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Linear modelling is about language

Is there a difference between the 3 diets?

Can diet predict lobster weight?
Model(Diet) = Weight



Simple linear model
• Linear regression

• Correlation: is there an association between 2 variables?
• Regression: is there an association and

can one variable be used to predict the values of the other?

Correlation = Association Regression = Prediction



• Linear regression models the dependence between 2 variables:
a dependent y and a independent x.

• Causality
• Model(x) = y

• In R:
Correlation: cor()

Linear regression: lm()

response
predictor

Model

Simple linear model



• Example: coniferlight.csv

conifer<-read_csv("coniferlight.csv")

• Question: how is light (lux) affected by the depth (m) at which it is measured from the 
top of the canopy?

light = β0 + β1*depth

Linear regression

conifer %>%

ggplot(aes(Depth, Light))+

geom_point(colour="forestgreen", size=3)



Linear regression

• Linear modelling in R: lm(y~x)

• Regression: lm(conifer$Light~conifer$Depth)

• or: lm(Light~Depth, data=conifer)

lm(Light~Depth, data=conifer) -> linear.conifer



Linear regression

light = β0 + β1*depth

light = 5014 - 292*depth



Linear regression

• Line of best fit (= regression line)

geom_abline(intercept= , slope= )

coefficients()

cf.abline[1]

It’s a vector!

light = 5014 - 292*depth



Linear regression

coefficients(linear.conifer) -> cf.abline

conifer %>%

ggplot(aes(Depth, Light))+

geom_point( colour="forestgreen", size=3)+

geom_abline(aes(intercept=cf.abline[1], slope=cf.abline[2]))

light = 5014 - 292*depth



Linear regression 

lm(Light~Depth, data=conifer) -> linear.conifer

summary(linear.conifer)

p-value

Coefficient of determination



• Coefficient of determination:

• R-squared (r2): 

– It quantifies the proportion of variance in Y that can be explained by X, it can be expressed as a 
percentage.

– e.g. here 71.65% of the variability observed in light is explained by the depth at which it is measured in a 
conifer tree.

• r: coefficient of correlation between x (depth) and y (light)

– e.g. here: r = -0.846 so r2 = -0.846 * -0.846 = 0.716 = R-squared

Linear regression

conifer %>%

cor_test(Light, Depth)



Linear regression
summary(linear.conifer)

anova(linear.conifer)

Total amount of variability:
8738553 + 3457910 = 12196463

Proportion explained by depth:
8738553/12196463 = 0.716

Model
Error



3627 = 5014 - 292*4.75

• Depth predicts about 72% (R-Squared) of the variability of light 
• so 28% is explained by other factors (e.g. Individual variability…)

• Example: the model predicts 3627 lux at a depth of 4.75 m in a conifer. 

y = β0 + β1*x + Ɛ

4.75m

3627 lux

Linear regression the error Ɛ



linear.conifer <-lm(Light~Depth, data=conifer)

Residual=error Ɛ

light = 5014 - 292*depth
3627 = 5014 - 292*4.75
3627+1014=4641

light = 5014 - 292*depth+ Ɛ



Assumptions

• The usual ones: normality, homogeneity of variance, linearity and independence.

• Outliers: the observed value for the point is very different from that predicted by the regression 
model

• Leverage points: A leverage point is defined as an observation that has a value of x that is far 
away from the mean of x

• Influential observations: change the slope of the line. Thus, have a large influence on the fit of 
the model. One method to find influential points is to compare the fit of the model with and 
without each observation. 

– The Cook's distance statistic is a measure of the influence of each observation on the 
regression coefficients. 

• Bottom line: influential outliers are problematic.



Assumptions

Linearity

Homogeneity 
of 

variance

Outliers
Influential cases

Normality

par(mfrow=c(2,2))

plot(linear.conifer)



Assumptions

Linearity

Homogeneity 
of 

variance

Outliers
Influential cases

Normality



Linear regression

Your turn!

• Load coniferlight.csv -> conifer

• Plot the data geom_point()

• Build the model: lm(Light~Depth, data=conifer)-> linear.conifer

• Identify the coefficients of the model
• Add a line of best-fit 

coefficients(linear.conifer) -> cf.abline

geom_abline(intercept=cf.abline[1], slope=cf.abline[2])

• Is the relationship between Depth and Light significant? summary(linear.conifer)

• How much of the variance is explained? R2

• What is the coefficient of correlation? cor_test(conifer)

• Compare the outputs of summary(linear.conifer) and anova(linear.conifer)

• Check out the assumptions 
par(mfrow=c(2,2)) 

plot(linear.conifer)



The linear model perspective

Coyotes= Body length~Gender

Protein = Expression~Cell line

Goggles = Attractiveness~Alcohol and Gender



Continuous predictor Categorical predictor

Coyotes body length

• Is there a difference between the 2 genders?

becomes

• Does gender predict coyote body length?

The linear model perspective



• Questions:  do male and female coyotes differ in size?

– does gender predict coyote body length? 

– how much of body length is predicted by gender?

Example: coyotes



read_csv("coyote.csv") -> coyote

coyote %>%

ggplot(aes(gender,length, colour=gender)) +

geom_jitter(height=0, size=4, width=0.2) +

theme(legend.position = "none")+

ylab("Length (cm)")+

scale_colour_brewer(palette="Dark2")+

xlab(NULL)+

stat_summary(fun=mean, fun.min=mean, fun.max=mean, geom="errorbar",colour="black", size=1.2, width=0.6)

The linear model perspective
Comparing 2 groups



lm(length~gender, data=coyote)

Females=89.71 cm,  Males=89.71 + 2.34=92.05

coyote %>%

t_test(length~gender, var.equal=T)

The linear model perspective
Comparing 2 groups



lm(length~gender, data=coyote)

Body length = β0 + β1*Gender

Body length = 89.712 + 2.344*Gender

Model

The linear model perspective
Comparing 2 groups



conifer.csv

light = 5014 - 292*depth

coyote.csv

Body length = 89.712 + 2.344*Gender

continuous

categorical

y = β0 + β1*x

vector

The linear model perspective
Comparing 2 groups

y = β0 + β1*x



Model

Residuals

The linear model perspective
Comparing 2 groups



linear.coyote<-lm(length~gender, data=coyote)

linear.coyote

86 coyotes

Female 1: 89.71 + 3.29 = 93 cm 

The linear model perspective
Comparing 2 groups



summary(linear.coyote)

anova(linear.coyote)

The linear model perspective
Comparing 2 groups

coyote %>%

t_test(length~gender, var.equal=T)



summary(linear.coyote)

anova(linear.coyote)

118.1 + 3684.9 = 3803:  total amount of variance in the data
Proportion explained by gender: 118.1/3803 = 0.031

About 3% of the variability
in body length is explained 
by gender.

The linear model perspective
Comparing 2 groups



linear.coyote

Assumptions

par(mfrow=c(2,2))

plot(linear.coyote)

Linearity

Equality of

Variance
levene_test()

Outliers

Normality
~ shapiro_test()

The linear model perspective
Comparing 2 groups

!



• Questions: do male and female coyotes differ in size?

– does gender predict body length? 

• Answer: Quite unlikely: p = 0.105

– how much of body length is predicted by gender?

• Answer: About 3% (R2=0.031)

Example: coyote.csv



Exercises 9 and 10: coyotes and protein expressions 

• coyote.csv  coyote<-read_csv("coyote.csv")
• Run the t-test again t_test()
• Run the same analysis using a linear model approach lm()
• Compare the outputs and understand the coefficients from lm()
• Use summary() and anova() to explore further the analysis
• Work out R2 from the anova() output
• Don’t forget to check the assumptions

• protein.expression.csv  protein<-read_csv("protein.expression.csv")
• Log-transformed the expression log10()
• Run again the anova using anova_test() 
• Use lm() and summary() for the linear model approach
• Compare the 2 outputs
• Work out the means log10.expression for the 5 cell lines
• Compare the outputs and understand the coefficients from lm()
• Work out R2 from the anova() output
• Don’t forget to check out the assumptions



Exercise 10 : protein.expression.csv

• Questions: is there a difference in protein expression between the 5 cell lines?

– does cell line predict protein expression?

– how much of the protein expression is predicted by the cell line?



protein %>%

anova_test(log10.expression~line)

protein %>%

tukey_hsd(log10.expression~line) 

generalised effect size (Eta squared η2) = R2 ish

Tukey correction

Exercise 10 : protein.expression.csv - Answers



linear.protein<-lm(log10.expression~line, data=protein)

summary(linear.protein)

anova(linear.protein)

lm(log10.expression~line,data=protein)

Exercise 10 : protein.expression.csv - Answers



lm(log10.expression~line,data=protein)

Example:

Line B = -0.03-0.25 = -0.28

Model

Expression= β0 + β1*Line

Exercise 10 : protein.expression.csv - Answers
protein %>%

group_by(line) %>%

summarise(mean=mean(log10.expression))



par(mfrow=c(2,2))

plot(linear.protein)

Linearity

Equality of

Variance
levene_test()

Outliers

Normality
shapiro_test()

Exercise 10: protein.expression.csv - Answers

!



linear.protein<-lm(log10.expression~line,data=protein)

summary(linear.protein)

2.691 + 6.046 = 8.737:  total amount of variance in the data

Proportion explained by gender: 2.691/8.737 = 0.308

Proportion of variance explained 

by cell lines: 31%

Exercise 10 : protein.expression.csv - Answers

protein %>%

anova_test(log10.expression~line, detailed = TRUE)

SSn

SSd
+



• Questions: is there a difference in protein expression between the 5 cell lines?

– does cell line predict protein expression?

• Answer: Yes p=1.78e-05

– how much of the protein expression is predicted by the cell line?

• Answer: About 31% (R2=0.308)

Exercise 10 : protein.expression.csv



Two-way Analysis of Variance

Example: goggles.csv

– The ‘beer-goggle’ effect

– Study: effects of alcohol on mate selection in night-clubs.

– Pool of independent judges scored the levels of attractiveness of the person that the 
participant was chatting up at the end of the evening.

– Question: is subjective perception of physical attractiveness affected by alcohol consumption?

– Attractiveness on a scale from 0 to 100

goggles<-read_csv("goggles.csv")

head(goggles)



goggles %>%

anova_test(attractiveness~alcohol+gender+alcohol*gender)

linear.goggles<-lm(attractiveness~alcohol+gender+alcohol*gender,data=goggles)

anova(linear.goggles) (3332.3+168.7+1978.1)/(3332.3+168.7+1978.1+3487.5) = 0.611
R2 = 61%

Model

The linear model perspective
Two factors

y = β0 + β1*x + β2*x2 + β3*x1x2

goggles %>%

group_by(alcohol, gender) %>%

summarise(means=mean(attractiveness))



Attractiveness= β0 + β1Alcohol + β2Gender + β3Gender*Alcohol

linear.goggles<-lm(attractiveness~alcohol+gender+alcohol*gender,data=goggles)

summary(linear.goggles)

The linear model perspective
Two factors



• goggles.csv  goggles<-read_csv("goggles.csv")

• Run again the 2-way ANOVA  anova_test()
• Run the same analysis using a linear model approach lm()
• Work out R2 from the anova()output
• Work out the equation of the model from the summary()output

• Hint: Attractiveness= β0 + β1Gender + β2Alcohol + β3Gender*Alcohol

• Predict the attractiveness of a date:
• for a female with no drinks
• for a male with no drinks
• for a male with 4 pints

Exercise 11: goggles.csv



• goggles.csv

• Predict the attractiveness of a date:
• for a female with no drinks
60.625+0+0 = 60.625
• for a male with no drinks
60.625+0+6.250= 66.875
• for a male with 4 pints
60.625-3.125+6.250-28.125= 35.625

Exercise 11: goggles.csv - Answers

goggles %>%

group_by(alcohol, gender) %>%

summarise(means=mean(attractiveness))



• Nothing special stats-wise with a mix of categorical and continuous factors
• Same logic
• But R makes it a little tricky to plot the model

treelight<-read_csv("treelight.csv")

treelight %>%

ggplot(aes(x=Depth, y=Light, colour=Species))+

geom_point(size=3)

The linear model perspective
Categorical and continuous factors



linear.treelight<-lm(Light~Depth*Species, data=treelight)

summary(linear.treelight)

Complete model

The linear model perspective
Categorical and continuous factors

lm(Light~Depth+Species+Depth*Species, data=treelight)



• Additive model:

No interaction

The linear model perspective
Categorical and continuous factors

linear.treelight.add<-lm(Light~Depth+Species, data=treelight)

summary(linear.treelight.add)



cf.add<-coefficients(linear.treelight.add)

cf.add[1] 

geom_abline(intercept=cf.add[1], slope=cf.add[2])+

geom_abline(intercept=(cf.add[1]+cf.add[3]), slope=cf.add[2])

It’s a vector!

Broadleaf: 
Light = 7962.03 -262.17*Depth

Conifer:
Light = (7962.03-3113.03) -262.17*Depth

The linear model perspective
Categorical and continuous factors



• treelight.csv  treelight<-read_csv("treelight.csv")

• Plot the data
• Run a linear model lm()
• Extract the parameters from the additive model
• Plot a line of best fit for each species
• Extract the parameters from the complete model
• Write the new equations for broadleaf and conifer species.
• Plot a line of best fit for each species (use dashed lines to distinguish between
the 2 models).
• Calculate the amount of light predicted:

• In a conifer, 4 metres from the top of the canopy
• In a broadleaf tree, 6 metres from the top of the canopy

• How much of the variability of light is predicted by the depth and the species?

Exercise 12: treelight.csv



cf<-coefficients(linear.treelight)

ggplot(treelight, aes(x=Depth, y=Light, group=Species, colour=Species))+

geom_point(size=3)+

geom_abline(intercept=cf.add[1], slope=cf.add[2])+

geom_abline(intercept=(cf.add[1]+cf.add[3]), slope=cf.add[2])+

geom_abline(intercept=(cf[1]), slope=cf[2], linetype="twodash")+

geom_abline(intercept=(cf[1]+cf[3]), slope=(cf[2]+cf[4]), linetype="twodash")

Exercise 12 : treelight.csv



• Extract the parameters from the complete model

cf<-coefficients(linear.treelight)

ggplot(treelight, aes(x=Depth, y=Light, group=Species, colour=Species))+

geom_point(size=3)+

geom_abline(intercept=cf.add[1], slope=cf.add[2])+

geom_abline(intercept=(cf.add[1]+cf.add[3]), slope=cf.add[2])+

geom_abline(intercept=(cf[1]), slope=cf[2], linetype="twodash")+

geom_abline(intercept=(cf[1]+cf[3]), slope=(cf[2]+cf[4]), linetype="twodash")

Broadleaf: Light = 7798.57 – 221.13*Depth

Conifer: Light = (7798.57-2784.58) – (221.13-71.04)*Depth

• Calculate the amount of light predicted:

• In a conifer, 4 metres from the top of the canopy
(7798.57-2784.58)-(221.13+71.04)*4 = 4413.63
• In a broadleaf species, 6 metres from the top of the canopy
7798.57-221.13*6 = 6471.79

Exercise 12 : treelight.csv



Linear model

y = β0 + β1*x

y = β0 + β1*x1 + β2*x2 + β3*x1x2

y = β0 + β1*x1 + β2*x2 + β3*x1x2 + … + βn*xn

yi = (β0 + β1*xi) + Ɛi

yi = (model) + errori

Simplest

With 2 factors

With n factors

Let’s not forget the error

General formula

y = β0 + β1*x

Simplest



yi = (model) + errori

Linear model

One-way ANOVA Two-way ANOVA

t-test

ANCOVA

Correlation




