

Introduction to Statistics with GraphPad Prism 8

Anne Segonds-Pichon v2019-03

Outline of the course

- Power analysis with G*Power
- Basic structure of a GraphPad Prism project
- Analysis of qualitative data:
 - Chi-square test
- Analysis of quantitative data:
 - Student's t-test, One-way ANOVA, correlation and curve fitting

Power analysis

- **Definition of power**: probability that a statistical test will reject a false null hypothesis (H_0) .
 - Translation: the probability of detecting an effect, given that the effect is really there.
- In a nutshell: the bigger the experiment (big sample size), the bigger the power (more likely to pick up a difference).
- Main output of a power analysis:
 - Estimation of an appropriate sample size
 - Too big: waste of resources,
 - Too small: may miss the effect (p>0.05)+ waste of resources,
 - Grants: justification of sample size,
 - Publications: reviewers ask for power calculation evidence,
 - Home office: the 3 Rs: Replacement, Reduction and Refinement.

Experimental design

Think stats!!

- Translate the hypothesis into statistical questions:
 - What type of data?
 - What statistical test?
 - What sample size?
- Very important: Difference between technical and biological replicates.

Power analysis

A power analysis depends on the relationship between 6 variables:

- the difference of biological interest
 the variability in the data (standard deviation)
- the significance level (5%)
- the desired power of the experiment (80%)
- the sample size
- the alternative hypothesis (ie one or two-sided test)

1 The difference of biological interest

- This is to be determined scientifically, not statistically.
 - minimum meaningful effect of biological relevance
 - the larger the effect size, the smaller the experiment will need to be to detect it.
- How to determine it?
 - Substantive knowledge, previous research, pilot study ...

2 The Standard Deviation (SD)

- Variability of the data
- How to determine it?
 - Substantive knowledge, previous research, pilot study ...
- In 'power context': **effect size**: combination of both:
 - e.g.: Cohen's d = (Mean 1 Mean 2)/Pooled SD

3 The significance level

- usually 5% (p<0.05), probability of the Type I error α
- p-value is the probability that a difference as big as the one observed could be found even if there is no effect.
 - Probability that an effect occurs by chance alone

A p-value (shaded red area) is the probability of an observed (or more extreme) result arising by chance

Don't throw away a p-value=0.051!

The significance level, critical value, α and β

- α : the threshold value that we measure p-values against.
 - For results with 95% level of confidence: $\alpha = 0.05$
 - = probability of type I error
- **p-value**: probability that the observed statistic occurred by chance alone
- Statistical significance: comparison between α and the p-value
 - p-value < 0.05: reject H₀ and p-value > 0.05: fail to reject H₀

The critical value

- In hypothesis testing, a critical value is a point on the test distribution that is compared to the test statistic to determine whether to reject the null hypothesis
 - Example of test statistic: t-value
- If the absolute value of your **test statistic** is greater than the **critical value**, you can declare statistical significance and reject the null **hypothesis**
 - Example: t-value > critical t-value

4 The desired power: 80%

- Type II error (β) is the failure to reject a <u>false</u> H₀
 - Direct relationship between Power and type II error:
 - if $\beta = 0.2$ and **Power** = $1 \beta = 0.8$ (80%)
 - Hence a true difference will be missed 20% of the time
 - General convention: 80% but could be more or less

- For most researchers: Type I errors are four times more serious than Type II errors: 0.05 * 4 = 0.2
- Compromise: 2 groups comparisons: 90% = +30% sample size, 95% = +60%

5 The sample size: the bigger the better?

It takes huge samples to detect tiny differences but tiny samples to detect huge differences.

- What if the tiny difference is meaningless?
 - Beware of overpower
 - Nothing wrong with the stats: it is all about interpretation of the results of the test.

- Remember the important first step of power analysis
 - What is the effect size of biological interest?

6 The alternative hypothesis

One-tailed or 2-tailed test? One-sided or 2-sided tests?

- Is the question:
 - Is the there a difference?
 - Is it bigger than or smaller than?
- Can rarely justify the use of a one-tailed test
- Two times easier to reach significance with a one-tailed than a two-tailed
 - Suspicious reviewer!

To recapitulate:

- The null hypothesis (H_0) : H_0 = no effect
- The aim of a statistical test is to reject or not H₀.

Statistical decision	True state of H ₀	
	H ₀ True (no effect)	H ₀ False (effect)
Reject H _o	Type I error α	Correct
	False Positive	True Positive
Do not reject H ₀	Correct	Type II error β
	True Negative	Type II error β False Negative

- Traditionally, a test or a difference are said to be "significant" if the probability of type I error is: $\alpha = < 0.05$
- High specificity = low False Positives = low Type I error
- High sensitivity = low False Negatives = low Type II error

• Fix any five of the variables and a mathematical relationship can be used to estimate the sixth.

e.g. What sample size do I need to have a 80% probability (**power**) to detect this particular effect (**difference** and **standard deviation**) at a 5% **significance level** using a **2-sided test**?

Good news:

there are packages that can do the power analysis for you ... providing you have some prior knowledge of the key parameters!

difference + standard deviation = effect size

- Free packages:
 - R
 - G*Power and InVivoStat
 - Russ Lenth's power and sample-size page:
 - http://www.divms.uiowa.edu/~rlenth/Power/

- Cheap package: StatMate (~ \$95)
- Not so cheap package: MedCalc (~ \$495)

Sample

Statistical inference

Population

Qualitative data

Qualitative data

- = not numerical
- = values taken = usually names (also nominal)
 - e.g. causes of death in hospital
- Values can be numbers but not numerical
 - e.g. group number = numerical label but not unit of measurement
- Qualitative variable with intrinsic order in their categories = ordinal
- Particular case: qualitative variable with 2 categories: binary or dichotomous
 - e.g. alive/dead or presence/absence

Fisher's exact and Chi²

Example: cats and dogs.xlsx

- Cats and dogs trained to line dance
- 2 different rewards: food or affection
- Question: Is there a difference between the rewards?

- Is there a significant relationship between the 2 variables?
 - does the reward significantly affect the likelihood of dancing?
- To answer this type of question:
 - Contingency table
 - Fisher's exact or Chi² tests

	Food	Affection
Dance	?	?
No dance	?	?

But first: **how many cats** do we need?

A priori Power Analysis

Step1: choice of Test family

β G*Power 3.1.3 File Edit View Tests Calculator Help Central and noncentral distributions | Protocol of power analyses Step 2: choice of Statistical test Test family Statistical test Correlation: Bivariate normal model Correlation: Bivariate normal model Type of power analy Linear multiple regression: Random model A priori: Compute r Proportion: Difference from constant (binomial test, one sample case) Proportions: Inequality, two dependent groups (McNemar) Input Parameters Proportions: Inequality, two independent groups (unconditional) Proportions: Inequality (offset), two independent groups (unconditional) Determine => Cor Proportion: Sign test (binomial test) · Generic binomial test α err prob Total sample size Power (1-β err prob) Actual power Correlation p H0 Fisher's exact test or Chi-square for 2x2 tables X-Y plot for a range of values Calculate Options

Step 3: Type of power analysis

Step 4: Choice of Parameters

Tricky bit: need information on the size of the

₿ G*Power 3.1.9.2

difference and the variability.

Output:

If the values from the pilot study are good predictors and if you use a sample of n=23 for each group, you will achieve a power of 83%.

Chi-square and Fisher's tests

- Chi² test very easy to calculate by hand but Fisher's very hard
- Many software will not perform a Fisher's test on tables > 2x2
- Fisher's test more accurate than Chi² test on small samples
- Chi² test more accurate than Fisher's test on large samples
- Chi² test assumptions:
 - 2x2 table: no expected count <5
 - Bigger tables: all expected > 1 and no more than 20% < 5
- Yates's continuity correction
 - All statistical tests work well when their assumptions are met
 - When not: probability Type 1 error increases
 - Solution: corrections that increase p-values
 - Corrections are dangerous: no magic
 - Probably best to avoid them

Chi-square test

• In a chi-square test, the observed frequencies for two or more groups are compared with expected frequencies by chance.

$$\chi^{2} = \Sigma \frac{(Observed\ Frequency - Expected\ Frequency)^{2}}{Expected\ Frequency}$$

- With observed frequency = collected data
- Example with 'cats and dogs'

Chi-square test

Did they dance? * Type of Training * Animal Crosstabulation

				Type of	Training	
				Food as	Affection as	
Animal				Reward	Reward	Total
Cat	Did they	Yes	Count	26	6	32
	dance?		% within Did they dance?	81.3%	18.8%	100.0%
		No	Count	6	30	36
			% within Did they dance?	16.7%	83.3%	100.0%
	Total		Count	32	36	68
			% within Did they dance?	47.1%	52.9%	100.0%
Dog	Did they	Yes	Count	23	24	47
	dance?		% within Did they dance?	48.9%	51.1%	100.0%
		No	Count	9	10	/19
			% within Did they dance?	47.4%	52.6%	100.0%
	Total		Count	32	34	66
			% within Did they dance?	48.5%	51.5%	100.0%

<u>Example</u>: expected frequency of cats line dancing after having received food as a reward:

Direct counts approach:

Expected frequency=(row total)*(column total)/grand total = 32*32/68 = **15.1**

Did they dance? * Type of Training * Animal Crosstabulation

				Type of	Training	
				Food as	Affection as	
Animal				Reward	Reward	Total
Cat	Did they	Yes	Count	26	6	32
	dance?		Expected Count	(15.1)	16.9	32.0
		No	Count)6	30	36
			Expected Count	16.9	19.1	36.0
	Total		Count	32	36	68
			Expected Count	32.0	36.0	68.0
Dog	Did they	Yes	Count	23	24	47
	dance?		Expected Count	22.8	24.2	47.0
		No	Count	9	10	19
			Expected Count	9.2	9.8	19.0
	Total		Count	32	34	66
			Expected Count	32.0	34.0	66.0

Probability approach:

Probability of line dancing: 32/68

Probability of receiving food: 32/68

Expected frequency:(32/68)*(32/68)=0.22: **22% of 68 = 15.1**

For the cats:

 $Chi^2 = (26-15.1)^2/15.1 + (6-16.9)^2/16.9 + (6-16.9)^2/16.9 + (30-19.1)^2/19.1 = 28.4$

Is 28.4 big enough for the test to be significant?

Results

4			
	Table Analyzed	Cat	
	P value and statistical significance		
	Test	Chi-square	
	Chi-square, df	28.36, 1	
	z	5.320	
	P value	<0.0001	
	P value summary	***	
	One- or two-sided	Two-sided	
	Statistically significant (P < 0.05)?	Yes	

4		
1	Table Analyzed	Cat
2		
3	Fisher's exact test	
4		
5	P value	< 0.0001
6	P value summary	***
7	One- or two-sided	Two-sided
8	Statistically significant? (alpha<0.05)	Yes
0		

4			
	Table Analyzed	Dog	
	P value and statistical significance		
	Test	Chi-square	
	Chi-square, df	0.01331, 1	
	Z	0.1154	
	P value	0.9081	
	P value summary	ns	
	One- or two-sided	Two-sided	
	Statistically significant (P < 0.05)?	No	

4		
	Table Analyzed	Dog
	P value and statistical significance	
	Test	Fisher's exact test
	P value	>0.9999
	P value summary	ns
	One- or two-sided	Two-sided
	Statistically significant (P < 0.05)?	No

Fisher's exact test: results

• In our example:

cats are more likely to line dance if they are given food as reward than affection (p<0.0001) whereas dogs don't mind (p>0.99).

Quantitative data

Quantitative data

- They take numerical values (units of measurement)
- Discrete: obtained by counting
 - Example: number of students in a class
 - values vary by finite specific steps
- or continuous: obtained by measuring
 - Example: height of students in a class
 - any values
- They can be described by a series of parameters:
 - Mean, variance, standard deviation, standard error and confidence interval

Measures of central tendency Mode and Median

• Mode: most commonly occurring value in a distribution

• Median: value exactly in the middle of an ordered set of numbers

Example 1: 18 27 34 52 54 59 6 68 78 82 85 87 91 93 100, Median = 68 Example 2: 18 27 27 34 52 52 59 61 68 68 85 85 85 90, Median = 60

Measures of central tendency Mean

- Definition: average of all values in a column
- It can be considered as a model because it summaries the data
 - Example: a group of 5 lecturers: number of friends of each members of the group: 1, 2, 3, 3 and 4
 - Mean: (1+2+3+3+4)/5 = 2.6 friends per person
 - Clearly an hypothetical value
- How can we know that it is an accurate model?
 - Difference between the real data and the model created

Measures of dispersion

• Calculate the magnitude of the differences between each data and the mean:

• Total error = sum of differences

$$= 0 = \Sigma(x_i - \overline{x}) = (-1.6) + (-0.6) + (0.4) + (1.4) = 0$$

No errors!

Positive and negative: they cancel each other out.

Sum of Squared errors (SS)

- To avoid the problem of the direction of the errors: we square them
 - Instead of sum of errors: sum of squared errors (SS):

$$(SS) = \Sigma(x_i - \overline{x})(x_i - \overline{x})$$

$$= (1.6)^2 + (-0.6)^2 + (0.4)^2 + (0.4)^2 + (1.4)^2$$

$$= 2.56 + 0.36 + 0.16 + 0.16 + 1.96$$

$$= 5.20$$

- SS gives a good measure of the accuracy of the model
 - But: dependent upon the amount of data: the more data, the higher the SS.
 - Solution: to divide the SS by the number of observations (N)
 - As we are interested in measuring the error in the sample to estimate the one in the population we divide the SS by N-1 instead of N and we get the variance $(S^2) = SS/N-1$

Variance and standard deviation

• variance
$$(s^2) = \frac{SS}{N-1} = \frac{\sum (x_i - \overline{x})^2}{N-1} = \frac{5.20}{4} = 1.3$$

- Problem with variance: measure in squared units
 - For more convenience, the square root of the variance is taken to obtain a measure in the same unit as the original measure:
 - the standard deviation
 - S.D. = $V(SS/N-1) = V(s^2) = s = \sqrt{1.3} = 1.14$
 - The **standard deviation** is a measure of how well the mean represents the data.

Standard deviation

Small S.D.: data close to the mean: mean is a good fit of the data

Large S.D.: data distant from the mean: mean is not an accurate representation

SD and SEM (SEM = SD/ \sqrt{N})

- What are they about?
 - The SD quantifies how much the values vary from one another: scatter or spread
 - The SD does not change predictably as you acquire more data.
 - The SEM quantifies how accurately you know the true mean of the population.
 - Why? Because it takes into account: **SD** + **sample size**
 - The SEM gets smaller as your sample gets larger
 - Why? Because the mean of a large sample is likely to be closer to the true mean than is the mean of a small sample.

The SEM and the sample size

The SEM and the sample size Small samples (n=3)

'Infinite' number of samples Samples means = \bar{X}

SD and **SEM**

The SD quantifies the scatter of the data.

The SEM quantifies the distribution of the sample means.

SD or SEM?

- If the scatter is caused by biological variability, it is important to show the variation.
 - Report the SD rather than the SEM.
 - Better even: show a graph of all data points.

- If you are using an in vitro system with no biological variability, the scatter is about experimental imprecision (no biological meaning).
 - Report the SEM to show how well you have determined the mean.

Confidence interval

- Range of values that we can be 95% confident contains the true mean of the population.
 - So limits of 95% CI: [Mean 1.96 SEM; Mean + 1.96 SEM] (SEM = SD/ \sqrt{N})

/ -			
	8-27%	- \	
/-	95%		7
	99%		

Error bars	Туре	Description
Standard deviation	Descriptive	Typical or average difference between the data points and their mean.
Standard error	Inferential	A measure of how variable the mean will be, if you repeat the whole study many times.
Confidence interval usually 95% CI	Inferential	A range of values you can be 95% confident contains the true mean.

Analysis of Quantitative Data

- Choose the correct statistical test to answer your question:
 - They are 2 types of statistical tests:
 - Parametric tests with 4 assumptions to be met by the data,
 - Non-parametric tests with no or few assumptions (e.g. Mann-Whitney test) and/or for qualitative data (e.g. Fisher's exact and χ^2 tests).

Assumptions of Parametric Data

 All parametric tests have 4 basic assumptions that must be met for the test to be accurate.

1) Normally distributed data

Normal shape, bell shape, Gaussian shape

• Transformations can be made to make data suitable for parametric analysis.

Assumptions of Parametric Data

- Frequent departures from normality:
 - Skewness: lack of symmetry of a distribution

- Kurtosis: measure of the degree of 'peakedness' in the distribution
 - The two distributions below have the same variance approximately the same skew, but differ markedly in kurtosis.

More peaked distribution: kurtosis > 0

(e) Platykurtic and leptokurtic

Assumptions of Parametric Data

2) Homogeneity in variance

The variance should not change systematically throughout the data

3) Interval data (linearity)

The distance between points of the scale should be equal at all parts along the scale.

4) Independence

- Data from different subjects are independent
 - Values corresponding to one subject do not influence the values corresponding to another subject.
 - Important in repeated measures experiments

Analysis of Quantitative Data

- Is there a difference between my groups regarding the variable I am measuring?
 - e.g. are the mice in the group A heavier than those in group B?
 - Tests with 2 groups:
 - Parametric: Student's t-test
 - Non parametric: Mann-Whitney/Wilcoxon rank sum test
 - Tests with more than 2 groups:
 - Parametric: Analysis of variance (one-way ANOVA)
 - Non parametric: Kruskal Wallis
- Is there a relationship between my 2 (continuous) variables?
 - e.g. is there a relationship between the daily intake in calories and an increase in body weight?
 - Test: Correlation (parametric) and curve fitting

Sample

Statistical inference

Population

Signal-to-noise ratio

Stats are all about understanding and controlling variation.


```
signal
noise
If the noise is low then the signal is detectable ...
= statistical significance

... but if the noise (i.e. interindividual variation) is large
then the same signal will not be detected
= no statistical significance
```

• In a statistical test, the ratio of signal to noise determines the significance.

Comparison between 2 groups: Student's *t*-test

• Basic idea:

- When we are looking at the differences between scores for 2 groups, we have to judge the difference between their means relative to the spread or variability of their scores.
 - Eg: comparison of 2 groups: control and treatment

Student's t-test

Student's t-test

Student's t-test

• <u>3 types</u>:

- Independent t-test
 - compares means for two independent groups of cases.
- Paired t-test
 - looks at the difference between two variables for a single group:
 - the second 'sample' of values comes from the same subjects (mouse, petri dish ...).
- One-Sample t-test
 - tests whether the mean of a single variable differs from a specified constant (often 0)

Example: coyotes.xlsx

- Question: do male and female coyotes differ in size?
- Sample size
- Data exploration
- Check the assumptions for parametric test
- Statistical analysis: Independent t-test

Power analysis

Example case:

No data from a pilot study but we have found some information in the literature.

In a study run in similar conditions as in the one we intend to run, <u>male coyotes</u> were found to measure: <u>92cm+/- 7cm (SD</u>).

We expect a **5% difference** between genders.

smallest biologically meaningful difference

G*Power

Independent t-test

A priori Power analysis

Example case:

You don't have data from a pilot study but you have found some information in the literature.

In a study run in similar conditions to the one you intend to run, male coyotes were found to measure:

92cm+/- 7cm (SD)

You expect a <u>5% difference</u> between genders with a similar variability in the female sample.

You need a sample size of n=76 (2*38)

Power Analysis

Power Analysis

Power Analysis

For a range of sample sizes:

Data exploration ≠ plotting data

Assumptions for parametric tests

*****	Col. stats	Α	В
	Coi. stats	Females	Males
4			
1	Number of values	43	43
2			
3	Minimum	71.00	78.00
4	25% Percentile	86.00	87.00
5	Median	90.00	92.00
6	75% Percentile	93.50	96.00
7	Maximum	102.5	105.0
8			
9	Mean	89.71	92.06
10	Std. Deviation	6.550	6.696
11	Std. Error of Mean	0.9988	1.021
12			
13	Lower 95% Cl of mean	87.70	90.00
14	Upper 95% CI of mean	91.73	94.12
15			
16	Sum	3858	3958
17			
18	D'Agostino & Pearson normality test		
19	K2	4.203	0.5080
20	P value	0.1223	0.7757
21	Passed normality test (alpha=0.05)?	Yes	Yes
22	P value summary	ns	ns
23			
24	Shapiro-Wilk normality test		
25	W	0.9700	0.9845
26	P value	0.3164	0.8190
27	Passed normality test (alpha=0.05)?	Yes	Yes
28	P value summary	ns	ns
00			

Coyotes

Independent *t*-test: results

	Unpaired t test	
4		
1	Table Analyzed	Coyote
2		
3	Column A	Females
4	vs.	VS.
5	Column B	Males
6		
7	Unpaired t test	
8	P value	0.1045
9	P value summary	ns
10	Significantly different (P < 0.05)?	No
11	One- or two-tailed P value?	Two-tailed
12	t, df	t=1.641, df=84
13		
14	How big is the difference?	
15	Mean of column A	89.71
16	Mean of column B	92.06
17	Difference between means (A - B) ± SEM	-2.344 ± 1.428
18	95% confidence interval	-5.185 to 0.4964
19	R squared (eta squared)	0.03107
20		
21	F test to compare variances	
22	F, DFn, Dfd	1.045, 42, 42
23	P value	0.8870
24	P value summary	ns
25	Significantly different (P < 0.05)?	No
26		
27	Data analyzed	
28	Sample size, column A	43
29	Sample size, column B	43
30		

Males tend to be longer than females but not significantly so (p=0.1045)

Homogeneity in variance **☑**

What about the power of the analysis?

Power analysis

You would need a sample 3 times bigger to reach the accepted power of 80%.

9111	Calladata	A	В
ш	Col. stats	Females	Males
4			
1	Number of values	43	43
2			
3	Minimum	71.00	78.00
4	25% Percentile	86.00	87.00
5	Median	90.00	92.00
6	75% Percentile	93.50	96.00
7	Maximum	102.5	105.0
8			
9	Mean	89.71	92.06
10	Std. Deviation	6.550	6.696
11	Std. Error of Mean	0.9988	1.021
12			
13	Lower 95% Clef mean	87.70	90.00
14	Upper 95% Cl of mean	91.73	94.12
15			
16	Sum	3858	3958
17			
18	D'Agostino & Pearson normality test		
19	K2	4.203	0.5080
20	P value	0.1223	0.7757
21	Passed normality test (alpha=0.05)?	Yes	Yes
22	P value summary	ns	ns
23			
24	Shapiro-Wilk normality test		
25	W	0.9700	0.9845
26	P value	0.3164	0.8190
27	Passed normality test (alpha=0.05)?	Yes	Yes
28	P value summary	ns	ns

But is a 2.3 cm difference between genders biologically relevant (<3%)?

The sample size: the bigger the better?

 It takes huge samples to detect tiny differences but tiny samples to detect huge differences.

- What if the tiny difference is meaningless?
 - Beware of overpower
 - Nothing wrong with the stats: it is all about interpretation of the results of the test.

- Remember the important first step of power analysis
 - What is the effect size of biological interest?

Another example of *t*-test:

working memory.xlsx

A group of rhesus monkeys (n=15) performs a task involving memory after having received a placebo. Their performance is graded on a scale from 0 to 100. They are then asked to perform the same task after having received a dopamine depleting agent.

Is there an effect of treatment on the monkeys' performance?

Another example of *t*-test:

working memory.xlsx

==	Callinate	A	В	
∄	Col. stats	Placebo	DA depletion	
4		Y	Y	
ı	Number of values	15	15	
2				
3	Minimum	9.000	7.000	
ı	25% Percentile	18.00	12.00	
ō	Median	26.00	18.00	
5	75% Percentile	37.00	25.00	
7	Maximum	50.00	35.00	
3				
)	Mean	27.27	18.87	
0	Std. Deviation	12.65	8.911	
1	Std. Error of Mean	3.265	2.301	
2				
3	Lower 95% Cl of mean	20.26	13.93	
4	Upper 95% Cl of mean	34.27	23.80	
5				
6	D'Agostino & Pearson omnibus normality test			
7	K2	0.6754	0.9815	
8	P value	0.7134	0.6122	
9	Passed normality test (alpha=0.05)?	Yes	Yes	
0	P value summary	ns	ns	
1				
2	Sum	409.0	283.0	
2				

Another example of *t*-test:

working memory.xlsx

	Paired t test	
- 4		
1	Table Analyzed	Working memory
2		
3	Column A	Placebo
4	VS.	VS.
5	Column B	DA depletion
6		
7	Paired t test	
8	P value	<0.0001
9	P value summary	****
10	Significantly different (P < 0.05)?	Yes
11	One- or two-tailed P value?	Two-tailed
12	t, df	t=8.616, df=14
13	Number of pairs	15
14		
15	How big is the difference?	
16	Mean of differences	8.400
17	SD of differences	3.776
18	SEM of differences	0.9749
19	95% confidence interval	6.309 to 10.49
20	R squared (partial eta squared)	0.8413
21		
22	How effective was the pairing?	
23	Correlation coefficient (r)	0.9986
24	P value (one tailed)	<0.0001
25	P value summary	2222
26	Was the pairing significantly effective?	Yes
27	and paining diginiounity offoliate:	

Paired *t*-test: Results working memory.xlsx

Comparison of more than 2 means

- Running multiple tests on the same data increases the **familywise error rate**.
- What is the familywise error rate?
 - The error rate across tests conducted on the same experimental data.
- One of the basic rules ('laws') of probability:
 - The Multiplicative Rule: The probability of the joint occurrence of 2 or more independent events is the product of the individual probabilities.

$$P(A,B) = P(A) \times P(B)$$

For example:

 $P(2 \text{ Heads}) = P(\text{head}) \times P(\text{head}) = 0.5 \times 0.5 = 0.25$

Familywise error rate

- **Example**: All pairwise comparisons between 3 groups A, B and C:
 - A-B, A-C and B-C
- Probability of making the Type I Error: 5%
 - The probability of <u>not making the Type I Error</u> is 95% (=1 0.05)
- Multiplicative Rule:
 - Overall probability of no Type I errors is: 0.95 * 0.95 * 0.95 = 0.857
- So the probability of making at least one Type I Error is 1-0.857 = 0.143 or **14.3**%
 - The probability has increased from 5% to 14.3%
- Comparisons between 5 groups instead of 3, the familywise error rate is 40% (=1-(0.95)ⁿ)

Familywise error rate

- Solution to the increase of familywise error rate: correction for multiple comparisons
 - Post-hoc tests
- Many different ways to correct for multiple comparisons:
 - Different statisticians have designed corrections addressing different issues
 - e.g. unbalanced design, heterogeneity of variance, liberal vs conservative
- However, they all have one thing in common:
 - the more tests, the higher the familywise error rate: the more stringent the correction
- Tukey, Bonferroni, Sidak, Benjamini-Hochberg ...
 - Two ways to address the multiple testing problem
 - Familywise Error Rate (FWER) vs. False Discovery Rate (FDR)

Multiple testing problem

- **FWER**: **Bonferroni**: $\alpha_{\text{adjust}} = 0.05/\text{n}$ comparisons e.g. 3 comparisons: 0.05/3=0.016
 - Problem: very conservative leading to <u>loss of power</u> (lots of false negative)
 - 10 comparisons: threshold for significance: 0.05/10: 0.005
 - Pairwise comparisons across 20.000 genes ☺
- <u>FDR</u>: Benjamini-Hochberg: the procedure controls the expected proportion of "discoveries" (significant tests) that are false (false positive).
 - Less stringent control of Type I Error than FWER procedures which control the probability of <u>at least</u> one Type I Error
 - More power at the cost of increased numbers of Type I Errors.

Difference between FWER and FDR:

- a p-value of 0.05 implies that 5% of all tests will result in false positives.
- a FDR adjusted p-value (or q-value) of 0.05 implies that 5% of significant tests will result in false positives.

Analysis of variance

Extension of the 2 groups comparison of a t-test but with a slightly different logic:

- ANOVA compares variances:
 - If variance between the several means > variance within the groups (random error) then the means must be more spread out than it would have been by chance.

Analysis of variance

The statistic for ANOVA is the F ratio.

- If the variance amongst sample means is greater than the error/random variance, then F>1
 - In an ANOVA, we test whether F is significantly higher than 1 or not.

Analysis of variance

Source of variation	Sum of Squares	df	Mean Square	F	p-value	
Between Groups	2.665	4	0.6663	8.423	<0.0001	
Within Groups	5.775	73	0.0791		In Pow	er Analysis:
Total	8.44	77				d SD=√MS(Residual

- Variance (= SS / N-1) is the mean square
 - df: degree of freedom with df = N-1

Example: protein.expression.csv

 Question: is there a difference in protein expression between the 5 cell lines?

- 1 Plot the data
- 2 Check the assumptions for parametric test
- 3 Statistical analysis: ANOVA

Parametric tests assumptions

-	Col. stats	A	R	С	U	E
	Coi. stats	Α	В	С	D	E
4						
1	Number of values	12	12	18	18	18
2						
3	Minimum	0.3300	0.2600	0.2400	0.4900	0.3000
4	25% Percentile	0.4864	0.4225	0.4475	1.100	0.7625
5	Median	1.206	0.5550	0.7900	1.690	1.460
6	75% Percentile	1.465	0.6925	1.248	2.925	2.108
7	Maximum	2.088	0.8900	3.140	9.320	3.400
8						
9	Mean	1.088	0.5558	1.032	2.438	1.504
10	Std. Deviation	0.5469	0.1947	0.8364	2.108	0.8179
11	Std. Error of Mean	0.1579	0.05620	0.1971	0.4968	0.1928
12						
13	Lower 95% Cl of mean	0.7409	0.4321	0.6157	1.390	1.098
14	Upper 95% Cl of mean	1.436	0.6795	1.448	3.486	1.911
15						
16	Sum	13.06	6.670	18.57	43.88	27.08
17						
18	D'Agostino & Pearson normality test					
19	K2	0.1236	0.7508	9.375	22 59	1.280
20	P value	0.9401	0.6870	0.0092	<0.0001	0.5274
21	Passed normality test (alpha=0.05)?	Yes	Yes	No	No	Yes
22	P value summary	ns	ns	±±	***	ns
23						

Parametric tests assumptions

1	C-I -t-t-	Α	В	С	D	E
	Col. stats	Α	В	С	D	E
4						
1	Number of values	12	12	18	18	18
2						
3	Minimum	-0.4815	-0.5850	-0.6198	-0.3098	-0.5229
4	25% Percentile	-0.3303	-0.3742	-0.3497	0.04117	-0.1178
5	Median	0.08140	-0.2609	-0.1025	0.2278	0.1642
6	75% Percentile	0.1659	-0.1597	0.09514	0.4653	0.3237
7	Maximum	0.3196	-0.05061	0.4969	0.9694	0.5315
8						
9	Mean	-0.03123	-0.2817	-0.1064	0.2740	0.1018
10	Std. Deviation	0.2764	0.1632	0.3307	0.3112	0.2873
11	Std. Error of Mean	0.07978	0.04711	0.07796	0.07336	0.06772
12						
13	Lower 95% Cl of mean	-0.2068	-0.3854	-0.2709	0.1193	-0.04104
14	Upper 95% Cl of mean	0.1444	-0.1780	0.05803	0.4288	0.2447
15						
16	Sum	-0.3747	-3.380	-1.916	4.933	1.833
17						
18	D'Agostino & Pearson normality test					
19	K2	2.037	0.6827	0.5884	0.8869	2.902
20	P value	0.3611	0.7108	0.7451	0.6418	0.2344
21	Passed normality test (alpha=0.05)?	Yes	Yes	Yes	Yes	Yes
22	P value summary	ns	ns	ns	ns	ns
22						

Analysis of variance: Post hoc tests

• The ANOVA is an "omnibus" test: it tells you that there is (or not) a difference between your means but not exactly which means are significantly different from which other ones.

- To find out, you need to apply post hoc tests.
- These post hoc tests should only be used when the ANOVA finds a significant effect.

Analysis of variancec

1	Ordinary one-way ANOVA ANOVA results					
- 4						
1	Table Analyzed	Transform of Protein expression				
2	Data sets analyzed	A-E				
3						
4	ANOVA summary					
5	F	8 127				
6	P value	<0.0001				
7	P value summary	2012				
8	Significant diff. among means (P < 0.05)?	Yes				
9	R square	0.3081 Ho	moge:	neitw	of variar	ce V
10		110	moge	neity	OI VAIIAI	ICC E
11	Brown-Forsythe test					
12	F (DFn, DFd)	0.0001 (4, 73)				
13	P value	0.4222				
14	P value summary					
15	Are SDs significantly different (P < 0.05)?	? No				
16						
17	Bartlett's test					
18	Bartlett's statistic (corrected)	5.829				
19	P value	0.2123				
20	P value summary	ns			000=0	
21	Are SDs significantly different (P < 0.05)?	? No	F=0.67	(27/0.	08278=8.3	13
22	_					
23	ANOVA table	SS	DF	MS	F (DFn, DFd)	P value
24	Treatment (between columns)	2.691	4	0.6727	F (4, 73) = 8.127	P<0.0001
25	Residual (within columns)	6.043	73	0.08278		
26	Total	8.734	77			
27						
28	Data summary					
29	Number of treatments (columns)	5				
30	Number of values (total)	78				
34						

Analysis of variance: results

	Ordinary one-way ANOVA Multiple comparisons								
4									
1	Number of families	1							
2	Number of comparisons per family	10							
3	Alpha	0.05							
4									
5	Tukey's multiple comparisons test	Mean Diff.	95.00% CI of diff.	Significant?	Summary	Adjusted ? Value			
6	A vs. B	0.2505	-0.07808 to 0.5790	No	ns	0.2177	A-B		
7	A vs. C	0.07521	-0.2247 to 0.3751	No	ns	0.9555	A-C		
3	Avs. D	-0.3053	-0.6052 to -0.005359	Yes	±	0.0440	A-D		
9	A vs. E	-0.1331	-0.4330 to 0.1669	No	ns	0.7275	A-E		
0	B vs. C	-0.1753	-0.4752 to 0.1247	No	ns	0.4807	B-C		
1	B vs. D	-0.5557	-0.8557 to -0.2558	Yes	****	<0.0001	B-D		
2	B vs. E	-0.3835	-0.6834 to -0.08360	Yes	**	0.0055	B-E		
3	C vs. D	-0.3805	-0.6487 to -0.1122	Yes	**	0.0015	C-D		
4	C vs. E	-0.2083	-0.4765 to 0.05998	No	ns	0.2021	C-E		
5	D vs. E	0.1722	-0.09604 to 0.4405	No	ns	0.3839	D-E		
16									
17	Test details	Mean 1	Mean 2	Mean Diff.	SE of diff.	n1	n2	q	
8	A vs. B	-0.03123	-0.2817	0.2505	0.1175	12	12	3.016	7
9	Avs. C	-0.03123	-0.1064	0.07521	0.1072	12	18	0.9920	7
20	A vs. D	-0.03123	0.2740	-0.3053	0.1072	12	18	4.026	7
1	A vs. E	-0.03123	0.1018	-0.1331	0.1072	12	18	1.755	7
2	B vs. C	-0.2817	-0.1064	-0.1753	0.1072	12	18	2.311	7
23	B vs. D	-0.2817	0.2740	-0.5557	0.1072	12	18	7.330	7
24	B vs. E	-0.2817	0.1018	-0.3835	0.1072	12	18	5.058	7
5	C vs. D	-0.1064	0.2740	-0.3805	0.09590	18	18	5.611	7
26	C vs. E	-0.1064	0.1018	-0.2083	0.09590	18	18	3.071	7
7	D vs. E	0.2740	0.1018	0.1722	0.09590	18	18	2.540	7
28									

Correlation

- A correlation coefficient is an index number that measures:
 - The magnitude and the direction of the relation between 2 variables
 - It is designed to range in value between -1 and +1

Correlation

- Most widely-used correlation coefficient:
 - Pearson product-moment correlation coefficient "r"

$$r = \frac{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \overline{x})^2 \sum_{i=1}^{n} (y_i - \overline{y})^2}}$$

- The 2 variables do not have to be measured in the same units but they have to be proportional (meaning linearly related)
- Coefficient of determination:
 - r is the correlation between X and Y
 - r² is the coefficient of determination:
 - It gives you the proportion of variance in Y that can be explained by X, in percentage.

Correlation Example: roe deer.xlsx

• Is there a relationship between parasite burden and body mass in roe deer?

Correlation Example: roe deer.xlsx

	Linear reg. Tabular results	Α	В.
	i adular results	Male	Female
4	Book Structure		
	Best-fit values		
-	Slope	-4.621	-1.888
}	Y-intercept	30.20	25.04
	X-intercept	6.536	13.26
,	1/slope	-0.2164	-0.5297
,			
	Std. Error		
}	Slope	1.287	1.721
)	Y-intercept	3.025	3.453
0			
1	95% Confidence Intervals		
2	Slope	-7.490 to -1.753	-5.637 to 1.861
3	Y-intercept	23.46 to 36.94	17.51 to 32.56
4	X-intercept	4.902 to 13.47	5.738 to +infinity
5			
6	Goodness of Fit		
7	R square	0.5630	0.09119
8	Sy.x	1.900	2.512
9			
0	Is slope significantly non-zero?		
1	F	12.89	1.204
2	DFn, DFd	1_10	1, 12
3	P value	0.0049	0.2940
4	Deviation from zero?	Significant	Not Significant
5			
6	Equation	Y = -4.621*X + 30.20	Y = -1.888*X + 25.04
7			
8	Data		
	Number of X values	12	26
9		1	1
9	Maximum number of Y replicates	The second secon	
	Maximum number of Y replicates Total number of values	12	14

There is a negative correlation between parasite load and fitness but this relationship is only significant for the males(p=0.0049 vs. females: p=0.2940).

1	Correlation	PL vs. Male	PL vs. Female
1	_		
-	Pearson r		
2	г	-0.7504	-0.3020
3	95% confidence interval	-0.9256 to -0.3099	-0.7176 to 0.2722
4	R squared	0.5630	0.09119
5			
6	P value		
7	P (two-tailed)	0.0049	0.2940
8	P value summary	**	ns
9	Significant? (alpha = 0.05)	Yes	No
10			
11	Number of XY Pairs	12	14
12			

Curve fitting

Dose-response curves

- Nonlinear regression
- Dose-response experiments typically use around 5-10 doses of agonist, equally spaced on a logarithmic scale
- Y values are responses
- The aim is often to determine the IC50 or the EC50
 - IC50 (I=Inhibition): concentration of an agonist that provokes a response half way between the maximal (Top) response and the maximally inhibited (Bottom) response.
 - EC50 (E=Effective): concentration that gives half-maximal response

Bottom

Step by step analysis and considerations:

1- Choose a **Model**:

not necessary to normalise should choose it when values defining 0 and 100 are precise variable slope better if plenty of data points (variable slope or 4 parameters)

- 2- Choose a **Method**: outliers, fitting method, weighting method and replicates
- 3- Compare different conditions:

Diff in parameters

One or more parameters

Diff between conditions for one or more parameters

4- Constrain:

depends on your experiment depends if your data don't define the top or the bottom of the curve

Step by step analysis and considerations:

5- Initial values:

defaults usually OK unless the fit looks funny

6- Range:

defaults usually OK unless you are not interested in the x-variable full range (ie time)

7- Output:

summary table presents same results in a ... summarized way.

8 – **Confidence**: calculate and plot confidence intervals

9- Diagnostics:

check for normality (weights) and outliers (but keep them in the analysis) check Replicates test residual plots

Non-normalized data 4 parameters

Inhibitor

No inhibitor

			500]	NO INDIDITOR	Innibitor
	No inhibitor	Inhibitor			
Replicates test for lack of fit					
SD replicates	22.71	25.52	5 200 EC50 ★ No inhibitor		
SD lack of fit	41.84	32.38	No inhibitor		
Discrepancy (F)	3.393	1.610	50-	-7.158	-6.011
P value	0.0247	0.1989	9.5 -9.0 -8.5 -8.0 -7.5 -7.0 -4.5 -6.0 -5.5 -5.0 -4.5 -4.0 -3.5 -3.0	7.130	0.011
Evidence of inadequate model?	Yes	No	log(Agonist) -7.158 -8.011		
			Non-normalized data 3 parameters		
			500		
Replicates test for lack of fit			400 T		
	22.71	25.52	350-		
SD replicates SD lack of fit	39.22	25.52 30.61	300- 250-		
			EC50		
Discrepancy (F) P value	2.982 0.0334	1.438 0.2478	150		
			◆ No inhibitor ◆ Inhibitor	7.450	0.047
Evidence of inadequate model?	Yes	No	50	-7.159	-6.017
			-9.5 -9.0 -9.5 -9.0 -7.5 -7.0 -6.5 -6.0 -5.5 -5.0 -4.5 -4.0 -3.5 -3.1 -10 (Agonist)	•	
			-100 LogECSO -7.159 -6.017		
			Normalized data 4 parameters		
Replicates test for lack of fit			100		
SD replicates	5.755	7.100			
SD lack of fit	11.00	8.379	ê ⁷⁰⁻		
Discrepancy (F)	3.656	1.393	EC50		
P value	0.0125	0.2618	No in hibitor Inhibitor		
Evidence of inadequate model?	Yes	No	30 7		
			. I	-7.017	-5.943
			188 45 48 48 48 75 48 45 48 45 48 45 48 38 18	7.017	0.040
			Normalized data 3 parameters		
			100		
Replicates test for lack of fit			" I I I		
SD replicates	5.755	7.100	79-		
SD lack of fit	12.28	9.649	so.		
Discrepancy (F)	4.553	1.847	«· ↓ /		
P value	0.0036	0.1246	● No inhibitor Inhibitor		
Evidence of inadequate model?	Yes	No	10-	-7.031	-5.956
•			ৰছন বৰ্ম বন্ধ ৰাজ ৰাজ বাংল বাংল ৰাজ ৰাজ বন্ধ বন্ধ বন্ধ বন্ধ বন্ধ বন্ধ বন্ধ বন্ধ		
			LegiC00 -7:001 -5:956		

My email address if you need some help with GraphPad:

anne.segonds-pichon@babraham.ac.uk