expression, causing
aagctt to match AAGCTT.

Modifying Strings
Regular expressions can also be used to modify strings in a variety of ways. Perhaps the two most
commonly used methods to perform such a modification are split() and sub().

The split() method splits a string into a list, subdividing it wherever the regex matches. If capturing
parentheses are used in the RE, then their contents will also be returned as part of the resulting list.
The regex may also be given a maxsplit value, which limits the number of components returned by
the splitting process.

Another task is to find all the matches for a pattern, and replace them with a different string. The sub()
method takes a replacement value – which can be either a string or a function – and the string to be
processed. Similar to the split() method, an optional argument count may be passed in the regex
specifying the maximum number of pattern occurrences to be replaced.

If you look at the example below you will see code that modifies the last word in our serial ID (from
before) into Thousand. The regex identifies the last word in the string. We then perform the sub()

 Advanced Python

40

method on the pattern object, passing the replacement value as well. This will replace Hundred to
Thousand in the string.

import re

pattern= '[A-z]+$'

p = re.compile(pattern)

seq = 'The6Hundred'

m = p.sub('Thousand', seq)

print(m)

>>>

The6Thousand

That brings this chapter on regular expressions to an end. Although we have covered a wide range of
scenarios, the symbolic representation of patterns makes regular expressions a language in its own
right. Consequently, if you find at some point in the future that what has been mentioned here doesn’t
provide you with the search term you need, you should certainly refer to the Python documentation,
from where you will receive even more information on regular expression construction.

 Advanced Python

41

Concluding remarks
Well, that brings the Advanced Python course to an end. You should now have at your disposal a wide
range of computational tools that can be employed to construct simple scripts, develop software or
perform some kind of data analysis. Not only can you write code, but you should be able to write well-
structured code that is intelligible to other people. You should now understand how to handle errors
elegantly or import modules to perform a wide range of tasks simply and quickly. In addition, you can
now undertake pattern matching – a key area in nucleic acid or protein sequence analysis – by writing
regular expressions.

As discussed in our previous Python cause, we strongly recommend that you go out of your way to find
reasons to write code over the next few weeks. If you don’t build upon your current knowledge, as the
weeks turn into months, you will become less familiar with what you have learned over the past few
days. Maybe there is some analysis that you could now perform with Python? Even if it is easier to do
the tasks in, say, MS Excel, reinforcing your new-found skills now will pay dividends in the future.

Learning Python is akin to learning a foreign language. There is a great deal to take in and
becoming fluent takes practice, practice, practice.

We would like to bring to your attention the following resources that may help you in your future Python
career:

www.python.org – the homepage of Python. This should often be your first port of call for Python-
related queries.

www.jupyter.org – many bioinformaticians and computational biologist are adopting Jupyter notebooks
to write code and share results in a structured and reproducible fashion.

www.matplotlib.org – a popular resource for using Python to produce graphs and charts.

pandas.pydata.org – an open source data analysis and manipulation tool.

www.biopython.org – a set of freely available tools for biological computation.

Also, don’t forget the Babraham Bioinformatics pages listing available courses and providing training
materials: https://www.bioinformatics.babraham.ac.uk/training

Our Data Analysis in Python and Object Oriented Programming in Python courses may be of
particular interest to you.

Happy coding!
The Babraham Bioinformatics Team

