
Introduction to Python

Simon Andrews, Steven Wingett
simon.andrews@babraham.ac.uk

@simon_andrews
v2024-01

Setting up a Python Environment

Python is a ‘scripting’ language

#!/usr/bin/env python

print("I am a python program")

C:\Introduction to Python>python example.py
I am a python program

python
python.exe
python3
python3.exe

https://www.python.org/

Different environments for writing python

#!/usr/bin/env python

print("I am a python program")

Scripted: code in text file, output in console

C:\Users\andrewss\>python
Python 3.9.1 (tags/v3.9.1:1e5d33e, Dec 7 2020,
17:08:21) [MSC v.1927 64 bit (AMD64)] on win32
Type "help", "copyright", "credits" or
"license" for more information.
>>>
>>> print("I am an interactive session")
I am an interactive session
>>>

Interactive: code and output in console

Notebook: code, commentary and output in a
single file

Using VSCode to write a python script

• Install VSCode

• Install Python interpreter

• Open VSCode

– File > New File

– Select Python

– File > SaveAs

• Use a .py extension

Your first python program

C:\>"C:/Program Files/Python39/python.exe" "c:/Introduction to Python/first_program.py"
Simon wrote his first python program
He is very proud

#!python

my_name = "Simon"

print (my_name,"wrote his first python program")

print("He is very proud")

Python script basics

#!python

Create a variable with my name in it

my_name = "Simon"

print (my_name,"wrote his first python program")

print ("He is very proud")

Where to find an interpreter

Series of python ‘statements’.
One per line (generally). These
are executed in order, from the
top of the file to the bottom.

Your program finishes at the
end of the file

Comments use #

Your turn..

• Copy the program below into VSCode and get it to run.

#!python

my_name = "Simon"

print (my_name,"wrote his first python program")

print("He is very proud")

Variables and Data Types

• A ‘variable’ is some data which you have given a name

• There are several different types of data structure
– We’re starting with the ‘scalar’, a data type which holds a single value

• Python is a ‘dynamic’ but ‘strongly typed’ language
– Dynamic = You don’t need to say what type of data a variable will hold

when you create it (and you can change it at any time)

– Strongly typed = Python tracks what type of data you have and changes its
behaviour based on the type of the data

Creating a variable

• Variables are created or updated using the = operator

– ‘Operator’ just means special symbol

– Variable ‘types’ are determined by the data used

– Python style guide says "Variable names should be lowercase, with
words separated by underscores as necessary to improve readability"

x = 5 # x is an int (Integer, whole number)
x = 5.5 # x is a float (Floating point number, fractional)
x = True # x is a bool (Boolean, logical True/False)
x = "Simon" # x is an str (String, piece of text)

x = input("What is your name? ") # Ask user for a str

Different ways to access functionality

• Operators
– Special symbols to denote an operation (eg + * / etc)

5 + 10

• Functions
– Named pieces of functionality into which data is passed

len("simon")

• Methods
– Functions which are accessed via the data directly

"simon".upper()

Functions vs Methods

• Functions

– Named pieces of code. All data (arguments)
must be passed in to them. Accessed either
in the core language or from packages

• Methods

– Functions which are associated with a type
of data (string, date etc). Called via the data,
you don’t need to pass the data in to the
method

>>> len("Simon")
5

>>> "Simon".upper()
'SIMON'

Functionality is linked to data type

• 5 + 10 # 15

• "5" + "10" # 510

• "5".upper() # 5

• 5.upper() # SyntaxError: invalid syntax

• float("5") + int(10) # 15

• str(5) + str(10) # "510"

Common Numeric Operators

Operator Action

+ Addition

- Subtraction

* Multiplication

/ Division

** Raise to a power

// Floor division

% Modulo

5 + 10
23 - 56
10 * 4.5 # Can mix int/float

20 / 7 # Converts to float

2 ** 5
20 // 7 # Stays as int

20 % 7 # Calculates remainder

Running a function

print("Hello", "world", sep="_")

Round brackets

Function name Positional Arguments Named argument

How to use a function?

https://docs.python.org/3/

How to use a function?

List of built in functions
abs() delattr() hash() memoryview() set()

all() dict() help() min() setattr()

any() dir() hex() next() slice()

ascii() divmod() id() object() sorted()

bin() enumerate() input() oct() staticmethod()

bool() eval() int() open() str()

breakpoint() exec() isinstance() ord() sum()

bytearray() filter() issubclass() pow() super()

bytes() float() iter() print() tuple()

callable() format() len() property() type()

chr() frozenset() list() range() vars()

classmethod() getattr() locals() repr() zip()

compile() globals() map() reversed() __import__()

complex() hasattr() max() round()

Finding methods in VSCode

Click on the > for more details

Control + Space forces suggestions

Finding methods via data type (class)

>>> type("simon")
<class 'str'>

>>> help(str)
Help on class str in module builtins:

class str(object)
| str(object='') -> str
| str(bytes_or_buffer[, encoding[, errors]]) -> str
|
| Create a new string object from the given object. If encoding or
| errors is specified, then the object must expose a data buffer
| that will be decoded using the given encoding and error handler.
| Otherwise, returns the result of object.__str__() (if defined)
| or repr(object).
| encoding defaults to sys.getdefaultencoding().
| errors defaults to 'strict'.
|
| Methods defined here:

Your turn…

• Got to docs.python.org

• Find the help for the string class (called str)

• Have a look through the available methods

• What does the title method do?

• Can you write a small program which runs the title method
on the string "convert this to title"

The python standard library

• Most functionality (functions / methods) is not in the core
python language, but comes from extensions called 'packages'

• Python comes with an enormous collection of packages called
the 'standard library' which are guaranteed to be present with
any python installation

• Additional packages can be installed from the Python Package
Index (pypi)

Text manipulation
string — Common string operations
re — Regular expression operations

Data Types
datetime — Basic date and time types
zoneinfo — IANA time zone support
calendar — General calendar-related functions
array — Efficient arrays of numeric values
copy — Shallow and deep copy operations
pprint — Data pretty printer
graphlib — Operate with graph-like structures

Numeric and Mathematical Modules
math — Mathematical functions
random — Generate pseudo-random numbers
statistics — Mathematical statistics functions

File and Directory Access
os.path — Common pathname manipulations
stat — Interpreting stat() results
tempfile — Generate temporary files and directories
glob — Unix style pathname pattern expansion
shutil — High-level file operations

Data Persistence
pickle — Python object serialization
sqlite3 — DB-API 2.0 interface for SQLite databases

Data Compression and Archiving
gzip — Support for gzip files
bz2 — Support for bzip2 compression
zipfile — Work with ZIP archives
csv — CSV File Reading and Writing

Generic Operating System Services
os — Miscellaneous operating system interfaces
io — Core tools for working with streams
time — Time access and conversions
argparse — Parser for command-line options

Internet Data Handling
email — An email and MIME handling package
json — JSON encoder and decoder

Graphical User Interfaces with Tk
tkinter — Python interface to Tcl/Tk

Software Packaging and Distribution
distutils — Building and installing Python modules
venv — Creation of virtual environments

Using functions from the standard library

import math
math.sqrt(10)

3.162277

import math as m
m.sqrt(10)

3.162277

from math import *
sqrt(10)

3.162277

Use functions via the package

from math import sqrt
sqrt(10)

3.162277

Import individual functions

Finding functions in a package
import math
help(math)

Help on built-in module math:

NAME
math

DESCRIPTION
This module provides access to the mathematical functions
defined by the C standard.

FUNCTIONS
acos(x, /)

Return the arc cosine (measured in radians) of x.
The result is between 0 and pi.

acosh(x, /)
Return the inverse hyperbolic cosine of x.

asin(x, /)
Return the arc sine (measured in radians) of x.
The result is between -pi/2 and pi/2.

Also at: https://docs.python.org/3/library/math.html

Finding methods in a package

• Some packages define a new data type (class) and use that to call
methods, rather than providing functions

CLASSES
class Random(_random.Random)
| Random(x=None)
|
| Random number generator base class used by bound module functions.
|
| Used to instantiate instances of Random to get generators that don't
| share state.

...
| Methods defined here:

...
| choice(self, seq)
| Choose a random element from a non-empty sequence.

Also at: https://docs.python.org/3/library/random.html

The random package has both methods and functions

CLASSES
class Random(_random.Random)
| Random(x=None)

| randint(self, a, b)
| Return random integer in range [a, b], including
| both end points.

FUNCTIONS
randint(a, b) method of Random instance

Return random integer in range [a, b], including
both end points.

Example of using random

import random

Use a function
print(random.randint(0,10))

Use a method
Make an instance of the Random datatype (class)
generator = random.Random()
Call a method on this variable
print(generator.randint(0,10))

Example Script

• Input a name

• Input an age in years

• Output the year in which they were born

• Output the number of days they’ve been alive

• We're going to take some mathematical liberties ☺

#!C:\Program Files\Python39\python.exe

A program to calculate someone's age
name = input("What is your name? ")
age = input("What is your age (in years)? ")

Age starts as a string, so we need to convert it to be a number
age = int(age)

age_days = age * 365

Import the time module so we can get the current year.
import time

year = time.gmtime().tm_year
born_in = year - age

print(name, "was borm in", born_in, "he is",age_days,"days old")

What went wrong?

#!python
age = input("What is your age? ")
age_in_days = age * 365

print("Your age is",age_in_days)

What is your age? 35
Your age is
353
535
353
535
353

What went wrong?

Traceback (most recent call last):
File "c:\Users\andrewss\test.py", line 4, in <module>

root_two = sqrt(2)
^^^^

NameError: name 'sqrt' is not defined

#!python
import math

root_two = sqrt(2)

#!python
number1 = input("What is the first number? ")
number2 = input("What is the second number? ")

float(number1)
float(number2)

print("The product is",(number1 * number2))

What went wrong?

Traceback (most recent call last):
File "c:\Users\andrewss\test.py", line 10, in <module>
print("The product is",(number1 * number2))

~~~~~~~~^~~~~~~~~
TypeError: can't multiply sequence by non-int of type 'str'



#!python
species = "homo sapiens"

species = species.capitalize

print(species)

What went wrong?

<built-in method capitalize of str object at 0x0000026D99915170>



Exercise 1



Python Data Structures



Python Data Structures

• Holds a single value

– scalar

• Holds multiple ordered values

– list, tuple 

• Holds multiple, unique, unordered values

– set

• Lookup table, keys and values

– dictionary

5

5 8 5 7

5
1

8 3

6

Simon

Sarah

Laura

12

14

12



Lists

• Modifiable structure to hold an ordered set of data

• Values can be anything, mixed types is allowed, but not great

• Lists can be created empty or with data in them

• You can add or remove data from a list, or extract subsets

empty_list = []

filled_list = [1,True,"simon"]



List Methods

• append - Add something to the end

• clear - Remove all content

• count - Count the instances of a specific value

• extend - join lists together

• index - find the position of a value

• insert - Add data anywhere in the list

• pop - Remove the last value

• remove - Remove a specific value

• reverse - Reverse the list

• sort - Order the list
Note that these methods modify the list in 
place, they don't return anything.



List examples
# dog cat gerbil

# dog cat gerbil mouse

# dog cat gerbil mouse cat dog

# 2

# dog cat mouse cat dog

# dog cat rat mouse cat dog

# dog cat rat mouse cat

# 0

# cat mouse rat cat dog

# 4

my_list = ["dog","cat","gerbil"]

my_list.append("mouse")

my_list.extend(["cat","dog"])

my_list.count("cat")

my_list.remove("gerbil")

my_list.insert(2,"rat")

last_value = my_list.pop()

my_list.index("dog")

my_list.reverse()

my_list.index("dog")



List Questions

dog cat dog fish hen

.

dog cat dog fish

mylist

mylist.append("hen")

dog cat dog fish hen dog cat dog fish

henmylist.pop()

dog cat dog fish 2 (number of dogs)

mylist.count("dog")



Accessing List Subsets

• All positions start counting at 0 (everywhere in python)
– Negative positions count back from the end of the list

– Start is inclusive, end is exclusive

• You don’t have to supply all of the options
– Later ones can just be omitted

– Earlier ones can be omitted, but you still need the colons

my_list[start:end:step]



Accessing List Subsets

my_list[start:end:step]

my_list = ["a","b","c","d","e","f","g","h"]

my_list[2]
my_list[-2]

my_list[0:5]
my_list[:5]

my_list[0:5:2]

my_list[3:]

my_list[::3]
my_list[::-1]

# c
# g

# a b c d e
# a b c d e

# a c e

# d e f g h

# a d g
# h g f e d c b a



Copying vs In-Place changes

• Python sometimes has two ways to do the same thing

– Via a function or selection, returning a modified copy of the data

– Via a method or replacement, changing the original copy of the data

• All python data (other than scalars) are 'references', which means 
that copying can be unintuitive



Copying vs In-Place changes

sorted(my_list) # Returns a sorted copy of my_list

my_list.sort() # Returns nothing, but sorts my_list in place

reversed(my_list) # Returns a reversed copy of my_list*
my_list[::-1] # Returns a reversed copy of my_list

my_list.reverse() # Returns nothing. Reverses my_list in place

* Technically it returns an iterator over a reversed version of my_list, but we haven't talked about those yet



References and Copying

“Simon”name  = 

newname = name

“Simon”newname = 

“Simon” “Laura” “Sarah”

0x9915170

names  = 0x9915170

newnames  = names

0x9915170newnames  = 



References and Copying

my_list = ["dog","cat"]

my_copy = my_list

my_copy.append("mouse")

my_copy[-1] # mouse
my_list[-1] # ALSO mouse !!!



References and Copying

my_list = ["dog","cat","mouse"]

my_copy = my_list.copy()

my_copy[-1] = "gerbil"

# my_copy is       dog cat gerbil
# my_list is still dog cat mouse

The copy method only copies the first level of a list.  For multi-level copies you need the copy.deepcopy function



Tuples

• Very similar to lists

– Hold ordered sets of data

• Big difference is that tuples are 'immutable'

– They can't be changed from the data they originally contain

• Most of the operations are the same as for lists

– Selections return tuples rather than lists



Tuple examples

simple_tuple = (1,5,"fred") # Round brackets, not square
simple_tuple[:2] # (1,5)

single_tuple = ("one",) # Need trailing comma



Dictionaries

• The other big remaining data structure in core python

• Structured as a lookup table
– Key: An index value (eg text or number) to look up by

– Value: A data structure to link to that key

• Keys can be any immutable data type (strings, numbers or tuples)

• Keys must be unique
– Values can be repeated under different keys

• Dictionaries are also ordered (they remember the order keys were added)*

* As of python v3.7 - before that they weren't



Dictionaries

# Creating dictionaries
empty_dict = {} # Curly brackets
populated_dict = { # : between key and value

"key1" : 10, # , between value and next key
"key2" : 20 # Can also write on one line

}

# Retrieving values
populated_dict["key2"] # Note SQUARE brackets to use

# Adding / replacing / removing values
empty_dict["simon"] = "Cambridge" # Creates new key
populated_dict["key1"] = 1000 # Replaces old value
populated_dict.pop("key2") # Removes (and returns)



Sets

• Sets are like dictionaries, but without values

• They hold a unique set of immutable keys

• They are very quick to look up what is (and isn't) in the set

• Sets are NOT ordered

– There is an ordered-set package which provides this

– It's not in the core package collection



Sets

# Creating a set
empty_set = set() # Must use a function, not {}
tree_set = {"oak","fir","ash"} # No colons, just commas

# Adding / Removing
empty_set.add("simon") # Fine if it's already there
tree_set.remove("fir") # Get an error if it's not there

# Testing
"ash" in tree_set # True
"larch" in tree_set # False



Which data structure for…

• Holding a single piece of data?

• Holding an ordered set of values which you need to change?

• Doing a lookup between a key and some associated data?

• Holding multiple values to see which you have seen before?



Which data structure?

x = [1,5,6,2,5]

x = {1,5,6,2,5}

x = {"Simon": 40, "Laura": 20}

x = ("bob","ana","may")

x["Simon"] = 5



Multi-level data structures

Simon

Sarah

Laura

12

14

12

Key is a scalar (string)
Value is a scalar (int)

4 2 1
55 7 3 8

5 8 5 7Simon

Sarah

Laura

Key is a scalar (string)
Value is a list 
List contains scalars (int)



Multi-Level Data

• Data structures can hold other data structures

• This is a simple way to create multi-level data structures

multi_list = []

multi_list.append([10,20,30])                # Note – append *not* extend
multi_list.append(["ten","twenty","thirty"])
multi_list.append(["X","XX","XXX"])

multi_list
multi_list[1]
multi_list[1][2]

# [[10, 20, 30], ['ten', 'twenty', 'thirty'], ['X', 'XX', 'XXX']]
# ['ten', 'twenty', 'thirty']
# 'thirty'



#!python
existing_data = {

"WT": [2,5,4,6],
"KO": [8,6,9,12]

}

condition = input("Which condition? ")
value = float(input("What value? "))

existing_data[condition].append(value)

wt_count = len(existing_data["WT"])
ko_count = len(existing_data["KO"])

print ("There are",wt_count,"WT values:",existing_data["WT"])
print ("There are",ko_count,"KO values:",existing_data["KO"])

print("Latest WT value is",existing_data["WT"][-1])
print("Latest KO value is",existing_data["KO"][-1])

A dictionary:
Keys = strings
Values = List of integers

existing_data[condition] gets the correct list
append is a method on the list to add the new value



Exercise 2



Iterators, Loops and Conditionals



Iteration over a list (or tuple, or set)

animals = ["dog","cat","mouse","elephant"]

for animal in animals:
print(animal.upper())

Loop variable
(can use any name)Loop keyword

Looping data Colon

Indent
Loop variable used



Indenting code blocks

animals = ["dog","cat","mouse","elephant"]

for animal in animals:
print(animal.lower())
print(animal.upper())

print("Finished listing animals")

4 space indent

Block starts

Block finished

There must be at least 1 statement in a 
block.  You can use pass as a way to make a 
dummy statement if you really need to.



Iterators

• Often you will iterate over a data set (list, dictionary etc)

• You can also iterate over a special function called an iterator
which dynamically builds data for you to iterate over

• More efficient than building large lists, just to iterate over 
them



Ranges
• Simple and efficient way to loop over sets of integers

for i in range(5): # 0, 1, 2, 3, 4
print(i)

for i in range(5,10): # 5, 6, 7, 8, 9
print(i)

for i in range(5,16,2): # 5, 7, 9, 11, 13, 15
print(i)

for i in range(16,5,-2): # 16, 14, 12, 10, 8, 6
print(i)



Iterating over list indices (and values)

• enumerate makes an iterator of tuples (index, value) 
over a list

• i,animal = (1,"dog") is an easy way to extract 
tuple or list values into separate variables

for i in range(len(animals)):
print(i, animals[i])

for i,animal in enumerate(animals):
print(i, animal)

animals = ["dog","cat","mouse","elephant"]

0 dog
1 cat
2 mouse
3 elephant



Iterating over dictionaries

• Two options

1. Iterate over the keys, and then use them to look up the values

2. Iterate simultaneously over the keys and values

animal_dict = {"elephant":"big", "dog":"medium", "mouse":"small"}

for animal in animal_dict: # Iterates over the keys
print(animal, animal_dict[animal])

for animal,size in animal_dict.items():# items() gives a (key,value) tuple
print(animal, size)



Conditional Tests

• A way to have a block of code which runs under some 
circumstances but not others.

• Consists of a logical test followed by a code block which 
executes only if the test is 'true'

• Code blocks are indented in the same way that loop blocks 
were



What is 'true'

• Logical tests evaluate code to be 'true' or 'false', so what's 
true? Actually easier to say what's false.
– The logical False value

– A completely empty string

– The None value

– Empty lists, tuples and dictionaries

– Any numerical zero value (int or float)

• Everything else is true



Constructing a logical test

test = False
another_test = True

if test:
print("Answer 1")

elif another_test:
print("Answer 2")

else:
print("Answer 3")

Optional

You can have:
• One if
• Zero or more elif
• Zero or one else



Logical test operators

Operation Meaning Example

< strictly less than 5 < 6.5

<= less than or equal 4 <= 4

> strictly greater than 2.3 > 1.6

>= greater than or equal 4.001 >= 4

== equal "simon" == "simon"

!= not equal 4 != 4

is object identity [1,2] is [1,2]

is not negated object identity [1,2] is not [1,2]



Logical tests on data structures
animals = ["dog","cat","mouse","elephant"]
animal_dict = {"elephant":"big", "dog":"medium", "mouse":"small"}

if "gerbil" in animals:              # Works for lists, sets, tuples
print("There's a gerbil there")

else:
print("Sorry, no gerbils")

if "elephant" in animal_dict:        # Tests against the keys
print("We know about elephants")

if "medium" in animal_dict.values(): # Tests against the values
print("There's a medium animal")



Compound Tests

• You can use the operators and / or to link logical tests 

• You can use not to invert the logic of a test

if "gerbil" not in animals:
print("No gerbils here")

for animal,size in animal_dict.items():
print(animal)
if size=="big" and animal.startswith("e"):

print("I bet it's an elephant")



while loops

• A way to execute a code block repeatedly until a logical test 
becomes false

• The logical test uses the same code as if statements

• Generally something within the loop needs to change the data 
used in the logical test
– Otherwise the loop will run forever (an infinite loop)

– There are ways to break out of a loop



while loops

#!python

import random

guessed_number = -1

while guessed_number != 5:
guessed_number = random.randint(0,10)
print("I guessed",guessed_number)

print("I stopped guessing")

I guessed 1
I guessed 4
I guessed 7
I guessed 1
I guessed 5
I stopped guessing

Logical Test

Loop Code Block



Using 
continue
and break

#!python
data = []

while True: # An infinite loop
answer = input("Enter data: ")

if answer.strip() == "":
break

if not answer.isnumeric(): # Tests for integer
print("Sorry, wasn't a number")
continue

data.append(int(answer))

mean = 0

for i in data:
mean += i # Shortcut for mean = mean + i

mean /= len(data)

print("The mean of",len(data),"observations was",mean)



#!python

data = {}
sample_count = 0

while sample_count < 10:
sample_count += 1
print("\n\nMeasurement",sample_count)
sample = input("Sample Name: ")
value = float(input("Data Value: "))

if not sample in data:
data[sample] = []

data[sample].append(value)

for sample in data:
data[sample].sort()
print("Sample",sample,"had",len(data[sample]),"measures:",data[sample])



Exercise 3



String Processing



Creating Strings

text_single = 'simple single quotes' # No real difference
# between single and quotes

text_double = "simple double quotes" # double quotes

text_escaped = 'It\'s tricky writing apostrophes'

text_special = 'header1\theader2\ndata1\tdata2\n' # Newlines / tabs

text_multi = """I can write
over several
lines
"""



Testing Strings
• isalnum() Are all characters in the string letters or numbers

• isalpha() Are all characters in the string letters

• isascii() Are all the characters standard ASCII (no extended characters)

• isdecimal() 
• isdigit() Test for numbers (plus varying extended characters)
• isnumeric()

• islower() Is it lowercase
• isupper() Is it uppercase
• istitle() Is it title case (initial capital)

• isprintable()  All characters are printable (not carriage returns etc)

• isspace() All characters are spaces/tabs



Splitting and Joining

• Convert between lists/tuples and delimited strings

text_delim = "Jan_Feb_Mar_Apr_May"

months = text_delim.split("_") # [Jan Feb Mar Apr May]

new_delim = ":".join(months) # Jan:Feb:Mar:Apr:May

",".join(["one",2,"three",4]) # Fails, can't join int
",".join(["one",str(2),"three",str(4)]) # Works, but ugly!



big = "arabidopsis"

small = big[-6:]
small = big[::-1]

if "bido" in big:
print("Found substring") # Works

# dopsis
# sispodibara

Strings as tuples

• Behind the scenes strings are stored as a tuple of letters

• You can use the list/tuple subsetting syntax on strings 



String Operators

• Strings can be 'added' or 'multiplied'

text1 = "join"
text2 = 'me'

text_joined = text1 + text2 # joinme
text_joined = "can't" + "mix" + 100 # Fails, can't add int
text_joined = "can" + "mix" + str(100)# Works

text_multi = text1 * 4 # joinjoinjoinjoin



Building strings with data
(the ugly way)

• Multiple additions

• Type conversion

• Too much numeric precision

sample = "WT"
count = 23
total_count = 101

print("Sample",sample,"comprised",count/total_count,"of all measures")

message = "Sample "+sample+" comprised "+str(count/total_count)+" of all measures"

# Sample WT comprised 0.22772277227722773 of all measures



Format Strings (f-strings)

• Regular strings, prepended by f eg f"Hello"

• Embed variables / code directly in strings

• Works with all data types without conversion

• Provides numeric formatting

Only works on python >3.7



Format Strings (f-strings)

year = 1983
name = "Simon"
kids = ["Fred","Ethel"]

print(f"{name} was born in {year} and has {kids}")

# Simon was born in 1983 and has ['Fred', 'Ethel']

print(f"{name} was born in {year} and has {' & '.join(kids)}")

# Simon was born in 1983 and has Fred & Ethel



Number formatting in f-strings

{data:<20,.2f}
{data:[align][width][delimiter].[precision]}

– Align is < (left) > (right) ^ (center)

– Width is number of characters

– Delimiter is 1000s separator (normally , or _)

– Precision is number+letter
• f is fixed decimal places

• g is significant figures

{data:<20.2f} Occupy 20 spaces, align left show 2 decimal places

{data:,.3g} Take what space you need. Add commas. Show 3 sig figs



Number formatting in f-strings

fnum = 19876.12345

print(f"Simple={fnum}") # Simple=19876.12345

print(f"Decimal Places={fnum:.2f}") # Decimal Places=19876.12

print(f"SigFigs={fnum:.3g}") # SigFigs=1.99e+04

print(f"Commify={fnum:,.0f}") # Commify=19,876

print(f"FixWidthR='{fnum:>15}'") # FixWidthR='    19876.12345'

print(f"FixWidthC='{fnum:^15}'") # FixWidthC='  19876.12345  '



Complex Matching

• Simple literal string matching can be achieved using either in
or methods such as index or find

• More complex, ambiguous patterns can be found using 
methods from the re (regular expression) package - part of the 
standard library

• Regular expressions are used in many languages and are the 
same in all of them.



Common methods from re

• re.findall Find all matches to a pattern. Return a list of hit text

• re.search Find the first match to a pattern. Return a hit object

• re.finditer Find all matches to a pattern. Return a hit object iterator

• re.split Like str.split but using a pattern not literal text

• re.sub Find and replace based on a pattern



Constructing Patterns
• Patterns are strings, but containing special characters
• Special characters allow for ambiguity in the pattern

. Anything
[ade] Set of allowed characters
| Either/or. Surrounded by () if ambiguous

* Zero or more
+ One or more
? None or one
{} Specific number of occurrences, exact or {min,max}

^ Starts with
$ Ends with

\ Way to escape a special character you want to use literally
() Capture group, used to capture part of a match for later use



Pattern Examples

b.b b [anything] b

^ga*t starts with g, then any number of a then t

tata+$ tat then one or more a at the end of the string

c[aeiou]{4} c then exactly 4 vowels

\.txt$ .txt at the end of a string

lane([0123456789])\.fq lane then a captured number then .fq

file\.(fq|fastq) File dot fq or fastq



Character group shortcuts in regular expressions

• Certain groups of characters are so common there is a shortcut
\d Digits (0-9)

\D Non-digits

\s Any whitespace (spaces or tabs)

\S Any non-whitespace

\w Any word character (letters, numbers and underscore)

\W Any non-word character

• Eg:   lane([0123456789])\.fq could be  lane(\d)\.fq



Finding matches

import re

text="From sample 1535 we counted 712 colonies on 12 plates"

hits = re.findall("\d+",text)
print(hits) # ['1535','712','12'] - always strings

no_hits = re.findall("bacteria",text)
print(no_hits) # [] Empty list

if re.findall("\d+",text): # Works because a populated list is
print("There were numbers") # true but and empty list is false

if not re.findall("bacteria",text):
print("No bateria here")



Capturing parts of matches
• Using the search function allows you to use capture groups

– Any part of the regex surrounded in round brackets

– Can have multiple captures in the same regex

– Sample number and plate number will be captured

import re

text="From sample 1535 we counted 712 colonies on 12 plates"

hits = re.search("(\d+) colonies.* (\d+) plates",text)



Capturing parts of matches
• From the hit object which is returned by re.search or re.finditer

– span() is the position of the whole match, 2 element tuple, start, end

– groups() is a tuple of data in the capture groups

import re

text="From sample 1535 we counted 712 colonies on 12 plates"

hits = re.search("(\d+) colonies.* (\d+) plates",text)

if hits is not None: # Tests whether there was a match
print(f"Matched between {hits.span()[0]} and {hits.span()[1]}")
print(f"Colonies={hits.groups()[0]} Plates={hits.groups()[1]}")

# Matched between 28 and 53
# Colonies=712 Plates=12



Find and Replace

• Use the re.sub function to replace a match

– Regex for what to match

– Replace with a string

import re

text="From sample 1535 we counted 712 colonies on 12 plates"

new_text = re.sub("sample \d+","sample 1234", text)
print(new_text)

# From sample 1234 we counted 712 colonies on 12 plates



#!python
import re

hisat_text = """HISAT2 summary stats:
Total reads: 77188721

Aligned 0 time: 8862035 (11.48%)
Aligned 1 time: 60127229 (77.90%)
Aligned >1 times: 8199457 (10.62%)

Overall alignment rate: 88.52%
"""
stats = {}
lines = hisat_text.split("\n")

for line in lines:
if line.isspace():

continue

if "Total reads" in line:
stats["total"] = line.split(":")[1]

elif line.strip().startswith("Aligned"):
hits = re.search("Aligned\s+(\S+)\s+times?:\s+(\d+)",line)

if hits is None:
print(f"Couldn't match expected pattern in {line}")
continue

stats[hits.groups()[0]] = hits.groups()[1]

for stat in stats:
print(f"{stat} had value {stats[stat]}")



Exercise 4



Reading and Writing Files



Constructing File Paths

• A File paths is a string of folder / file name separated by a delimiter 
(usually /)

• On windows you often see \ used to separate path elements, but behind 
the scenes it always appears as /
– "c:/Users/andrewss/python/example.py"

• Traditionally a mix of os, os.path, glob and shutils packages were 
used to deal with paths

• These have largely been supplanted by the pathlib package



Using pathlib

• The pathlib package defines the Path data type

• Once you create a Path you can call methods on it

– Constructing / joining paths

– Testing paths

– Listing files / folders

– Creating / deleting files or folders



Using File Paths

• Construct a starting path using Path("location")

from pathlib import Path

mypath = Path("C:/Users/andrewss/Desktop")



Joining File Paths

• Start from a base path and add a file name to the end

• Can use / as a shortcut for joinpath

from pathlib import Path

base_path = Path("C:/Users/andrewss/Desktop")

final_path = base_path.joinpath("data.txt")
# C:\Users\andrewss\Desktop\data.txt

final_path = base_path / "data.txt"
# Also works



Path sections

p.drive "C:"

p.parent Path('C:/Program Files/Python39')

p.name    "python.exe"

p.stem "python"

p.suffix ".exe"

str(p)    "C:/Program Files/Python39/python.exe"

C:/Program Files/Python39/python.exe



Useful Path methods

• p.exists() Does this path exist

• p.is_file() Is this a file (not a dir)

• p.is_dir() Is this a directory (not a file)

• p.stat() Get statistics about the path

– p.stat().st_size The size (in bytes)

– p.stat().st_mtime When it was last modified (epoch seconds)

– p.stat().st_atime When it was last accessed (epoch seconds)*

*Not guaranteed to work on every filesystem



Reading Text Files

• The standard process for reading a text file is:

1. Construct the path to the file

2. Check the path exists

3. Open a 'stream' to the file - a variable from which data can be read

4. Read the data line by line in a loop

5. Close the stream



from pathlib import Path
import sys

file_path = Path("C:/Users/andrewss/Python Intro Data/babraham_citations.txt")

if not file_path.exists():
print(f"Couldn't find {file_path}", file=sys.stderr)
sys.exit(1)

file_stream = open(file_path, "rt", encoding="UTF-8")

for line in file_stream:
line = line.strip()
if "Nat" in line:

print(line)

file_stream.close()

Full Read Example

Check file

Report problem

Create a stream

Read from stream

Close stream



Simpler reads using with

from pathlib import Path
import sys

file_path = Path("C:/Users/andrewss/Python Intro Data/babraham_citations.txt")

with open(file_path, "rt", encoding="UTF-8") as file_stream:

for line in file_stream:
line = line.strip()
if "Nat" in line:

print(line)



Clarifications: Text File Encodings

• Text files are just files of numeric values decoded into symbols

• Original text file encoding was ASCII

– ASCII can't represent many characters eg © ã α etc.

– Several different schemes, 'Latin-1', 'cp1252' etc.

– UTF-8 is now taking over and should be used

– On OSX and Linux UTF-8 is the default encoding, but not windows

with open(file_path, "rt", encoding="UTF-8") as file_stream:

UnicodeDecodeError: 'charmap' codec can't decode byte 0x81 in position 4326: 
character maps to <undefined>



Error Reporting

• All OSs have two types of output
– sys.stdout Standard output for expected output

– sys.stderr Standard error for errors, warnings or progress

• You can exit your program early using sys.exit()
– The exit value should be 0 if the program exited normally

– Non zero exit means there was a problem (error)

if not file_path.exists():
print(f"Couldn't find {file_path}", file=sys.stderr)
sys.exit(1)



Using Exceptions (Errors)

• Exceptions are a more robust way of 
reporting and dealing with problems

• They will construct messages and code 
traces to allow debugging

• Exceptions can be 'caught' so you can 
deal with them internally

• There is a generic Exception but also 
more specific ones

+-- Exception
+-- ArithmeticError
|    +-- FloatingPointError
|    +-- OverflowError
|    +-- ZeroDivisionError
+-- AssertionError
+-- AttributeError
+-- LookupError
|    +-- IndexError
|    +-- KeyError
+-- NameError
+-- OSError
|    +-- FileExistsError
|    +-- FileNotFoundError
|    +-- NotADirectoryError
|    +-- PermissionError
|    +-- TimeoutError
+-- SystemError
+-- TypeError
+-- ValueError



Using Exceptions (Errors)

if not file_path.exists():
raise FileNotFoundError(f"Couldn't find {file_path}")

try:
with open(file_name, "rt", encoding="UTF-8") as file_stream:

for line in file_stream:
line = line.strip()
if "Nat" in line:

print(line)

except Exception as ex:
print("Oops it went wrong, never mind")
print(ex)



Writing to text files

• File open modes
– rt = read as text (default)
– rb = read binary (ie non-text)
– wt = write as text (and delete any existing content)
– wb = write binary (and delete any existing content)
– a = append to existing content

out_path = base_path.joinpath("interesting_genes.txt")

with open(out_path,"wt", encoding="utf8") as out:
out.write("nanog") # write doesn't automatically
out.write("\n") # add a newline.

print("brca2", file=out) # print does



File Reading Packages

• csv - parses comma separated value files

• gzip - reads gzip compressed data

• zipfile - read data from zip files

• tarfile - read data from tar files

• pysam - reads SAM or BAM files (not in standard library)

• openpyxl - reads xlsx/xslm Excel files (not in standard library)



Listing Files

• Simple

– Use the iterdir method of a directory Path

• Filtered

– Use the glob method with a pattern containing  a * (eg *.txt)

• Recursive

– Use the rglob method instead of glob



#!python
from pathlib import Path

base = Path("C:/Users/andrewss/git")

for d in base.iterdir():
if d.is_dir():

print(f"Found repository {d.name}")

for f in (base/"aws_training_images").glob("*.sh"):
print(f"Found shell script {f.name}")

html_count = 0

for _ in base.rglob("*html"):
html_count += 1

print(f"Found {html_count} HTML files")



Creating Directories

• Create a Path to a location which doesn't exist

• Call the mkdir method

– Set parents=True if you want to create several directories

new_path = Path("C:/Users/andrewss/Data/Output/")

if not new_path.exists():
new_path.mkdir(parents=True)



Deleting Files

• The unlink method of Path will remove files or empty 
directories

– Be careful - files are not recycled, just deleted

• It won't recursively delete directories and data
– You can use shutil.rmtree for this if you're **really** sure



#!python
from pathlib import Path
import gzip
import re

base_path = Path("C:/Users/andrewss/Desktop/Introduction to Python/Python Intro Data")
polya_lengths = {}

with gzip.open(base_path/"example.fq.gz", mode="rt", encoding="UTF-8") as fq:
for line in fq:

if line.startswith("@SRR"):
sequence = fq.readline()
max_a = 0
for polya in re.findall("A+",sequence):

if len(polya) > max_a:
max_a = len(polya)

if not max_a in polya_lengths:
polya_lengths[max_a] = 0

polya_lengths[max_a] += 1

with open(base_path/"palengths.txt","w") as out:
for palength in sorted(polya_lengths.keys()):

print(f"{palength}\t{polya_lengths[palength]}", file=out)



Exercise 5



Writing Functions and Larger Scripts



Better Code Structure

• When your scripts get larger
– Split the code into modular chunks (functions)

– Share code between scripts

– Add some documentation

– Parse command line options

– Write tests

• Functions help with
– Code readability

– Code maintainability and testing

– Code reuse



Writing functions

def calculate_gc(sequence):
total = len(sequence)
gc = sequence.count("G") + sequence.count("C")

percent = 100*(gc/total)

return percent

seq = "GATTCGATAGCTAG"
gc = calculate_gc(seq)
print(f"The GC content of {seq} is {gc:.1f}")
# The GC content of GATTCGATAGCTAG is 42.9



Functions are processed in order
seq = "GATTCGATAGCTAG"
gc = calculate_gc(seq)
print(f"The GC content of {seq} is {gc:.1f}")

def calculate_gc(sequence):
total = len(sequence)
gc = sequence.count("G") + sequence.count("C")

percent = 100*(gc/total)

return percent

Traceback (most recent call last):
File "c:\Users\andrewss\Intro_Python\functions.py", line 3, in <module>
gc = calculate_gc(seq)

NameError: name 'calculate_gc' is not defined

Declaration

Use



Putting everything into a function

def main():
seq = "GATTCGATAGCTAG"
gc = calculate_gc(seq)
print(f"The GC content of {seq} is {gc:.1f}")

def calculate_gc(sequence):
total = len(sequence)
gc = sequence.count("G") + sequence.count("C")

percent = 100*(gc/total)

return percent

main()

seq = "GATTCGATAGCTAG"
gc = calculate_gc(seq)
print(f"The GC content of {seq} is {gc:.1f}")

def calculate_gc(sequence):
total = len(sequence)
gc = sequence.count("G") + sequence.count("C")

percent = 100*(gc/total)

return percent



Scripts can be packages too

def calculate_gc(sequence):
total = len(sequence)
gc = sequence.count("G") + sequence.count("C")

percent = 100*(gc/total)

return percent

import sequtils

def main():
seq = "GATTCGATAGCTAG"
gplusc = sequtils.calculate_gc(seq)
print(f"The GC content of {seq} is {gplusc:.1f}")

main()

script.py

sequtils.py



Am I a script, or am I a package?

def main():
seq = "GATGCTAG"
gplusc = calculate_gc(seq)
print(f"The GC content of {seq} is {gplusc:.1f}")

def calculate_gc(sequence):
total = len(sequence)
gc = sequence.count("G") + sequence.count("C")

percent = 100*(gc/total)
return percent

main()

script1.py

import script1

gc = script1.calculate_gc("GGG")
print(f"Script2 calculated {gc}")

script2.py

The GC content of GATGCTAG is 50.0
Script2 calculated 100.0

Being able to simply reuse 
functions from other scripts is 
great, but how do we stop the 
'script' part of script1 from running 
when it's being used as a package?



The __name__ special variable

• When a script is executed directly then __name__ has a value of 
"__main__"

• When a script is executed because it's called by being imported into 
another script __name__ is set to the script name

• We can change our behaviour depending on the value of 
__name__

Variables surrounded by double underscores are designed for mostly internal use, and are created 
automatically.  Sometimes they are useful to use directly.



Standard Script Structure

#!/usr/bin/env python

def main():
pass

def myfunction():
pass

def myotherfunction():
pass

if __name__ == "__main__":
main()

The main() function only runs when the script is 
directly executed

Code for this scripts direct functionality goes in 
here

These functions can be used from main or can be 
used in other scripts if this file has been imported 
into them.



Adding Documentation

• Simple function documentation can be added as a string 
immediately below the function definition

def calculate_gc(sequence):
"""Calculates the GC content of an
uppercase sequence string"""
total = len(sequence)
gc = sequence.count("G") + sequence.count("C")

percent = 100*(gc/total)

return percent

>>> import sequtils
>>> help(sequtils.calculate_gc)
Help on function calculate_gc in module 
sequtils:

calculate_gc(sequence)
Calculates the GC content of an
uppercase sequence string



Encapsulation and Scoping

• Functions should be self contained

– They shouldn't rely on the presence of variables outside the function

– They should only send data back via a return statement

– It's OK to create new variables within the function but these won't 
affect the global environment

• It is possible to affect a global variable in a function, but it 
requires extra code



Encapsulation and Scoping

message = "Original value"

def changeme():
new_message = "Changed message"
message = new_message
print(f"Inside, message is {message}")

print(f"Outside, message was {message}")
changeme()
print(f"Outside, message is {message}")

Outside, message was Original value
Inside, message is Changed message
Outside, message is Original value

If we try to use message at the start 
of the changeme function we'd get:

UnboundLocalError: local variable 
'message' referenced before 
assignment 



Accessing global variables

• Global variables are generally a bad idea and you should 
minimise their use
– Variables scoped within the main() function and passed to other 

functions as needed are preferred

• There are times they can be useful though

• To access them in a function you need to use the global 
keyword



Accessing global variables

message = "Original value"

def changeme():
global message
print(f"Inside, message was {message}")
new_message = "Changed message"
message = new_message
print(f"Inside, message is {message}")

print(f"Outside, message was {message}")
changeme()
print(f"Outside, message is {message}")

Outside, message was Original value
Inside, message was Original value
Inside, message is Changed message
Outside, message is Changed message

Says we're importing the 
message variable from the 
global environment



Command Line Options

• You can make your script more flexible by using command line 
arguments to change options, or the data to process

myscript.py cutoff=20 file=data1.csv

• Anything written after the script is put into a list accessed via 
sys.argv



Using sys.argv directly

import sys
def main():

for i,v in enumerate(sys.argv):
print(f"{i} was {v}")

if __name__=="__main__":
main()

>python argv.py cutoff=20 data=data1.csv
0 was argv.py
1 was cutoff=20
2 was data=data1.csv



More robust command lines with argparse

import argparse

def main():
options = parse_arguments()

print(f"Cutoff is {options.cutoff} data file is {options.data}")

def parse_arguments():
parser = argparse.ArgumentParser(description="Analyse my data")

parser.add_argument("--cutoff", help="The cutoff to use for the analysis", default=20, type=int)
parser.add_argument("data", help="The data file to process", type=str)

return parser.parse_args()

if __name__ == "__main__":
main()



More robust command lines with argparse

usage: commandline.py [-h] [--cutoff CUTOFF] data

Analyse my data

positional arguments:
data             The data file to process

optional arguments:
-h, --help       show this help message and exit
--cutoff CUTOFF  The cutoff to use for the analysis



More robust command lines with argparse

commandline.py somefile.csv
Cutoff is 20 data file is somefile.csv

commandline.py --cutoff 26 test.csv
Cutoff is 26 data file is test.csv

commandline.py --cutoff=26
usage: commandline.py [-h] [--cutoff CUTOFF] data
commandline.py: error: the following arguments are required: data

commandline.py --cutoff=no test.csv
usage: commandline.py [-h] [--cutoff CUTOFF] data
commandline.py: error: argument --cutoff: invalid int value: 'no'



Testing your code

• Adding tests to your code is a good way to ensure the 
functionality you're developing is working correctly

• You don't need anything else, but the pytest framework 
makes running tests somewhat easier

• Some people advocate 'test driven development', basically you 
write the tests first, and then write code until all of the tests 
pass



The pytest framework

• Not part of the standard library, so need to install with pip

• Looks for files called test_*.py or *_test.py

• Runs test_ functions within these files containing assert
statements
– Asserts are statements containing a test, which produce an exception if the 

test result is not True

• Reports on the success of the tests



def calculate_gc(sequence):
"""Calculates the GC content of an
uppercase sequence string"""
total = len(sequence)
gc = sequence.count("G") + sequence.count("C")

percent = 100*(gc/total)

return percent

def reverse_complement(sequence):
"""Calculates the reverse complement of
an uppercase sequence string"""

rev = sequence[::-1]
revcomp = rev.translate(

str.maketrans("GATC","CTAG")
)

return revcomp

import sequtils

def test_gc():
seq = "GATC"
assert(

sequtils.calculate_gc(seq)==50
)

def test_revcomp():
seq = "GGAT"
assert(

sequtils.reverse_complement(seq)=="ATCC"
)

python -m pytest
======================== test session starts ======================== 
platform win32 -- Python 3.9.1, pytest-6.2.4, py-1.10.0, pluggy-0.13.1
rootdir: C:\Users\andrewss\Desktop\Introduction to Python
collected 2 items                                                     

test_sequtils.py ..                                            [100%] 

========================= 2 passed in 0.06s ========================= 



Exercise 6



Using external resources



Installing Additional Packages



sys.path

• Packages are search for in the order of sys.path

• Stops at the first hit

• Some will be admin only, others are user-writeable

>>> import sys
>>> sys.path
['', 'C:/Program Files/Python39/python39.zip', 'C:/Program Files/Python39/DLLs', 
'C:/Program Files/Python39/lib', 'C:/Program Files/Python39', 
'C:/Users/andrewss/AppData/Roaming/Python/Python39/site-packages', 
'C:/Users/andrewss/AppData/Roaming/Python/Python39/site-packages/win32', 
'C:/Users/andrewss/AppData/Roaming/Python/Python39/site-packages/win32/lib', 
'C:/Users/andrewss/AppData/Roaming/Python/Python39/site-packages/Pythonwin',
'C:/Program Files/Python39/lib/site-packages']



Installing with pip

pip install …

python -m pip install …

pip install biopython

pip install --user biopython

pip install --upgrade biopython

pip uninstall biopython



Virtual Environments

python -m venv mynewproject

source mynewproject/bin/activate  [Linux/Mac]

.\mynewproject\Scripts\activate   [Windows]

deactivate



Getting data from REST APIs

• Many data sources offer a simple way to pull information from 
an online resource, called a REST API

• These are accessed by a structured URL defining the data 
required

• Data is normally returned in JSON format which can be easily 
parsed by python



REST Example



https://www.lipidmaps.org/rest/compound/lm_id/LMFA01010001/all/json



JSON - JavaScript Object Notation 

• Simple text format

• Composed of lists and dictionaries

• Easily transposed into equivalent python data structures

• The json package is part of the standard library

– Create json from list/dictionary json.dumps

– Create list/dictionary from text json json.loads



Reading web data using requests

• Convenient package for reading data from the web

• Supports HTTP HTTPS and FTP URLs

import requests

def main():
lmid= "LMFA01010001"
json_data = fetch_lm_json(lmid)

print(f"LMID {lmid} is {json_data['name']} and has mass {float(json_data['exactmass']):.2f}")

def fetch_lm_json(lmid):
answer = requests.get(f"https://www.lipidmaps.org/rest/compound/lm_id/{lmid}/all/json")
return answer.json()

if __name__=="__main__":
main()



More complex requests

https://biit.cs.ut.ee/gprofiler/page/apis



More complex requests

#!/usr/bin/env python3
import requests

def main():
genes = "ENSG00000007171,ENSG00000141367,etc".split(",")
request = {

"organism": "hsapiens",
"query": genes,
"sources":[],
"user_threshold":0.01

}

result = requests.post("https://biit.cs.ut.ee/gprofiler/api/gost/profile/", json=request)

for hit in result.json()["result"]:
print(f"{hit['name']}\t{hit['p_value']:.3f}")

if __name__ == "__main__":
main()



More complex results

>python.exe gprofiler.py

clathrin binding        0.000
clathrin-coated vesicle 0.000
clathrin-coated vesicle membrane        0.000
coated vesicle  0.000
regulation of leukocyte mediated immunity       0.000
Formation of annular gap junctions      0.000
coated vesicle membrane 0.000
Gap junction degradation        0.000
leukocyte mediated cytotoxicity 0.000
clathrin-coated endocytic vesicle       0.000
regulation of immune system process     0.001
vesicle 0.001
receptor-mediated endocytosis   0.002
regulation of leukocyte mediated cytotoxicity   0.002



Running external programs from python

• The subprocess package provides the Popen and run
functions which have options for the most common variations

– Launch a process and wait for it to complete and check the exit code

– Launch a process and collect output from STDOUT or STDERR

– Launch a process and forget about it (later check exit if you like)



Main subprocess options

• Arguments
– Can be a single string of program plus arguments, need shell=True for this

• “program.sh cutoff 20 threads 3 data.fq.gz”

– Can be a list of separate command components, doesn't need shell
• [“program.sh” , ”cutoff” , ”20” , ”threads” , ”3” , ”data.fq.gz”]

• Check (for subprocess.run)
– check=False (default) returns a result which you can query to see if it worked
– check=True raises an Exception if the process exits in an error state

• Output
– stdout and stderr can either be left to print to the screen, or sent to a pipe where they can be 

read like a file
– If you're reading text from stdout/stderr then set encoding so it appears as text



import subprocess

# Start a process and wait for it to complete
print("Starting notepad")
exit_status = subprocess.run("c:/Windows/system32/notepad.exe")
print(f"Notepad finished {exit_status}")

# Start a process and forget about it
print("Starting forgotten notepad")
subprocess.Popen("c:/Windows/system32/notepad.exe")
print(f"Notepad running")

# Start a process and collect data from it
print("Starting collected process")
with subprocess.Popen(

"c:/Windows/system32/ipconfig.exe",
stdout=subprocess.PIPE,
encoding="UTF-8"
) as running_proc:

for line in running_proc.stdout:
print(f"Found line {line.strip()}")

Start and wait
Check exit code

Start and forget
No exit check

Start and collect stdout
output as a stream

Use with so you don't have 
to manually clean up process 

or streams



Additional little tricks
(if we have time…)



List Comprehension

• A useful shortcut for performing the same operation on all 
members of a list

data = [1,2,3,4,5]
print("\t".join(data))

print("\t".join(data))
TypeError: sequence item 0: expected str instance, int found

data = [1,2,3,4,5]

fixed_data = []
for d in data:

fixed_data.append(str(d))

print("\t".join(fixed_data))

1       2       3       4       5



List Comprehension

data = [1,2,3,4,5]
fixed_data = [str(x) for x in data]
print("\t".join(fixed_data))

print("\t".join( [str(x) for x in data] ))

# Filtering
print("\t".join(  [str(x) for x in data if x>3]  ))

# Conditional Transformation
print("\t".join(  ["odd" if x%2 else "even" for x in data]  ))



Debugging

• Python has a built in debugger which you can use to help sort 
out problems in your code

• You can start the debugger at any point in your code by 
inserting a call to the breakpoint() function (python 3.7+)
– Good for logic errors

• You can enter the debugger instead of crashing by running

python3 -m pdb crashing_program.py
– Good for tracing the cause of crashes



Debugging
Line 1
Line 2
Line 3
Line 4
Line 5
Line 6
Line 7
Line 8
Finished

def print_lines(file):

line_number = 1

for line in file:
line_number += 1
if line_number == 10:

breakpoint()
break

print(line)

print("Finished")

Line 7
Line 8
> c:\users\andrewss\debugger.py(12)print_lines()
-> break
(Pdb)



Debugger commands

• Print the value of an expression (often just a variable)
(Pdb) p line
'Line 9'

• Step to the next line of code
(Pdb) s
> c:\users\andrewss\debugger.py(16)print_lines()
-> print("Finished") 

• Allow the program to continue to the next breakpoint (or end)
(Pdb) c
Finished


