

Introduction to Linear Modelling

Anne Segonds-Pichon v2020-09

Linear modelling is about language

Is there a difference between the 3 diets?

Can diet predict lobster weight?

Model(Diet) = Weight

Simple linear model

- Linear regression
 - Correlation: is there an association between 2 variables?
 - Regression: is there an association and can one variable be used to predict the values of the other?

Simple linear model

- Linear regression models the dependence between 2 variables:
 a dependent y and a independent x.
 - Causality
 - Model(x) = y

• <u>In R</u>:

Correlation: cor()

Linear regression: lm()

Example: coniferlight.csv

conifer<-read_csv("coniferlight.csv")</pre>

Light <abl></abl>	Depth <dbl></dbl>
4105.646	1.00
4933.925	1.75
4416.527	2.50
4528.618	3.25
3442.610	4.00
4640.297	4.75
3081.990	5.50
2368.113	6.25
2776.557	7.00
2419.193	7.75

• Question: how is **light** (lux) affected by the **depth** (m) at which it is measured from the top of the canopy?

light =
$$\beta_0 + \beta_1 * depth$$


```
conifer %>%
    ggplot(aes(Depth, Light))+
    geom_point(colour="forestgreen", size=3)
```

- Linear modelling in R: lm (y~x)
- Regression: lm(conifer\$Light~conifer\$Depth)
- or: lm(Light~Depth, data=conifer)

```
lm(Light~Depth, data=conifer) -> linear.conifer
```


• Line of best fit (= regression line) light = 5014 - 292*depth

geom abline (intercept= , slope=)

coefficients()

☐ line	ear.conifer	list [12] (S3: lm)	List of length 12		
0	coefficients	double [2]	5014 -292	Coefficients:	
	(Intercept)	double [1]	5013.982	(Intercept)	conifer\$Depth
	conifer\$Depth	double [1]	-292.1614	5014.0	-292.2
O r	residuals	double [13]	-616 431 133 464 -403	1014	
0 6	effects	double [13]	-12284 -2956 178 542	-292 1158	
r	rank	integer [1]	2		
O f	fitted.values	double [13]	4722 4503 4284 4064 3	8845 3626	
ā	assign	integer [2]	01		
0	qr	list [5] (S3: qr)	List of length 5		
0	df.residual	integer [1]	11		
X	klevels	list [0]	List of length 0		
0 0	call	language	lm(formula = conifer	\$Light ~ conifer\$Depth)	
O t	terms	formula	conifer\$Light ~ conife	er\$Depth	
O r	model	list [13 x 2] (S3: data.frame)	A data.frame with 13	rows and 2 columns	

light = 5014 - 292*depth

```
lm(Light~Depth, data=conifer) -> linear.conifer
summary(linear.conifer)
```

```
Coefficients:
                                                    (Intercept)
                                                                 conifer$Depth
                                                         5014.0
                                                                        -292.2
call:
lm(formula = conifer$Light ~ conifer$Depth)
Residuals:
          1Q Median
  Min
-819.9 -330.5 -192.3 431.2 1014.1
                                                            p-value
Coefficients:
              Estimate Std Error t value Pr(>|t|)
              5013.98
                          342.15 14.654 1.46
              -292.16
conifer$Depth
                           55.41 -5.272 0.000263
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 560.7 on 11 degrees of freedom
Multiple R-squared: 0.7165
                              Adjusted R-squared: 0.6907
F-statistic: 2/.8 on 1 and 11 DF, p-value: 0.0002633
```

Coefficient of determination

- Coefficient of determination:
 - R-squared (r²):
 - It quantifies the proportion of variance in Y that can be explained by X, it can be expressed as a percentage.
 - e.g. here 71.65% of the variability observed in light is explained by the depth at which it is measured in a conifer tree.

```
Residual standard error: 560.7 on 11 degrees of freedom
Multiple R-squared: 0.7165 Adjusted R-squared: 0.6907
F-statistic: 27.8 on 1 and 11 DF, p-value: 0.0002633
```

- r: coefficient of correlation between x (depth) and y (light)
 - e.g. here: r = -0.846 so $r^2 = -0.846 * -0.846 = 0.716 = R-squared$

summary(linear.conifer)

```
call:
lm(formula = conifer$Light ~ conifer$Depth)
Residuals:
  Min
          10 Median
-819.9 -330.5 -192.3 431.2 1014.1
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept)
              5013.98
                          342.15 14.654 1
conifer$Depth -292.16
                           55.41 -5.272 0.000263
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 560.7 on 11 degrees of freedom
Multiple R-squared: 0.7165 	★ Adjusted R-squared: 0.6907
F-statistic: 2/.8 on 1 and 11 DF, p-value: 0.0002633
```

anova(linear.conifer)

```
Analysis of Variance Table

Response: conifer$Light

Df Sum Sq Mean Sq F value

Residuals 11 8738553 8738553 27.798 0.0002633 ***

Error Residuals 11 3457910 314355

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Total amount of variability: 8738553 + 3457910 = 12196463

Proportion explained by depth: 8738553/12196463 **= 0.716**

Linear regression the error **&**

- Depth predicts about 72% (R-Squared) of the variability of light
 - so 28% is explained by other factors (e.g. Individual variability...)
- Example: the model predicts 3627 lux at a depth of 4.75 m in a conifer.

$$y = \beta_0 + \beta_1^* x + \epsilon$$

3627 lux

3627 lux

2500

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

linear.conifer <-lm(Light~Depth, data=conifer)</pre>

Assumptions

- The usual ones: normality, homogeneity of variance, linearity and independence.
- Outliers: the observed value for the point is very different from that predicted by the regression model
- Leverage points: A leverage point is defined as an observation that has a value of x that is far away from the mean of x
- Influential observations: change the slope of the line. Thus, have a large influence on the fit of the model. One method to find influential points is to compare the fit of the model with and without each observation.
 - The Cook's distance statistic is a measure of the influence of each observation on the regression coefficients.
- Bottom line: influential outliers are problematic.

Assumptions

Assumptions

Your turn!

- Load coniferlight.csv -> conifer
- Plot the data geom point()
- Build the model: lm (Light~Depth, data=conifer) -> linear.conifer
- Identify the coefficients of the model
- Add a line of best-fit

```
coefficients(linear.conifer) -> cf.abline
geom_abline(intercept=cf.abline[1], slope=cf.abline[2])
```

- Is the relationship between Depth and Light significant? summary (linear.conifer)
- How much of the variance is explained? R²
- What is the coefficient of correlation? cor_test(conifer)
- Compare the outputs of summary (linear.conifer) and anova (linear.conifer)
- Check out the assumptions

```
par(mfrow=c(2,2))
plot(linear.conifer)
```


Coyotes = Body length~Gender

Protein = Expression~Cell line

Goggles = Attractiveness~Alcohol and Gender

Categorical predictor

Coyotes body length

Is there a difference between the 2 genders?

becomes

Does gender predict coyote body length?

Example: coyotes

- Questions: do male and female coyotes differ in size?
 - does gender predict coyote body length?
 - how much of body length is predicted by gender?

Comparing 2 groups

```
read_csv("coyote.csv") -> coyote

coyote %>%
  ggplot(aes(gender,length, colour=gender)) +
    geom_jitter(height=0, size=4, width=0.2) +
    theme(legend.position = "none")+
    ylab("Length (cm)")+
    scale_colour_brewer(palette="Dark2")+
    xlab(NULL)+
    stat_summary(fun=mean, fun.min=mean, fun.max=mean, geom="errorbar",colour="black", size=1.2, width=0.6)
```


Comparing 2 groups

```
coyote %>%
  t_test(length~gender, var.equal=T)
```

.y. <chr></chr>	group1	group2 «chr»	n1 <int></int>	n2 <int></int>	statistic «dbl»	df <dbl></dbl>	p <dbl></dbl>
length	female	male	43	43	-1.641109	84	0.105

Comparing 2 groups

```
\label{eq:call:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall:locall
```


Body Length =
$$\begin{pmatrix} 89.71 \\ 92.06 \end{pmatrix}$$
 (If Female)

Body Length =
$$89.71 + \begin{pmatrix} 0 \\ 2.344 \end{pmatrix} \begin{pmatrix} If Female \\ If Male \end{pmatrix}$$

Body length = 89.712 + 2.344*Gender

Comparing 2 groups

$$y = \beta_0 + {\beta_1}^* x$$

conifer.csv

light = 5014 - 292*depth

continuous

categorical

coyote.csv

Body length = 89.712 + 2.344*Gender

Body Length =
$$89.71 + \begin{pmatrix} 0 \\ 2.344 \end{pmatrix} \begin{pmatrix} If Female \\ If Male \end{pmatrix}$$

$$y = \beta_0 + \beta_1 * x$$

Comparing 2 groups

The linear model perspective Comparing 2 groups

linear.coyote<-lm(length~gender, data=coyote)</pre>

Comparing 2 groups

coyote %>%
 t_test(length~gender, var.equal=T)

.y.	group1	group2	n1	n2	statistic	df	p
<chr></chr>	<chr></chr>	<chr></chr>	<int></int>	<int></int>	«dbl>	<dbl></dbl>	<dbl></dbl>
length	female	male	43	43	-1.641109	84	0.105

summary(linear.coyote)

```
call:
lm(formula = coyote$length ~ coyote$gender)
Residuals:
-18.7116 -4.0558
                   0.2884
                           3.9442 12.9442
Coefficients:
                 Estimate Std. Error t value
(Intercept)
                   89.712
                               1.010 88.820
                                               <2e-16
                               1.428 1.641
coyote$gendermale
                    2.344
                                               0.105
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
Residual standard error: 6.623 on 84 degrees of freedom
Multiple R-squared: 0.03107, Adjusted R-squared: 0.01953
F-statistic: 2.693 on 1 and 84 DF, p-value: 0.1045
```

anova(linear.coyote)

Analysis of Variance Table

Response: coyote\$length

Df Sum Sq Mean Sq F value
Coyote\$gender 1 118.1 118.147 2.6932
Residuals 84 3684.9 43.868

The linear model perspective Comparing 2 groups

summary(linear.coyote)

```
call:
lm(formula = coyote$length ~ coyote$gender)
Residuals:
    Min
            1Q Median
-18.7116 -4.0558 0.2884 3.9442 12.9442
Coefficients:
                                                                        About 3% of the variability
              Estimate Std. Error t value Pr(>|t|)
(Intercept)
                89.712
                          1.010 88.820 <2e-16 ***
                                                                         in body length is explained
coyote$gendermale 2.344
                          1.428 1.641
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1
                                                                        by gender.
Residual standard error: 6.623 on 84 degrees of freedom
Multiple R-squared: 0.03107, Adjusted R-squared: 0.01953
F-statistic: 2.093 on 1 and 84 DF, p-value: 0.1045
 anova(linear.coyote)
Analysis of Variance Table
Response: coyote$length
               Df Sum Sq Mean Sq F value Pr(>F)
              1 118.1 118.147 2.6932 0.1045
covote$gender
Residuals
               84 3684.9 43.868
           118.1 + 3684.9 = 3803: total amount of variance in the data
          Proportion explained by gender: 118.1/3803 = 0.031
```

The linear model perspective Comparing 2 groups

```
linear.coyote
                                                    □ linear.coyote
                                                                                  List of 13
                                                       coefficients: Named num [1:2] 89.71 2.34
                  Assumptions
                                                       ..- attr(*, "names")= chr [1:2] "(Intercept)" "coyote$gendermale"
                                                       residuals: Named num [1:86] 3.29 7.29 2.29 11.89 3.29 ...
                                                                    "names")= chr [1:86] "1" "2"
par(mfrow=c(2,2))
plot(linear.coyote)
                                        Residuals vs Fitted
                                                                                 Normal Q-Q
                            9
                                                                Standardized residuals
       Linearity
                                                                                                     Normality
                            0
                                                                                                     ~ shapiro test()
                            6
                                                          92.0
                                  90.0
                                        90.5
                                              91.0
                                                    91.5
                                          Fitted values
                                                                                Theoretical Quantiles
                                                                               Constant Leverage:
                                         Scale-Location
                                                                             Residuals vs Factor Levels
                                                                 Standardized residuals
  Equality of
                                                                                                       Outliers
    Variance
                            0.5
levene test()
                            0.0
                                  90.0
                                        90.5
                                              91.0
                                                    91.5
                                                          92.0
                                                                                           male
                                          Fitted values
                                                                              Factor Level Combinations
```

Example: coyote.csv

- Questions: do male and female coyotes differ in size?
 - does gender predict body length?
 - Answer: Quite unlikely: p = 0.105
 - how much of body length is predicted by gender?
 - <u>Answer</u>: About 3% (R²=0.031)

Exercises 9 and 10: coyotes and protein expressions

- COYOte.CSV coyote<-read_csv("coyote.csv")
 - Run the t-test again t test()
 - Run the same analysis using a linear model approach lm()
 - Compare the outputs and understand the coefficients from lm ()
 - Use summary() and anova() to explore further the analysis
 - Work out R² from the anova () output
 - Don't forget to check the assumptions
- protein.expression.csv protein<-read_csv("protein.expression.csv")
 - Log-transformed the expression log10()
 - Run again the anova using anova test()
 - Use lm() and summary() for the linear model approach
 - Compare the 2 outputs
 - Work out the means log10.expression for the 5 cell lines
 - Compare the outputs and understand the coefficients from lm ()
 - Work out R² from the anova () output
 - Don't forget to check out the assumptions

Exercise 10: protein.expression.csv

- Questions: is there a difference in protein expression between the 5 cell lines?
 - does cell line predict protein expression?
 - how much of the protein expression is predicted by the cell line?

Exercise 10: protein.expression.csv - Answers

generalised **e**ffect **s**ize (Eta squared η^2) = R^2 ish

```
protein %>%
  tukey_hsd(log10.expression~line)
```

Tukey correction

term <chr></chr>	group1	rm g	group2	estimate «dbl»	conf.low «dbl»	conf.high	p.adj	p.adj.signif
1 line	Α	ne A	В	-0.25024832	-0.578882494	0.07838585	2.19e-01	ns
2 line	Α	ne A	С	-0.07499724	-0.374997820	0.22500335	9.56e-01	ns
3 line	Α	ne A	D	0.30549397	0.005493391	0.60549456	4.39e-02	ŀr
4 line	Α	ne A	E	0.13327517	-0.166725416	0.43327575	7.27e-01	ns
5 line	В	ne B	С	0.17525108	-0.124749499	0.47525167	4.81e-01	ns
6 line	В	ne B	D	0.55574230	0.255741712	0.85574288	1.83e-05	le de de de
7 line	В	ne B	E	0.38352349	0.083522904	0.68352407	5.48e-03	le sle
8 line	С	ne C	D	0.38049121	0.112162532	0.64881989	1.54e-03	le vie
9 line	С	ne C	E	0.20827240	-0.060056276	0.47660108	2.02e-01	ns
10 line	D	ne D	E	-0.17221881	-0.440547487	0.09610987	3.84e-01	ns
7 line 8 line 9 line	B C C	ne B ne C ne C	E D E	0.38352349 0.38049121 0.20827240	0.083522904 0.112162532 -0.060056276	0.68352407 0.64881989 0.47660108	5.48e-03 1.54e-03 2.02e-01	ŀ* ns

Exercise 10: protein.expression.csv - *Answers*

linear.protein<-lm(log10.expression~line, data=protein)</pre>

```
Df Sum Sq Mean Sq F value Pr()E
  line
              4 2.691 0.6728
                                  8.121 1.78e-05
  Residuals
             73 6.046 0.0828
  Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
summary(linear.protein)
call:
lm(formula = log10.expression ~ line, data = protein.stack.clean)
Residuals:
     Min
              10 Median
-0.62471 -0.21993 0.02264 0.18263 0.69537
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.03144
                       0.08308 -0.378 0.70617
lineB
            -0.25025
                       0.11749 -2.130 0.03655 *
lineC
            -0.07500
                       0.10725 -0.699 0.48661
lineD
            0.30549
                       0.10725
                                2.848 0.00571 **
             0.13328
                       0.10725 1.243 0.21798
lineE
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.2878 on 73 degrees of freedom
Multiple R-squared: 0.308,
                              Adjusted R-squared: 0.2701
F-statistic: 8.123 on 4 and 73 DF, p-value: (1.784e-05
```

anova(linear.protein)

Exercise 10: protein.expression.csv - *Answers*

Exercise 10: protein.expression.csv - Answers

par(mfrow=c(2,2))
plot(linear.protein)

Normality

shapiro_test()

Equality of Variance

levene_test()

Outliers

Exercise 10: protein.expression.csv - Answers

```
linear.protein<-lm(log10.expression~line,data=protein)
summary(linear.protein)</pre>
```

```
lm(formula = log10.expression ~ line, data = protein.stack.clean)
Residuals:
    Min
             10 Median
-0.62471 -0.21993 0.02264 0.18263 0.69537
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.03144
                      0.08308 -0.378 0.70617
lineB
           -0.25025
                                                                     Proportion of variance explained
lineC
           -0.07500
lineD
           0.30549
                     0.10725 2.848 0.00571 **
                                                                     by cell lines: 31%
lineE
           0.13328
                     0.10725 1.243 0.21798
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0,2878 on 73 degrees of freedom
Multiple R-squared: 0.308, Adjusted R-squared: 0.2701
F-statistic: 8.123 on 4 and 73 DF, p-value: 1.784e-05
```

```
protein %>%
  anova_test(log10.expression~line, detailed = TRUE)
```

```
Effect SSn SSd DFn DFd F p p<.05 ges 1 line 2.691 6.046 4 73 8.123 1.78e-05 * 0.308
```

SSn	Source of variation	Sum of Squares	df	Mean Square	F	p-value	
	Between Groups	2.691	4	0.673	8.12	<0.0001	
004	Within Groups	6.046	73	0.083			
SSd/	Total	8.637					

2.691 + 6.046 = 8.737: total amount of variance in the data Proportion explained by gender: 2.691/8.737 = 0.308

Exercise 10: protein.expression.csv

- Questions: is there a difference in protein expression between the 5 cell lines?
 - does cell line predict protein expression?
 - <u>Answer:</u> Yes p=1.78e-05
 - how much of the protein expression is predicted by the cell line?
 - <u>Answer</u>: About 31% (R²=0.308)

Two-way Analysis of Variance

Example: goggles.csv

– The 'beer-goggle' effect

65 50 70 55 45 30 70 55 65 65 60 30 60 80 60 70 85 30 60 65 70 55 65 55 60 70 65 55 70 35 55 75 60 60 70 20	Alcohol	None		2 Pints		4 Pints	
70 55 65 65 60 30 60 80 60 70 85 30 60 65 70 55 65 55 60 70 65 55 70 35 55 75 60 60 70 20	Gender	Female	Male	Female	Male	Female	Male
60 80 60 70 85 30 60 65 70 55 65 55 60 70 65 55 70 35 55 75 60 60 70 20		65	50	70	55	45	30
60 65 70 55 65 55 60 70 65 55 70 35 55 75 60 60 70 20		70	55	65	65	60	30
60 70 65 55 70 35 55 75 60 60 70 20		60	80	60	70	85	30
55 75 60 60 70 20		60	65	70	55	65	55
		60	70	65	55	70	35
		55	75	60	60	70	20
60 75 60 50 80 45		60	75	60	50	80	45
55 65 50 50 60 40		55	65	50	50	60	40

- Study: effects of alcohol on mate selection in night-clubs.
- Pool of independent judges scored the levels of attractiveness of the person that the participant was chatting up at the end of the evening.
- Question: is subjective perception of physical attractiveness affected by alcohol consumption?
 - Attractiveness on a scale from 0 to 100

```
goggles<-read_csv("goggles.csv")

head(goggles)

gender alcohol attractiveness

Female None 65

Female None 60

Female None 60
```

The linear model perspective

Two factors

```
goggles %>%
  anova_test(attractiveness~alcohol+gender+alcohol*gender)
```

ANOVA Table (type II tests)

```
Effect DFn DFd F p p<.05 ges
1 alcohol 2 42 20.065 7.65e-07 * 0.489
2 gender 1 42 2.032 1.61e-01 0.046
3 alcohol:gender 2 42 11.911 7.99e-05 * 0.362
```

goggles %>%
 group_by(alcohol, gender) %>%
 summarise(means=mean(attractiveness))

alcohol <chr></chr>	gender <chr></chr>	means <dbl></dbl>
0 Pints	Female	60.625
0 Pints	Male	66.875
2 Pints	Female	62.500
2 Pints	Male	66.875
4 Pints	Female	57.500
4 Pints	Male	35.625

linear.goggles<-lm(attractiveness~alcohol+gender+alcohol*gender, data=goggles)

anova(linear.goggles) (3332.3+168.7+1978.1)/(3332.3+168.7+1978.1+3487.5) = 0.611

```
Analysis of Variance Table
Response: attractiveness
```

Df Sum Sq Mean Sq F value Pr(>F)
alcohol 2 3332.3 1666.15 20.0654 7.649e-07 ***
gender 1 168.7 168.75 2.0323 0.1614
alcohol:gender 2 1978.1 989.06 11.9113 7.987e-05 ***
Residuals 42 3487.5 83.04
--Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

$$y = \beta_0 + \beta_1 * x + \beta_2 * x_2 + \beta_3 * x_1 x_2$$

The linear model perspective Two factors

linear.goggles<-lm(attractiveness~alcohol+gender+alcohol*gender, data=goggles)
summary(linear.goggles)</pre>

Attractiveness= $\beta_0 + \beta_1$ Alcohol + β_2 Gender + β_3 Gender*Alcohol

$$\begin{array}{l} \text{Attractiveness} = 60.625 + \begin{pmatrix} 0 \\ 1.875 \\ -3.125 \end{pmatrix} \begin{pmatrix} \text{if None} \\ \text{if 2 Pints} \\ \text{if 4 Pints} \end{pmatrix} + \begin{pmatrix} 0 \\ 6.250 \end{pmatrix} \begin{pmatrix} \text{if Female} \\ \text{if Male} \end{pmatrix} + \\ \begin{pmatrix} 0 \\ -1.875 \\ -28.125 \end{pmatrix} \begin{pmatrix} \text{Otherwise} \\ \text{if Male and 2 Pints} \\ \text{if male and 4 Pints} \end{pmatrix}$$

Exercise 11: goggles.csv

- goggles.csv goggles<-read_csv("goggles.csv")</pre>
 - Run again the 2-way ANOVA anova test()
 - Run the same analysis using a linear model approach lm()
 - Work out R² from the anova () output
 - Work out the equation of the model from the summary () output
 - Hint: Attractiveness= $\theta_0 + \theta_1$ Gender + θ_2 Alcohol + θ_3 Gender*Alcohol
 - Predict the attractiveness of a date:
 - for a female with no drinks
 - for a male with no drinks
 - for a male with 4 pints

Exercise 11: goggles.csv - *Answers*

$$\begin{array}{l} \text{Attractiveness} = 60.625 + \begin{pmatrix} 0 \\ 1.875 \\ -3.125 \end{pmatrix} \begin{pmatrix} \text{if None} \\ \text{if 2 Pints} \\ \text{if 4 Pints} \end{pmatrix} + \begin{pmatrix} 0 \\ 6.250 \end{pmatrix} \begin{pmatrix} \text{if Female} \\ \text{if Male} \end{pmatrix} + \\ \begin{pmatrix} 0 \\ -1.875 \\ -28.125 \end{pmatrix} \begin{pmatrix} \text{Otherwise} \\ \text{if Male and 2 Pints} \\ \text{if male and 4 Pints} \end{pmatrix}$$

goggles.csv

- Predict the attractiveness of a date:
 - for a female with no drinks

for a male with no drinks

• for a male with 4 pints

gender <chr></chr>	means <dbl></dbl>
Female	60.625
Male	66.875
Female	62.500
Male	66.875
Female	57.500
Male	35.625
	Female Male Female Male Female

The linear model perspective Categorical and continuous factors

- Nothing special stats-wise with a mix of categorical and continuous factors
 - Same logic
 - But R makes it a little tricky to plot the model

```
treelight<-read csv("treelight.csv")</pre>
treelight %>%
       ggplot(aes(x=Depth, y=Light, colour=Species))+
       geom point(size=3)
                                               6000
                                                                         Species
                                               4000
                                               2000
                                                     2.5
                                                           5.0
                                                                7.5
```

The linear model perspective Categorical and continuous factors

```
lm(Light~Depth+Species+Depth*Species, data=treelight)
call:
lm(formula = Light ~ Depth * Species, data = treelight)
Coefficients:
         (Intercept)
                                   Depth
                                                SpeciesConifer Depth:SpeciesConifer
            7798.57
                                 -221.13
                                                      -2784.58
                                                                             -71.04
linear.treelight<-lm(Light~Depth*Species, data=treelight)</pre>
 summary(linear.treelight)
 call:
 lm(formula = Light ~ Depth * Species, data = treelight)
 Residuals:
    Min
          10 Median
  -819.9 -366.6 -161.3 377.1 1014.1
 Coefficients:
                                                                                            Complete model
                  Estimate Std. Error t value Pr(>|t|)
  (Intercept)
                  7798.57
                           298.62 26.115 2.38e-16 ***
 Depth
                   -221.13
                             61.80 -3.578 0.00201 **
 SpeciesConifer
                  -2784.58 442.27 -6.296 4.82e-06 ***
 Depth:SpeciesConifer -71.04
                           81.31 -0.874 0.39321
 Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
 Residual standard error: 534 6 on 19 degrees of freedom
```

Multiple R-squared: 0.9379, Adjusted R-squared: 0.9281 F-statistic: 95.71 on 3 and 19 DF, p-value: 1.195e-11

The linear model perspective

Categorical and continuous factors

• Additive model:

linear.treelight.add<-lm(Light~Depth+Species, data=treelight)
summary(linear.treelight.add)</pre>

Coefficients:

```
Estimate Std. Error t value Pr(>|t|)

(Intercept) 7962.03 231.36 34.415 < 2e-16 ***

Depth -262.17 39.92 -6.567 2.13e-06 ***

SpeciesConifer -3113.03 231.59 -13.442 1.78e-11 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 531 4 on 20 degrees of freedom

Multiple R-squared: 0.9354,

F-statistic: 144.9 on 2 and 20 DF, p-value: 1.257e-12
```


> lm(Light~Depth+Species, data=treelight)

No interaction

Both Effect

The linear model perspective Categorical and continuous factors

Broadleaf:

Light = 7962.03 - 262.17* Depth

Conifer:

Light = (7962.03-3113.03) -262.17*Depth

Exercise 12: treelight.csv

- treelight.csv treelight <- read_csv ("treelight.csv")
 - Plot the data
 - Run a linear model lm ()
 - Extract the parameters from the <u>additive</u> model
 - Plot a line of best fit for each species
 - Extract the parameters from the <u>complete</u> model
 - Write the new equations for broadleaf and conifer species.
 - Plot a line of best fit for each species (use dashed lines to distinguish between the 2 models).
 - Calculate the amount of light predicted:
 - In a conifer, 4 metres from the top of the canopy
 - In a broadleaf tree, 6 metres from the top of the canopy
 - How much of the variability of light is predicted by the depth and the species?

Exercise 12: treelight.csv

```
cf<-coefficients(linear.treelight)

ggplot(treelight, aes(x=Depth, y=Light, group=Species, colour=Species))+
    geom_point(size=3)+
    geom_abline(intercept=cf.add[1], slope=cf.add[2])+
    geom_abline(intercept=(cf.add[1]+cf.add[3]), slope=cf.add[2])+
    geom_abline(intercept=(cf[1]), slope=cf[2], linetype="twodash")+
    geom_abline(intercept=(cf[1]+cf[3]), slope=(cf[2]+cf[4]), linetype="twodash")</pre>
```


Exercise 12: treelight.csv

Extract the parameters from the <u>complete</u> model

- Calculate the amount of light predicted:
 - In a conifer, 4 metres from the top of the canopy (7798.57-2784.58)-(221.13+71.04)*4 = 4413.63
 - In a broadleaf species, 6 metres from the top of the canopy 7798.57-221.13*6 = 6471.79

Linear model

Simplest

$$y = \beta_0 + {\beta_1}^* x$$

With 2 factors

$$y = \beta_0 + \beta_1^* x_1 + \beta_2^* x_2 + \beta_3^* x_1 x_2$$

With Sinhabbesits

$$y = \beta_0 + \beta_1^* x_1 + y = \beta_0 + \beta_1^* x_2^* + ... + \beta_n^* x_n^*$$

Let's not forget the error

$$y_i = (\beta_0 + \beta_1^* x_i) + \mathcal{E}_i$$

General formula

$$y_i = (model) + error_i$$

