Analysing 10X Single Cell RNA-Seq Data

v2019-06

Simon Andrews simon.andrews@babraham.ac.uk

Course Outline

• How 10X single cell RNA-Seq works

- Evaluating CellRanger QC
 - [Exercise] Looking at CellRanger QC reports
- Dimensionality Reduction (PCA and tSNE)
 - [Exercise] Using the Loupe cell browser
 - [Exercise] Analysing data in R using Seurat

Gel Beads in Emulsion (GEMs)

Oligo dT Cell barcode (same within GEM) UMI (all different) Priming site

Sample level barcode – same for all cells and RNAs in a library

Cell level barcode (16bp) – same for all RNAs in a cell

UMI (10bp) – unique for one RNA in one cell

10X Produces Barcode Counts

	Sample WT			Sample KO	
Cell WT A	Cell WT B	Cell WT C	Cell KO A	Cell KO B	Cell KO C
UMI UMI UMI UMI UMI UMI UMI	UMI UMI UMI UMI	UMI UMI UMI UMI UMI UMI UMI	UMI UMI UMI	UMI UMI UMI UMI UMI UMI	UMI UMI UMI UMI UMI

UMIs are finally related to genes to get per-gene counts

The 10X Software Suite

ChromiumCellLoupeControllerRangerBrowser

Runs the chromium system for creating GEMs Pipeline for mapping, filtering, QC and quantitation of libraries Desktop software for visualisation and analysis of single cell data.

Cell Ranger

- Barcode Extraction and filtering
 - Identifies cell level barcodes
- Mapping to reference
 - Uses STAR aligner
- Generate count table
 - UMIs per gene in each cell
- Dimensionality Reduction
 - PCA and tSNE
- Clustering
 - K-means and Graph Based

CellRanger Commands

– Index file. All identical (or one of 4) at Babraham

• R1

R2

- Barcode reads
 - 16bp cell level barcode
 - 10bp UMI

- 3' RNA-seq read

CellRanger Commands

• CellRanger Count (quantitates a single run)

- $\$ cellranger count --id=COURSE $\$
 - --transcriptome=/bi/apps/cellranger/references/GRCh38/ \
 - --fastqs=/bi/home/andrewss/10X/ \
 - --localcores=8 $\$
 - --localmem=32

• CellRanger aggr (merges multiple runs)

 $\$ cellranger aggr --id=MERGED $\$

```
--csv=merge_me.csv \
```

--normalize=mapped

Output files generated

- web_summary.html Web format QC report
- filtered_features_bc_matrix
 - barcodes.tsv.gz cell level barcodes seen in this sample
 - features.tsv.gz list of quantitated features (usually Ensembl genes)
 - matrix.mtx.gz (sparse) matrix of counts for cells and features
- possorted_genome_bam.bam BAM file of mapped reads
- molecule_info.h5 Details of the cell barcodes used for merging
- cloupe.cloupe Analysis data for Loupe Cell browser

Evaluating CellRanger Output

- Look at barcode splitting report
 - Check sample level barcodes

- Look at web_summary.html file
 - Check number of cells
 - Check quality of data
 - Check coverage per cell
 - Check library diversity

Sample Level Barcodes

• Only present if multiple libraries mixed in a lane

- Get standard barcode split report, but with 4 barcodes used per sample
- Even coverage within and between libraries

TCGGCGTC mESCs_grown_on_feeders_in_serum_medium	
CTAAACGG mESCs_grown_on_feeders_in_serum_medium	
AACCGTAA mESCs_grown_on_feeders_in_serum_medium	
GGTTTACT mESCs_grown_on_feeders_in_serum_medium	
GTTGCAGC Gastruloids_at_day_4_of_development	
CAATGGAG Gastruloids_at_day_4_of_development	
ACCCTCCT Gastruloids_at_day_4_of_development	
TGGAATTA Gastruloids_at_day_4_of_development	
ACTGCTCG Gastruloids_at_day_3_of_development	
CTCCTCTA Gastruloids_at_day_3_of_development	
GAAAGGGT Gastruloids_at_day_3_of_development	
TGGTAAAC Gastruloids_at_day_3_of_development	
AACTGGCG Embyroid_bodies_at_day_4_of_development	
CCACTTAT Embyroid_bodies_at_day_4_of_development	
TTGGCATA Embyroid_bodies_at_day_4_of_development	
GGTAACGC Embyroid_bodies_at_day_4_of_development	
CACTCGGA Embryoid_bodies_at_day_5_of_development	
GCTGAATT Embryoid_bodies_at_day_5_of_development	
TGAAGTAC Embryoid_bodies_at_day_5_of_development	
ATGCTCCG Embryoid_bodies_at_day_5_of_development	
TCCGGAAG Embryoid_bodies_at_day_3_of_development	
CAGCATCA Embryoid_bodies_at_day_3_of_development	
AGTTCGGC Embryoid_bodies_at_day_3_of_development	
GTAATCTT Embryoid_bodies_at_day_3_of_development	

Barcodes shown explain 93% of the data

CellRanger Reports

 HTML report – comes with each sample and aggregated group of samples

 Gives some basic metrics to judge the quality of the samples and spot any issues in the data or processing

SUMMARY ANALYSIS

Estimated Number of 15,894	Cells	Cells 100% Cells (13454/13454)	Cells
	Genes per Cell	5 2 1000 5 0 2 2 0 000 5 5 0 0 0 0 100 5	
Sequencing			
Number of Reads	180,878,636	2	_
/alid Barcodes	98.1%	1 10 100 1000 10k 100k 1M Barcodes	
Sequencing Saturation	10.3%	Estimated Number of Cells	15,894
Q30 Bases in Barcode	98.4%	Fraction Reads in Cells	88.1%
Q30 Bases in RNA Read	82.7%	Mean Reads per Cell	11,380
Q30 Bases in UMI	98.7%	Median Genes per Cell	2,174
		Total Genes Detected	20,185

Mapping

90.2%
3.0%
12.8%
74.4%
71.9%
0.9%

Samp	le
Name	embryoid_d4
Description	
Transcriptome	mm10
Chemistry	Single Cell 3' v3
Cell Ranger Version	3.0.2

Median UMI Counts per Cell

5,742

Errors and Warnings

The analysis detected some issues with your sequencing run. Details »

Alert	Value	Detail
Low Fraction Reads Confidently Mapped To Transcriptome	51.5%	Ideal > 60%. This can indicate use of the wrong reference transcriptome, poor library quality, or poor sequencing quality. Application performance may be affected.

The analysis detecte	d some serious issues wit	h your sequencing run.	<u>Details »</u>
----------------------	---------------------------	------------------------	------------------

Alert	Value	Detail
No Cells Detected	0	No valid sequencing data was detected. Please check the sequencing data.
O Low Fraction Valid UMIs	0.0%	Ideal > 75%. This usually indicates a quality issue with the Ilumina R2 read. Application performance is likely to be affected.
▲ Low Barcode Q30 Fraction (Illumina I7 Read)	67.5%	Ideal > 70%. Application performance may be affected.
 Low UMI Q30 Fraction (Illumina R2 Read) 	29.2%	Ideal > 80%. Application performance is likely to be affected.

How many cells do you have?

• Cell number is determined from the number of cell barcodes with 'reasonable' numbers of observations

 Need to separate signal from background – real cell associated barcodes vs noise from empty GEMs and mis-called sequences

• Changing the thresholds used can give very different predictions for cell numbers

How many cells do you have?

- Start by looking at the quality of the base calls in the barcodes
- Bad calls will lead to inaccurate cell assignments

Sequencing	
Number of Reads	180,878,636
/alid Barcodes	98.1%
Sequencing Saturation	10.3%
Q30 Bases in Barcode	98.4%
Q30 Bases in RNA Read	82.7%
Q30 Bases in UMI	98.7%

How many cells do you have?

- Start by looking at the quality of the base calls in the barcodes
- Bad calls will lead to inaccurate cell assignments

Estimated Number of Cells			
15,894			

Sequencing	
Number of Reads	180,878,636
Valid Barcodes	98.1%
Sequencing Saturation	10.3%
Q30 Bases in Barcode	98.4%
Q30 Bases in RNA Read	82.7%
Q30 Bases in UMI	98.7%

How many cells do you have

- Plot of UMIs (reads) per cell vs number of cells
- Blue region was called as valid cells
- Grey region is considered
 noise
- Both axes are log scale!!!

How many cells do you have

How much data do you have per cell?

Mean Reads per Cell 11,380

Median Genes per Cell 2,174

Mapping	
Reads Mapped to Genome	95.4%
Reads Mapped Confidently to Genome	90.2%
Reads Mapped Confidently to Intergenic Regions	3.0%
Reads Mapped Confidently to Intronic Regions	12.8%
Reads Mapped Confidently to Exonic Regions	74.4%
Reads Mapped Confidently to Transcriptome	71.9%
Reads Mapped Antisense to Gene	0.9%

Estimated Number of Cells	15,894
Fraction Reads in Cells	88.1%
Mean Reads per Cell	11,380
Median Genes per Cell	2,174
Total Genes Detected	20,185
Median UMI Counts per Cell	5,742

- Reads should map well
- Check reads are mostly in transcripts
- Means and medians can be misleading when cells are variable

How much data do you have per cell?

- Some details about mapping
 - Reads should map to the 3' end of transcripts (oligo dT selection)
 - Reads count as exonic if 50% of them overlaps an exon
 - Multi-mapped reads which only hit one exon are considered to be uniquely mapped
 - Reads associate with genes based on overlap and direction
 - Only confident (unique) transcriptome reads are used for analysis

How much data do you have per cell?

- Difficult to generalise how much data to create/expect
 - Depends on cell type, genome and other factors

- In general though, sensible numbers would be:
 - Reads per cell ~10,000
 - Genes per cell 2000 3000

How deeply sequenced is your library

How deeply sequenced is your library

Is coverage variation affecting your data?

Exercise – Evaluating CellRanger Reports

• Look at the selection of CellRanger reports to get an idea for the metrics they provide

 The data we're going to use for the rest of the day is in "course_web_summary.html", do you see any problems which would concern us with this data at this stage?

Course Data CellRanger QC

The analysis detected some issues. Details »

Alert	Value	Detail
▲ Low Fraction Reads Confidently Mapped To Transcriptome	28.2%	Ideal > 30%. This can indicate use of the wrong reference transcriptome, a reference transcriptome with overlapping genes, poor library quality, poor sequencing quality, or reads shorter than the recommended minimum. Application performance may be affected.

Course Data QC – Read1 (Barcodes)

Course Data QC – Read2 (RNA)

