
Analysing Single-Cell RNA-Seq with R

v2025-06

(Seurat v5)

Simon Andrews

simon.andrews@babraham.ac.uk

Major scRNA Package Systems

https://cole-trapnell-lab.github.io/monocle3/

https://satijalab.org/seurat/

https://bioconductor.org/packages/release/bioc/html/scater.html

https://scanpy.readthedocs.io/en/stable/

What do they provide?

• scRNA Data Structure
– Data parsing

– Quantitations

– Metadata

• Processing methods
– Normalisation

– Integration

– Dimensionality reduction
• PCA / tSNE / UMAP

• Statistics

– Enriched genes

– Differential expression

• Plotting

– Projections

– QC

– Expression graphs

Seurat

• Most popular R framework
– Well supported and frequently updated

• Good documentation
– Reference documentation
– Vignettes and examples

• Easy data model to work with

• Lots of built in functionality
– Easy to extend to build your own

https://satijalab.org/seurat/

Seurat Data Structure
• Single object holds all data

– Build from text table or 10X output (feature matrix h5 or raw matrix)

Assays

Raw counts
Normalised

Quantitation

Metadata

Experimental
Conditions
QC Metrics

Clusters

Embeddings

Nearest
Neighbours
Dimension
Reductions

Seurat Object

Variable
Features

Variable Gene
List

Seurat Metadata

• QC

• Conditions

• Clusters

data[[]] Access whole table
data$nCount_RNA Access one column
new_data -> data$new_metric Add a column

Seurat Quantitative Data

> LayerData(data, layer="counts")

> LayerData(data, layer="data")

Seurat Dimensionality Reductions

> Embeddings(data,reduction = "pca")

PC_1 PC_2 PC_3

GAGAAACCAT-1 -4.135099 -8.7585629 0.004920869

GAGATAGCAT-1 10.279728 0.8451562 0.287589575

GAGCGTGAAC-1 -6.002598 4.9504875 -3.022266598

GCAACGCACC-1 10.610838 0.4030928 0.165408128

GCATCGATTG-1 -5.581052 -0.4542359 5.166186308

> Embeddings(data,reduction = "tsne")

tSNE_1 tSNE_2

AAACCTGAGAGTGAGA-1 14.182877 -12.592458

AAACCTGAGCGAAGGG-1 -24.612876 5.739248

AAACCTGAGCGTCTAT-1 21.212219 4.717356

AAACCTGAGCTACCTA-1 5.228508 21.568443

AAACCTGAGCTCCCAG-1 18.923168 6.299075

> Loadings(data, reduction="pca")

PC_1 PC_2 PC_3

IGLC3 -0.01326925 -0.07255036 -0.017863727

IGLC1 -0.01039493 -0.05451957 -0.008700478

IGLC2 -0.01569606 -0.08276587 -0.021715297

IGKC -0.02226017 -0.12668741 -0.038651318

S100A9 0.11325462 0.01836318 0.013403732

Variable Gene Information

> HVFInfo(data)

Seurat Methods

• Data Parsing
– Read10X

– Read10X_h5*

– CreateSeuratObject

• Data Normalisation
– NormalizeData

– ScaleData

• Graphics
– Violin Plot – metadata or expression

(VlnPlot)
– Feature plot (FeatureScatter)
– Projection Plot (DimPlot, DimHeatmap)

• Dimension reduction
– RunPCA

– RunTSNE

– RunUMAP

• Statistics
– Select Variable Genes
FindVariableFeatures

– Build nearest neighbour graph
FindNeighbors

– Build graph based cell clusters
FindClusters

– Find genes to classify clusters (multiple tests)
FindMarkers

*Requires installing the hdf5r package

Seurat Graphs

DimPlot

FeaturePlot

FeatureScatter
DimHeatmap

VlnPlot

Example 10X Seurat Workflow

Example Seurat Workflow

Read Data
Calculate QC

Metrics
Filter cells and

genes
Normalise and

scale counts
Find Variable

Genes

Run PCA and
select PCs

Run tSNE /
UMAP

Define Clusters
Identify Cluster

Markers
(Integrate Runs)

Reading Data

Read10X_h5("filtered_feature_bc_matrix.h5") -> data

CreateSeuratObject(
counts=data,
project="course",

) -> data

> data

An object of class Seurat

17136 features across 3939 samples within 1 assay

Active assay: RNA (17136 features, 500 variable

features)

3 layers present: counts, data, scale.data

2 dimensional reductions calculated: pca, tsne

Reading Multiple Files
CreateSeuratObject(Read10X_h5("SAMPLE1.h5"),project="sample1") -> sample1
CreateSeuratObject(Read10X_h5("SAMPLE2.h5"),project="sample2") -> sample2
CreateSeuratObject(Read10X_h5("SAMPLE3.h5"),project="sample3") -> sample3

merge(
sample1,
c(sample2,sample3),
add.cell.ids=c("sample1","sample2","sample3")

) -> data

An object of class Seurat
33696 features across 6302 samples within 1 assay
Active assay: RNA (33696 features, 0 variable features)
3 layers present: counts.sample1, counts.sample2, counts.sample3

QC – What problems are likely?

• Lysed cells

• Dead or dying cells

• Empty GEMs

• Double (or more) occupied GEMs

• Cells in different cell cycle stages

Lysed Cells

• Outer membrane is ruptured – cytoplasmic RNAs leak out

– Loss of mature RNA, increase in pre-mRNA

– Lower overall counts/features

– Increase in nuclear RNAs

• MALAT1 is an easy marker to use

Dead or Dying Cells

• Cells undergoing apoptosis have very different
transcriptomes

– Lower total RNA production

–Huge upregulation of mitochondrial transcription

Empty GEMs

• GEMs containing no cell will still produce some
sequence

– Background RNA in the flow medium

– Will be worse with higher numbers of lysed cells

• Total amount of signal will be greatly reduced

• Will often cluster together

Double occupied GEMs

• Will get a mixed signal from two different cells

• Not as obvious a signal as empty GEMs

– More UMIs/Features per cell

– Intermediate clustering

QC and Cell Filtering

• Standard QC Measures
– Number of observed genes per cell

– Number of reads per cell

– Relationship between the two

• Calculated QC Measures
– Amount of mitochondrial reads

– Amount of ribosomal reads

– Marker genes (eg MALAT1)

– Cell cycle

Adding QC Metrics

• Mitochondrial

• Immunoglobulin

• Malat1

• Ribosomal

PercentageFeatureSet(
data,
pattern="^MT-“

) -> data$percent.MT

QC and Cell Filtering

VlnPlot(
data,
features=c("nCount_RNA","percent.MT"),
log=TRUE

)

FeatureScatter(
data,
feature1 = "nCount_RNA",
feature2 = "Percent.Largest.Gene“

)

Applying Filters

subset(
data,
nFeature_RNA>750 &
nFeature_RNA < 2000 &
percent.MT < 10

) -> data

Count Normalisation and Scaling

• Raw counts are biased by total reads per cell

• Counts are more stable on a log scale

• Standard normalisation is just log reads per 10,000 reads

• For PCA counts scale each gene's expression to a z-score

– Can also use this step to try to regress out unwanted effects

Count Normalisation and Scaling

NormalizeData(
data,
normalization.method = "lognormalize"

) -> data

ScaleData(data) -> data

Variable Feature Selection

• Selects a subset of genes to use for
downstream analysis

• Identify genes with an unusual
amount of variability

• Link the variability with the
expression level to find variation
which is high in the context of the
expression level

• Keep only the most variable genes

FindVariableFeatures(
data,
selection.method = "vst",
nfeatures=500

) -> data

Variable Features for Multiple Samples

• Can just find variable features across all cells

lapply(unique(data$orig.ident), function(x) {
data |>
subset(orig.ident==x) |>
FindVariableFeatures() |>
HVFInfo() |>
as_tibble(rownames="Gene") |>
add_column(orig.ident=x)}) -> variability_data

do.call(bind_rows,variability_data) -> variability_data

• Compare Variance

• Select Common Variable Features

Dimensionality Reduction

• Start with PCA on the
normalised, filtered (both cells
and genes), scaled data

• Scree / Elbow plot to decide how
many PCs are informative

• Pass only the interesting PCs to
subsequent tSNE or UMAP
reduction to get down to 2
dimensions

Dimensionality Reduction

RunPCA(
data,
features=VariableFeatures(data)

) -> data

RunTSNE(
data,
dims=1:15,
seed.use = saved.seed,
perplexity=30

) -> data

Defining clusters

• Construct nearest neighbour graph
– Constructed from PCA

– Same dimensions as tSNE/UMAP

• Find clusters
– All cells are classified

– Graph Based (Louvain) Clustering

– Resolution (0.01 - 5) defines granularity

FindNeighbors(
data,
dims=1:15

) -> data

FindClusters(
data,
resolution = 0.5

) -> data

Clustree to see effect of resolution

https://github.com/lazappi/clustree

Comparing Properties of Clusters

• We want to know that clusters are occurring because of
biological changes, not technical differences

• We plot QC metrics for clusters

– Read/Gene counts

– Mitochondrion

– MALAT1

• Can remove suspect clusters

VlnPlot(data,features="nFeature_RNA")

subset(data, !Seurat_clusters %in% c(8,10,12)) -> data

Statistical Analysis

• Cluster 1 vs Clusters [2,3,4]

• Cluster 1 vs Cluster 3

1

4

Sample A

1

4

Sample B

• Cluster A1 vs Cluster B1

Types of Statistics

• Non Parametric Stats

– Default test

– Wilcoxon Rank Sum

– Semi Quantitative

– Each Cell is a replicate

– Highly Powered

– Over powered?

• ROC Analysis

– Not a stats test

– How well can each gene
separate the groups

– Values 0 – 1

– 0.5 is worst

– 0 or 1 are perfect
separation

• DESeq Stats

– Only with replicates

– Aggregate counts per
cluster and sample

– Standard RNA-Seq
analysis

– Works well if your data
supports it

Statistical analysis of differences between clusters

FindMarkers(
data,
ident.1 = 2,
ident.2 = 6,
test.use = "roc",
only.pos = TRUE

)

FindAllMarkers(
data,
group.by ="seurat_clusters",
test.use = "roc",
only.pos = TRUE

)

Automated Cell Assignment

• Can automatically assign cell identities to clusters

• Need a source of marker genes

– Result of a previous run/experiment

– Publicly available data (https://azimuth.hubmapconsortium.org/)

• Many packages to do this

– SCINA has worked well for us

– Azimuth built into Seurat

Integrating Multiple Runs

• When multiple runs are combined (eg Unstim and Stim), the
batch differences between the runs can overwhelm the
biological differences

• Raw comparisons can therefore miss changes between what
are actually matched subgroups

Raw merged runs

• Two PBMC populations run at
different times

• tSNE spread coloured by
library

• Little to no overlap between
cell populations

Integrating Runs

• Split the layers based on the metadata

• Rerun Normalisation, Variable Features, Scaling, PCA

• Create a new integrated layer

split(data[["RNA"]], f = data$Batch) -> data[["RNA"]]

IntegrateLayers(
object = data, method = RPCAIntegration,
orig.reduction = "pca", new.reduction ="integrated.rpca",
verbose = FALSE

) -> data

Integrating Runs

Raw Anchored

Over-Integration

Exercise – Using Seurat to analyse 10X data

