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Outline of the course

Power analysis with G*Power

Basic structure of a GraphPad Prism project

Analysis of qualitative data:
* Chi-square test

Analysis of quantitative data:
* Student’s t-test, One-way ANOVA, correlation and curve fitting



Power analysis

* Definition of power: probability that a statistical test will reject a false null hypothesis (H,).
* Translation: the probability of detecting an effect, given that the effect is really there.

* In a nutshell: the bigger the experiment (big sample size), the bigger the power (more likely
to pick up a difference).

* Main output of a power analysis:
* Estimation of an appropriate sample size

* Too big: waste of resources,

Too small: may miss the effect (p>0.05)+ waste of resources,

Grants: justification of sample size,

Publications: reviewers ask for power calculation evidence, e ol | [ ey s sk
the use of animals number of animals and improve animal
used per experiment welfare

Home office: the 3 Rs: Replacement, Reduction and Refinement.



Experimental design
Think stats!!

* Translate the hypothesis into statistical questions:
* What type of data?
* What statistical test ?
* What sample size?

* Very important: Difference between technical and biological replicates.

Technical Biological

} 333
4 A



Power analysis

A power analysis depends on the relationship between 6 variables:
* the difference of biological interest ]
- Effect size

* the variability in the data (standard deviation) ]
* the significance level (5%)

* the desired power of the experiment (80%)

* the sample size

* the alternative hypothesis (ie one or two-sided test)



1 The difference of biological interest

* This is to be determined scientifically, not statistically.

« minimum meaningful effect of biological relevance

* the larger the effect size, the smaller the experiment will need to be to detect it.

* How to determine it?
e Substantive knowledge, previous research, pilot study ...

2 The Standard Deviation (SD)

* Variability of the data

* How to determine it?
» Substantive knowledge, previous research, pilot study ...

* In ‘power context’: effect size: combination of both:

« e.g.:Cohen’sd=(Mean 1- Mean 2)/Pooled SD



3 The significance level

* usually 5% (p<0.05), probability of the Type | error a

* p-value is the probability that a difference as big as the one observed could be found even

if there is no effect.
* Probability that an effect occurs by chance alone

Most likely observation

L3

Very unlikely I Very unlikely

observations Observed p-yanie observations
data point f_lﬂ

e

~ Setof possible results

A p-value (shaded red area) is the probability of an
observed (or more extreme) result arising by chance

 Don’t throw away a p-value=0.051!



The significance level, critical value, a and 8

critical value

0025 0.030

0.020

Probability density

0.000 0005 0010 0.015

o : the threshold value that we measure p-values against.
* For results with 95% level of confidence: a = 0.05
= probability of type | error

e p-value: probability that the observed statistic occurred by chance alone

e Statistical significance: comparison between a and the p-value
* p-value <0.05: reject H, and p-value > 0.05: fail to reject H,



The critical value

Example: 2-tailed t-test with n=15 (df=14)
d'f 020 010 GJUS) 0.02 LR | n.0o01

1 3.0777 |  6.3138 127062 31.8205 53.6567 | 636.6192 T Distribution
8 - 2 1.8856 | 29200 4.3027 6.5645 99245 | 315991
° Silionl el 3 1.6377 | 2351 3180 4.5407 5.8409 | 1295240
B § 4 1.5332 | 21318 27764 3.7464 4.6041 8.6103 Critical Critical
e 5 1.4759 | 20150 25706 3.35449 4,031 6.8585 Value Value
§ § [ 14398 |  1.9432 24468 3.1427 3.7074 5.9583 0.95
14149 | 1.8546 23646 25980 3.4595 54073
.:E’ § 8 ‘\1_5953 1.85495 2 3060 2 8965 3.3554 50413 0.025 Momralethion RO.'025
% - 9 ha:m 1.8331 12622 2.8214 3.2498 4.7809 R;;e;’xn Re'g;»on : ;:g,tolzn
-8 3 10 1.3?ﬁ\ LELZS 2120 27638 3.1693 4.5869 #
o 2 11 1.3634 \qasa 2.2010 p L) 3.1058 4.4370
° 12 13562 | 1.7 21788 26810 3.0545 43178 t(14)
§ 13 1.3502 | 1.7709 2 1604 26503 3.0123 4.2208 | t=-2 1448 (=2 1448
14 |) vaase| 17e3 ( 21445 |) d=rEmT T T0/6s | 4.1405 :
15 13406 | 17531 21314 LE03S 29467 4.0728

* In hypothesis testing, a critical value is a point on the test distribution that is
compared to the test statistic to determine whether to reject the null hypothesis
 Example of test statistic: t-value

* If the absolute value of your test statistic is greater than the critical value, you can
declare statistical significance and reject the null hypothesis
* Example: t-value > critical t-value



4 The desired power: 80%

ortical value
* Type ll error (B) is the failure to reject a false H, 2 \ .
* Direct relationship between Power and type Il error: 2 \ |
* if=0.2and Power=1-{3=0.8 (80%) § : 2
* Hence a true difference will be missed 20% of the time : \\\\\
 General convention: 80% but could be more or less § A

 Cohen (1988):
* For most researchers: Type | errors are four times
more serious than Type Il errors: 0.05 * 4 =0.2

e Compromise: 2 groups comparisons: 90% = +30% sample size, 95% = +60%



5 The sample size: the bigger the better?

|t takes huge samples to detect tiny differences but tiny samples to detect huge differences.

90 -

80 - E Ek

*  What if the tiny difference is meaningless?
e Beware of overpower
* Nothing wrong with the stats: it is all about
interpretation of the results of the test.

70 J

30 4
e Remember the important first step of power analysis

* What s the effect size of biological interest? —L 4 _1

10 -

n=1178238




6 The alternative hypothesis

One-tailed or 2-tailed test? One-sided or 2-sided tests?

Two-Tailed Versus One-Tailed Hyphothesis Tests

Figure A: Figure B:
Two-Tailed Test

One-Tailed Test
(Left-Tailed Test)

Is the question:
Is the there a difference?
Is it bigger than or smaller than?

Can rarely justify the use of a one-tailed test
Two times easier to reach significance with a one-tailed than a two-tailed

Suspicious reviewer!

t=-1.70 (.05

t= +1.70 (.05

- | 1 & 3

u]
t t

ohs = +1.2

Level of Significance for a Directional Test

QIIQ 025 .ol 005 0005

Level of Significance for a Mon-Directional Test

C DS) 02 01 o0l

df = 25 | 1,70 203 247 276 -

A Aa;;p:z dog Mood affects the

ill e

more dppetite of dogs

Dne-tailed hypothesis  Two-tailed hypothes:s




To recapitulate:

* The null hypothesis (H,): H, = no effect

* The aim of a statistical test is to reject or not H,

Statistical decision True state of H,,
H, True (no effect) H, False (effect)
Reject H, Type I error a g | Correct ;@f)
False Positive (' | True Positive

o~

Do not reject H, | Correct @ Type II error B ot
True Negative False Negative &/

* Traditionally, a test or a difference are said to be “significant” if the probability of type |
erroris: a =< 0.05

* High specificity = low False Positives = low Type | error
* High sensitivity = low False Negatives = low Type Il error



Hypothesis

Experimental design
Choice of a Statistical test

!

Power analysis: Sample size

Experiment(s)

|

Data exploration

Statistical analysis of the results




* Fix any five of the variables and a mathematical relationship can be used
to estimate the sixth.

e.g. What sample size do | need to have a 80% probability (power) to detect this particular
effect (difference and standard deviation) at a 5% significance level using a 2-sided test?

Difference l Standard deviation T

e}
\ \

Significance levell Power 2-sided test (T)



e Good news:
there are packages that can do the power analysis for you ... providing you have some prior
knowledge of the key parameters!

difference + standard deviation = effect size
* Free packages:
e R
e G*Power and InVivoStat

 Russ Lenth's power and sample-size page:
e  http://www.divms.uiowa.edu/~rlenth/Power/

* Cheap package: StatMate (~ S95)

* Not so cheap package: MedCalc (~ $495)


http://www.divms.uiowa.edu/~rlenth/Power/

TABLE B: +-DISTRIEUTION CRITICAL V.

. Tl probability p

6| 25 20 s o (05 ) @5 02 01

1] 1000 1376 19637 3078 6314 1271 1589 3182

2| 816 L1061 1336 1386 2020 4303 43849 6965

3| 765 978 LI30 1638 2353 5182 3482 4541 £
40 741 941 190 1533 2132 2776 2999 3747 4604
5| 727 920 116 1476 2015 2571 2757 3365 4032
6 718 908 L1134 144D 1943 2447 2612 3143 3707
N TS S L A S L 2365 2517 2998 3499
8] 706 8% LIO8 C 2306 2449 28960 3355
9| 703 B3 Lioo 2262 2398 2821 3250
10| 700 879 1093 2228 2359 2764 3160
11| 697 76 1088 24 2201 2328 718 3006
12| 495 873 1083 135 1782 11?9' 2303 2681 3.055
13| 694 870 1079 1350 1771 2060 2282 2650 3012
14 [ 592 868 1076 1345 1761 2145 2264 2624 2977
15 | 691 866 1074 1341 17RR 2131 2249 2602 2947
16 | 650 865 LOT1 133 L1746 2120 2235 2583 2921
17] 689 863 1069 1333 1740 2110 2224 1567 2598
1% | 688 862 LO67 1330 1734 2101 2214 2552 2878
19 | 638 461 LDss 1323 I 2003 2205 2539 2861
20 | 687 A60 1064 1335 2086 2197 2528 28435
21| 486 459 1083 1323 > 2080 2189 2518 2831,
22 | 686 858 1461 1321 1717 2074 2183 2508 2819

3.197

3174

315
3135
3419

7173
5.893
5208
4785
4.501
4,144
4.025
3550
3852
3787
3733
3686

3.611
3.579
3552
3.521
3.505

&.610
6.869
5959
5.408
5041
4781

4587

4437
4318
4221
4140
4073
4,015

3965

3883
3.850
3.819
37992




Qualitative data



Qualitative data

* = nhot humerical

* = values taken = usually names (also nominal)
* e.g. causes of death in hospital

* Values can be numbers but not numerical
* e.g. group number = numerical label but not unit of measurement

e Qualitative variable with intrinsic order in their categories = ordinal

e Particular case: qualitative variable with 2 categories: binary or dichotomous
* e.g. alive/dead or presence/absence



Fisher’s exact and Chi?

Example: cats and dogs.xlsx

e Cats and dogs trained to line dance
o 2 different rewards: food or affection
e Question: Is there a difference between the rewards?

e |s there a significant relationship between the 2 variables?
— does the reward significantly affect the likelihood of dancing?

e To answer this type of question: _m

— Contingency table Dance ? ?

. . No dance ? ?
— Fisher’s exact or Chi? tests

But first: how many cats do we need?



G * Powe r [ B G*Power 313 i e |

File Edit View Tests Calculator Help

Central and noncentral distributions | Protocol of power ana]\rses|

A priori Power Analysis
Example case:

Preliminary results from a pilot study on cats: 25% line-
danced after having received affection as a reward vs.
70% after having received food.

Power analysis with G*Power = 4 steps

- Test family Statistical test

Exact - [Currelaticm: Bivariate normal model V]
halysis
F tests v
) L i i . i
t tests Ite required sample size - given o, power, and effect size v]
¥2 tests
Z tests 5 Output Parameters
— Tailis) Lawer critical r ?

Correlation p H1 0.3 Upper critical r ?

o err prob 0.05 Total sample size 7
Power (1-f err prob) 0.93 Actual power 7
Correlation p HO 0

Step1l: choice of Test family

X-Y plot for a range of values Calculate




G*Power

Step 2 : choice of Stat

Fisher’s exact

”
ﬂ G*Power 3.1.3

File Edit View Tests Calculator Help

Central and noncentral distributions | Protocol of power analyses

tical test

Test family
lExact

Statistical test

v] [Correl.atiron: Bivariate normal model

Correlation: Bivariate normal model
UEEE BT 2T i Linear multiple regression: Random model
A priori: Compute r Proportion: Difference from constant (binomial test, one sample case)
Proportions: Inequality, two dependent groups (Mchermary
Proportions: Inequality, two independent groups (Fisher's exact test)
Proportions: Inequality, two independent grou
Proportions: Inequality (offset), two indepen

Col Proportion: Sign test (binomial test)

- Generic binomial test

Input Parameters

Werr prog oS Total sample size 7
Power (1-B err prob) 0.95 Actual power ?
Correlation p HO o

test or Chi-square for 2x2 tables

X-Y plat for a range of values

Calculate




G*Power

Step 3: Type of power «

-

ﬁ G*Power 3.1.3

File Edit View Tests Calculator Help

Central and noncentral distributions | Pratocol of power analyses

p= =
N

alysis

Test family Statistical test

Exact vl [Proponions: Inequality, two independent groups (Fisher's exact test) -
Type of power analysis

A priori: Compute required sample size - given o, power, and effect size b

A priori: Compute required sample size - given o, power, and effect size

Compromise: Compute implied o & power - given B/ o ratio, sample size, and effect size
Criterion: Compute required o - given power, effect size, and sample size

Post hoc: Compute achieved power - given , sample size, and effect size

Sensitivity: Compute required effect size - given o, power, and sample size

Proportion p2 0.6 Total sample size 7

o err prob 0.05 Actual power ?

Power (1-f err prob) 0.95 Actual o 7
Allocation ratio N2 /N1 1

X-Y plot for a range of values




G*Power

Step 4: Choice of Par

Tricky bit: need infor

difference and the va

’
fig, G*Power 3.1.9.2

File Edit Wiew Tests Calculator Help

Central and noncentral distributions | Protocol of power analyses

meters
mation on the size of the
iability.

Test family Statistical test

’F_xact v] [Prupurtiuns: Inequality, two independent groups (Fisher's exact test)

Type of power analysis

’A priori: Compute required sample size - given o, power, and effect size

Input Parameters Output Parameters

Sample size group 1

Proportion pl 0.25 Sample size group 2
Proportion p2 07 Total sample size
o err prob 0.05 Actual power
Power (1-F err prob) 0.80 Actual o
Allocation ratio M2 /N1 1

X-Y plot for a range of values

Calculate

—



G*Power

Output:
If the values from the pilot study are g
of n=23 for each group, you will achiey

[ B G*Power 3192 = %

File Edit Wiew Tests Calculator Help

Central and noncentral distributions | Protocol of power analyses
ood predictors and if you use a sample

(o)

e a power of 83%.

Test family Statistical test

[Exact vl [Prupurtiuns: Inequality, two independent groups (Fisher's exact test) v]

Type of power analysis

[A priori; Compute required sample size - given o, power, and effect size

Input Parameters Cutput Parameters

Sample size group 1

Proportion p1 0.25 Sample size group 2 23
Proportion p2 0.7 Total sample size 46
o err prob 0.05 Actual power 0.8284631
Power (1-B err prob) 0.80 Actual o 0.0248526
Allocation ratio N2 /N1 1
Options ] [ X-¥ plot for a range of values ] [ Calculate ]




Chi-square and Fisher’s tests

Chi? test very easy to calculate by hand but Fisher’s very hard
Many software will not perform a Fisher’s test on tables > 2x2

Fisher’s test more accurate than Chi? test on small samples
Chi2 test more accurate than Fisher’s test on large samples

Chi? test assumptions:
e 2x2 table: no expected count <5
e Bigger tables: all expected > 1 and no more than 20% < 5

Yates’s continuity correction
e  All statistical tests work well when their assumptions are met
*  When not: probability Type 1 error increases
 Solution: corrections that increase p-values
 Corrections are dangerous: no magic
* Probably best to avoid them




Chi-square test

* |In a chi-square test, the observed frequencies for two or more groups are compared with
expected frequencies by chance.

(Observed Frequency - Expected Frequencyy

Expected Frequency

* With observed frequency = collected data

 Example with ‘cats and dogs’



Did they dance? * Type of Training * Animal Crosstabulation

Type of Training
Food as |Affection as
Animal Reward Reward Total
Cat Didthey Yes Count 26 6 32
dance? % within Did they dance? 81.3% 18.8% 100.0%
No Count 6 30 36
% within Did they dance? 16.7% 83.3% 100.0%
Total Count 32 36 68
% within Did they dance? 47.1% 52.9% 100.0%
Dog Did they Yes Count 23 24 47
dance? % within Did they dance? 48.9% 51.1% 100.00//
No Count 9 10 9
% within Did they dance? 47.4% 52.6% %/0
Total Count 32 66
% within Did they dance? 48.5% 51.5% /00 0%
Did they dance? * Type of Training * Animal Crosstabl/ /
Ty pe of Tramy(g
Food as A%:\t;zya/
Animal Reward Reward Total
Cat Didthey Yes  Count If/ 6 32
dance? Expected Count 15.1 16.9 32.0
No Count % 30 36
Expected Count 16.9 19.1 36.0
Total Count 32 36 68
Expected Count 32.0 36.0 68.0
Dog Did they Yes Count 23 24 47
dance? Expected Count 22.8 24.2 47.0
No Count 9 10 19
Expected Count 9.2 9.8 19.0
Total Count 32 34 66
Expected Count 32.0 34.0 66.0

Chi-square test

Example: expected frequency of cats line dancing after having
received food as a reward:

Direct counts approach:

Expected frequency=(row total)*(column total)/grand total
=32%32/68 =15.1

Probability approach:

Probability of line dancing: 32/68
Probability of receiving food: 32/68

Expected frequency:(32/68)*(32/68)=0.22: 22% of 68 = 15.1

For the cats:

Chi2 = (26-15.1)%/15.1 + (6-16.9)%/16.9 + (6-16.9)% /16.9 + (30-19.1)%/19.1 = 28.4

Is 28.4 big enough for the test to be significant?



Results

d
Table Analyzed Cat A
1 |Tahle Analyzed Cat
P value and statistical significance 2
Test Chi-square 3 |Fishers exact test
Chi-square, df 28.36,1 4 P
z P 5 | Puwalue Q:: III_EIEIEH)
P value ( =0.0001 ) 6 | Pvalue summary | i
P value summary i’ 7 | One- ar two-sided Twio-sided
One- or two-sided Two-sided 8 | Statistically significant? (alpha<0.05) Yes
Statistically significant (P = 0.05)7|Yes o
Table Analyzed Dog d
Table Analyzed Dog

P value and statistical significance

P value and statistical significance

Test Chi-square
Chi-square, df 0.01331, 1 Test Fishers exact test
z 0.1154 —
P value 0.9081 ) P value ~0.9999 )
[ P value summary ns

Fwvalue summary ns

One- or two-sided Two-sided
One- or two-sided Two-sided fe- ortwa-side wo-side

. — Statistically significant (P = 0.05)7 Mo
Statistically significant (P = 0.05)7 |Ma




Fisher’s exact test: results

Dog

309
- Dance Yes

Bl pance No

Counts

Food Affection

* In our example:

cats are more likely to line dance if they are given food as
reward than affection (p<0.0001) whereas dogs don’t mind
(p>0.99).

Counts

301

20 A

10

Percentage

Food

Cat

Food

Affection

Affection

Percentage

- Dance Yes

B pDance No

Dog

Food

D Dance No
Il Dance Yes

Affection



Quantitative data



Quantitative data

* They take numerical values (units of measurement)

* Discrete: obtained by counting
* Example: number of students in a class
* values vary by finite specific steps

e or continuous: obtained by measuring
* Example: height of students in a class
* any values

* They can be described by a series of parameters:
 Mean, variance, standard deviation, standard error and confidence interval



Measures of central tendency
Mode and Median

* Mode: most commonly occurring value in a distribution

AL AL
Lol ) | |

4 -2 0

N a———

 Median: value exactly in the middle of an ordered set of numbers

Example 1: 18 27 34 52 54 59 EE- 82 85 87 91 93 100, Median = 63
Example 2: 18 27 27 34 52 52 59 61 63 68 85 85 85 90, Median = 60



Measures of central tendency
Mean

* Definition: average of all values in a column

* |t can be considered as a model because it summaries the data

 Example: a group of 5 lecturers: number of friends of each members of the group: 1,
2,3,3and 4
* Mean: (1+2+3+3+4)/5 = 2.6 friends per person

e Clearly an hypothetical value

e How can we know that it is an accurate model?
e Difference between the real data and the model created



Measures of dispersion

* Calculate the magnitude of the differences between each data and the mean:

5

® +1.4
k=4

g 31

IC +0.4 +0.4

s
16 ©

From Field, 2000 Lecturer

e Total error = sum of differences
=0 = 2(x; — x) = (-1.6)+(-0.6)+(0.4)+(1.4) =0

No errors !
* Positive and negative: they cancel each other out.



Sum of Squared errors (SS)

* To avoid the problem of the direction of the errors: we square them
* |nstead of sum of errors: sum of squared errors (SS):

(85) = Z(x; — x)(x; — X)
=(1.6)2 + (-0.6)2 + (0.4)%2 +(0.4)2 + (1.4)2
=2.56+0.36+0.16 + 0.16 +1.96
=5.20
* SS gives a good measure of the accuracy of the model

* But: dependent upon the amount of data: the more data, the higher the SS.

 Solution: to divide the SS by the number of observations (N)

* As we are interested in measuring the error in the sample to estimate the one in the population we
divide the SS by N-1 instead of N and we get the variance (5?) = SS/N-1




Variance and standard deviation

. SS T (xi—x)? 5.20
e variance (s%) = —=——=——=13

* Problem with variance: measure in squared units

* For more convenience, the square root of the variance is taken to obtain a measure in
the same unit as the original measure:

e the standard deviation
 S.D.=V(SS/N-1)=V(s?)=s= v1.3 =1.14

* The standard deviation is a measure of how well the mean represents the data.



Standard deviation

Overall Raling of Lecturer
[

[ VO —
Standard Deviation = 1.82
5 @

G R e O S O R l
| Standard Deviation = 0.55 }
g 3 © © o
=
2
3 2 @ Q
|
0 —~ ——
0 1 2 a3 4 5 6
Lecture
Small S.D.:

data close to the mean:
mean is a good fit of the data

Large S.D.:
data distant from the mean:
mean is not an accurate representation



SD and SEM (SEM = SD/VN)

* What are they about?

* The SD quantifies how much the values vary from one another: scatter or spread
* The SD does not change predictably as you acquire more data.

* The SEM quantifies how accurately you know the true mean of the population.
* Why? Because it takes into account: SD + sample size

* The SEM gets smaller as your sample gets larger

* Why? Because the mean of a large sample is likely to be closer to the true mean than is the
mean of a small sample.
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The SEM and the sample size

‘Infinite’ number of samples
Samples means = X

2 -

Sample means

'
-

(=] iy

Sample means

Small samples (n=3)

Big samples (n=30)




SD and SEM

B e e e e e e, o - 45
4 4
5 <)
| 3:5
E d- Q § 3 i ’
L g
‘53 | L 2.5
g i e i o 2
E £
LR @ g
; ® 0
|
R e s | " , .
Leciure
Sample
The SD quantifies the scatter of the data. The SEM quantifies the distribution

of the sample means.



SD or SEM ?

* If the scatter is caused by biological variability, it is important to show the
variation.

* Report the SD rather than the SEM.
* Better even: show a graph of all data points.

* If you are using an in vitro system with no biological variability, the scatter is
about experimental imprecision (no biological meaning).

* Report the SEM to show how well you have determined the mean.



Confidence interval

Range of values that we can be 95% confident contains the true mean of the population.
- So limits of 95% Cl: [Mean - 1.96 SEM; Mean + 1.96 SEM] (SEM = SD/VN)

150+ - - /\
95% Cl 95%Cl | ., ..  95%cCl
* -3
* 'l.
100 . - P I - =
- - 68270/0
* -t * —
50+ N=5 . N=10 - N=150 95% N\
99%
L I
0 | | u-c U U+C :
'u-1-9660 H+1-966G
p—2-5766 u+2-5760
Error bars Type Description
Standard deviation Descriptive | Typical or average difference Standard Deviation(SD) (D otive) Standard E (SE) (Inf tial)
; : angar eviation escripuive anaar rror nierenta
between the data points and their Q's w/n a population: /s this "normal"? Q's between populations: Are they “different”?
mean. .
°
Standard error Inferential A measure of how variable the ) ¥ Z(y_y,z ) . §;
mean will be, if you repeat the 5 o : ] . . _SD
‘P o ‘? SE e
whole study many times. > P (n-1) » . vn
Confidence interval | Inferential A range of values you can be 95% D T Dro
usually 95% CI confident contains the true mean. rug g




Analysis of Quantitative Data

* Choose the correct statistical test to answer your question:

* They are 2 types of statistical tests:

e Parametric tests with 4 assumptions to be met by the data,

* Non-parametric tests with no or few assumptions (e.g. Mann-Whitney test)
and/or for qualitative data (e.g. Fisher’s exact and x? tests).




Assumptions of Parametric Data

* All parametric tests have 4 basic assumptions that must be met for the
test to be accurate.

1) Normally distributed data

* Normal shape, bell shape, Gaussian shape

Lengths of Raven eggs (from Ratcliff, 1993)

- _fiﬁi\\

a a 0
Length (mm

¢ TranSformationS can be iiiauc w nianc ugE TUitauic 1ur paramEtriC anaIYSiS.

Frequency

o H & &8 #
]




Assumptions of Parametric Data

Frequent departures from normality:
* Skewness: lack of symmetry of a distribution

Skewness < 0 Skewness = 0 Skewness > 0
(a) Negatively skewed (b) Normal (no skew) (c) Positively skewed
Mean
Meadian

Mode Mode

Frequency

' i i A i A i

FARANORMAL DISTRIBUTION

Negative diraction The normal curve Positive direction
represents a perfectly
symmetrical distribution

» Kurtosis: measure of the degree of ‘peakedness’ in the distribution

* The two distributions below have the same variance approximately
the same skew, but differ markedly in kurtosis.

Eurtosis = 1.25 Kurtosis = —1.23

Leptokurtic Platykurtic
Score
() Platykurtic and leptokurtic

More peaked distribution: kurtosis > O Flatter distribution: kurtosis < 0

Frequency




Assumptions of Parametric Data

2) Homogeneity in variance

* The variance should not change systematically throughout the data

3) Interval data (linearity)

* The distance between points of the scale should be equal at all parts along the scale.

4) Independence

* Data from different subjects are independent
* Values corresponding to one subject do not influence the values corresponding to another subject.
* Important in repeated measures experiments



Analysis of Quantitative Data

* |s there a difference between my groups regarding the variable | am measuring?
* e.g. are the mice in the group A heavier than those in group B?

e Tests with 2 groups:
* Parametric: Student’s t-test
* Non parametric: Mann-Whitney/Wilcoxon rank sum test

e Tests with more than 2 groups:
* Parametric: Analysis of variance (one-way ANOVA)
* Non parametric: Kruskal Wallis

* |s there a relationship between my 2 (continuous) variables?
e e.g.is there a relationship between the daily intake in calories and an increase in body weight?

* Test: Correlation (parametric) and curve fitting



TABLE B: +-DISTRIEUTION CRITICAL V.

. Tl probability p

6| 25 20 s o (05 ) @5 02 01

1] 1000 1376 19637 3078 6314 1271 1589 3182

2| 816 L1061 1336 1386 2020 4303 43849 6965

3| 765 978 LI30 1638 2353 5182 3482 4541 £
40 741 941 190 1533 2132 2776 2999 3747 4604
5| 727 920 116 1476 2015 2571 2757 3365 4032
6 718 908 L1134 144D 1943 2447 2612 3143 3707
N TS S L A S L 2365 2517 2998 3499
8] 706 8% LIO8 C 2306 2449 28960 3355
9| 703 B3 Lioo 2262 2398 2821 3250
10| 700 879 1093 2228 2359 2764 3160
11| 697 76 1088 24 2201 2328 718 3006
12| 495 873 1083 135 1782 11?9' 2303 2681 3.055
13| 694 870 1079 1350 1771 2060 2282 2650 3012
14 [ 592 868 1076 1345 1761 2145 2264 2624 2977
15 | 691 866 1074 1341 17RR 2131 2249 2602 2947
16 | 650 865 LOT1 133 L1746 2120 2235 2583 2921
17] 689 863 1069 1333 1740 2110 2224 1567 2598
1% | 688 862 LO67 1330 1734 2101 2214 2552 2878
19 | 638 461 LDss 1323 I 2003 2205 2539 2861
20 | 687 A60 1064 1335 2086 2197 2528 28435
21| 486 459 1083 1323 > 2080 2189 2518 2831,
22 | 686 858 1461 1321 1717 2074 2183 2508 2819

3.197

3174

315
3135
3419

7173
5.893
5208
4785
4.501
4,144
4.025
3550
3852
3787
3733
3686

3.611
3.579
3552
3.521
3.505

&.610
6.869
5959
5.408
5041
4781

4587

4437
4318
4221
4140
4073
4,015

3965

3883
3.850
3.819
37992




Signal-to-noise ratio

e Stats are all about understanding and controlling variation.

[ Difference ] S|gna|

[[ Difference J+ Noise }

signal  |f the noise is low then the signal is detectable ...

noise = statistical significance
signal ... butif the noise (i.e. interindividual variation) is large

then the same signal will not be detected

noise e
= no statistical significance

* |n a statistical test, the ratio of signal to noise determines the significance.



Comparison between 2 groups:
Student’s t-test

e Basic idea:

* When we are looking at the differences between scores for 2 groups, we have to judge
the difference between their means relative to the spread or variability of their scores.
* Eg: comparison of 2 groups: control and treatment

treatment

group
mean







Student’s t-test

signal _ difference between group means
noise variability of groups
X,—%X. A

var varg
+
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Student’s t-test

* 3 types:

* Independent t-test
e compares means for two independent groups of cases.

e Paired t-test

* looks at the difference between two variables for a single group:
* the second ‘sample’ of values comes from the same subjects (mouse, petri dish ...).

* One-Sample t-test
* tests whether the mean of a single variable differs from a specified constant (often 0)



Example: coyotes.xlsx

e Question: do male and female coyotes differ in size?

 Sample size

* Data exploration

* Check the assumptions for parametric test
* Statistical analysis: Independent t-test



Power analysis

 Example case:

No data from a pilot study but we have found some information in the
literature.

In a study run in similar conditions as in the one we intend to run, male coyotes
were found to measure: 92cm+/- 7cm (SD).

We expect a 5% difference between genders.
. smallest biologically meaningful difference




G*Power

Independent t-test
A priori Power analysis

Example case:

You don’t have data from a pilot study but you
have found some information in the literature.

In a study run in similar conditions to the one you
intend to run, male coyotes were found to
measure:

92cm+/- 7cm (SD)

You expect a 5% difference between genders with
a similar variability in the female sample.

i, G*Power 3.1.3

File Edit View Tests Calculator Help

[5] —— Monday, November 26, 20012 —— 143750
t tests — Means: Difference between two independent means (two groups)

| Central and noncentral distributions | Protocol of power analyses

Analysis: A priori: Compute required sample size
Input: Tail(s) = Two
Effect size d = 06571429
o err prob = 0.05%
Pawer (1-p err prab) = 0.80
Allocation ratio N2 /N1 =1
Output: Moncentrality parameter & = 2.8644195
Critical t = 1.9925435
ave
Sample size group 1 = 38 ‘E‘ -
Sample size group 2 = 38 4 N
Total sample size = 7B -
Test family Statistical test
’t tests v] ’Means: Difference between two independent means (two groups) v]

Type of power analysis

’A priori: Compute required sample size - given o, power, and effect size

3

Input Parameters

Effect size d 0.6571429
o err prob 0.05
Power (1-B err prob) 0.80

Allocation ratio N2 /N1

1

Output Parameters

Noncentrality parameter &
Critical t

Df

Sample size group 1
Sample size group 2
Total sample size

Actual power

2 8644195
1.9925435

74

0.8070362

X-Y plot for a range of values

nl!=n2
Mean group 1
Mean group 2
SD o within each group
@ nl=n2
Mean group 1

Mean group 2

5D o group 1
SDogroup 2
Effect size d

06571429

[ Calculate and transfer to main window J

Close

| [ calcuiate |

You need a sample size of n=76 (2*38)




Power Analysis

.
ﬁ G*Power 3.1.9.2

7
ﬁ G*Power 3.1.9.2 T
File Edit View Tests Calculator Help
Central and noncentral distributions | Pratocal of power analyses
critical t =1.99254
277N
ra \
/ \
0.3 7 N
# N\
7 A"
Vi \
0.24 ’ \
/ A"
by
Y
0.1+ 4
’ o Y
’ 2 -
- ~
- N -
W T T T T T — T o T u T - T g
-3 -2 -1 0 2 3 4 5
Test family Statistical test
’t tests. hd ] ’Means: Difference between two independent means (two groups) v]
Type of power analysis
’A priori: Compute required sample size - given o, power, and effect size v]
Input Parameters Output Parameters
Tail(s) Noncentrality parameter & 2.8644195
Effect size d 0.6571429 Critical t 1.9925435
o err prob 0.05 Df 74
Power (1-B err prob) 0.80 Sample size group 1 38
Allocation ratio N2 /N1 1 Sample size group 2 38
Total sample size 76
Actual power 0.8070562
X-Y plot for a range of values ] | Calculate |

nl l=n2
Mean group 1
Mean group 2

5D o within each group

Mean group 1
Mean group 2
5D ogroup 1

50 ogroup 2

Effect size d

05

92

874

0.6571429

l Calculate and transfer to main window I

File Edit View Tests Calculator Help

| Central and noncentral distributions | Protocol of power analyses

[3] —- Twesday, March 26, 2079 — J6:30.24 -
t tests — Means: Difference between two independent means (two groups)
Analysis: A priori: Compute required sample size
Input: Tailis) = Two
Effect size d 0.6571429
o err prob = 0.03%
Power (1- err prob) = 0380
Allocation ratio N2 /N1 =1
Output: Noncentrality parameter & = 2.5644195
Critical t = 1.9925435
Df = 74 =
Sample size group 1 = 38 1
Sample size group 2 = 38
Total sample size = 76 -
Test family Statistical test

’t tests V] ’Mean s: Difference between two independent means (two groups)

Type of power analysis

’A priori: Compute required sample size - given o, power, and effect size

Input Parameters Output Parameters

Noncentrality parameter &

Effect size d 0.6571429 Critical t
o err prob 0.03 Df
Power (1-B err prob) 0.80 Sample size group 1

Allocation ratio N2 /N1 1 Sample size group 2
Total sample size

Actual power

28644195
1.9925435
74
38
38
76
0.8070562

X-Y plot for a range of values

] I Calculate ]




Power Analysis

f# G*Power 3.1.9.2

File Edit View Tests Calculator Help
Central and noncentral distributions | Protocol of power analvsesl
critical t =1.99254
7 T p H
7 \
. / \
T o3 7 \ i 1
\ y \
Vi \
\
0.2 4 \
4 \
\
0.1- 4 > [0 ) S
, > N
~
1 ”~ ~
| -z ~
0 ey T T T T T T T T T T v
-3 -2 -1 0 1 2 4 5
Test family Statistical test / / \
[t tests '] [Muns: Difference between two jndependﬂ;( means (two grou}q ']
Type of power analysis © nii=n2
[A priori: Compute required sample size - given o(/power. a'(d effect size \ Mean group 1 | 0 ]
Mean group 2 \ 1
Input Parameters Qutput Parameters !
Tail(s) Noncentrality parameter & SD o within each group \ 0.5
Effect size d Critical t
o err prob Df
Power (1-8 err prob) Sample size group 1
Mean group 2
Allocation ratio N2 /N1 Sample size group 2
SDogroup 1
Total sample size Ll
Actual power 0.8070562 SDogroup 2
Effectsized  0.6571429
Calculate and transfer to main window l
[ X-Y plot for a range of values ] [ Calculate ]




For a range of sample sizes:

Power Analysis

’
iy GPower - Plot L
File Edit WView
GCraph | Table
t tests - Means: Difference between two independent means (two groups)
Tail(s) = Two, Allocation ratio M2 /N1 =1,
o err prob = 0.05, Power (1-B err prob) = 0.8
200 —
180 —
160 -
o ]
LL
140 —
i
= ]
% 120
wvi
w _
2 100
50—
60 —
T T I T T T T T T T T T T T T T T
0.4 0.45 0.5 0.55 0.6 0.6% 0.7 0.75 0.8
Effect size d
Plot Parameters
Plot (on y axis) [Total sample size v] with markers Dand displaying the values in the plot
as a function of [Eﬁect size d v] from 0.4  in steps of 0.01  through to 0.8
Flot E] graph(s) ’interp-olating paints v]
with [Pﬂw&r(l—ﬁerr prob) vl at 0.8
and [oe err prob v] at 0.05




Data exploration +# plotting data



Length (cm)

1109

100"

901

80"

701

Coyote

Maximum

T -/

Upper Quartile (Q3) 75t percentile
— Upp (Q3) 757 p

60

Mediah \ Lower Quartile (Q1) 25t percentile

Smallest data /

......... g----------- Cutoff =Q1 —-1.5*IQR

> lower cutoff \
°

Outlier

Male Female
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http://upload.wikimedia.org/wikipedia/commons/8/89/Boxplot_vs_PDF.png

Counts

Counts

Counts

10

N

N

12
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O Females
O Males

Assumptions for parametric tests

Histogram of Coyote (Bin size 2)

[

allill]

I

70 72 74 76 78 80 82 84 86 88 90 92 94 96 9810102104106 70 72 74 76 78 80 82 84 86 88 90 92 94 96 9810QL02L04106

O Females
0 Males

FII'IH

Histogram of Coyote (Bin size 3)

11

Al

[1LL]

14 O Females _

121 O males

10 — — —

8

6

4

2

I A

69 72 75 78 81 84 87 90 93 96 99 102105 69 72 75 78 81 84 87 90 93 96 99 102 105

Histogram of Coyote (Bin size 4)

68 72 76 80 84 83 92 96 100 104 108 68 72 76 80 84 88 92 96 100 104 108

Normality M

i

4

-

Col. stats

Number of values

Minimum

25% Percentile
Median

75% Percentile

Maximum

Mean
Std. Dewiation
Std. Error of Mean

Lower 5% Clof mean

Upper 95% Clof mean

sum

D'Agostino & Pearson normality test
K2
P value
Passed normality test (alpha=0.05)7

P walue summary

Shapiro-Wilk normality test
W
P value
Passed normality test (alpha=0.05)7

P walue summary

A

Females

43

71.00
&5.00
80.00
§3.50
102.5

&9.71
6.550
0.9583

&7.70
81.73

3858

4203
01223
fes

nas

0.9700
0.3164
fes

nas

B

Males

43

7a.0o0
&7.00
g2.00
85.00
105.0

§2.06
6,695
1.021

80.00
8412

3858

0.50280
0.7757
fes

nas

0.98245
0.81590
fes

nas
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Independent t-test: results

Unpaired t test

|
Table Anatyzed

Column A
VS,

Column B

Unpaired t test
P value
P walue summary
Significanthy different (P < 0.05)7
One- or two-tailed P value?

t, df

How big is the difference?
Mean of column A

Mean of column B

Covote

Females
VS,

Males

ns
No
Twro-tailed

t=1.641, df=84

89.71
g2.08

Difference between means (A - B) £ SEM -2.344 £1.428

55% confidence interval

R =quared (eta sguared)

F test to compare variances
F, DFn, Dfd
P value
P value summary

Significanthy different (P < 0.05)7

Data analyzed
Sample gize, column A

Sample size, column B

-5.185 to 0.4554
0.03107

1.045, 42, 42
0.8870
ns

No

43
43

Males tend to be longer than females
but not significantly so (p=0.1045)

Homogeneity in variance

What about the power of the analysis?



Power analysis

You would need a sample 3 times bigger to reach the accepted power of 80%.

G*Power 3.0.3

File Edit Wiew Tests Calculator Help

Central and noncentral distributions

Protocol of power analyses

[6] —- Wedmesdal, Ao 27 2081 —- J&85:07 fad
t tests - Means: Difference between two independent rmeans (wo groups)
Analysis: A priori: Compute required sample size
Input: Tail{sy = Two
Effect size d = 0.3546943
o err prob = 0.05
Power {1-B err prob) = 0.80
Allocation ratia M2 (M1 =1
Output: Moncentrality parameter & = 2.515299
Critical t = 1.969495
Save
Sample size group 1 = 128 -
Sample size group 2 = 126 =
Total sample size = 252 >
Test farmily Statistical test
|ttests v| |Means: Difference between two independent means (wo groups) v|

Type of power analysis

|A priori: Compute required sample size - given o, power, and effect size

Input Pararmeters

o err prob
Power {1-P err prob)

Allocation ratio M2 M1

Tail{sy | Two

0.53546943

oo
w || o
ol ; <

Cutput Pararmeters
Moncentrality parameter &
Critical t
ot
Sarnple size group 1
Sample size group 2
Total sample size

Actual power

QO nll=n2

Mean graoup 1

5D owithin each group

®n1=n2

[ Calculate

=-% plotfor a range of values

] | calculate

[ Calculate and transfer to main window I

Clase

3.5

A rn

£ Col. stats
4

1 Number of values

2

3 Minimum

4 | 25% Percentile

5 Median

6 75% Percentile

7 Maximum

9 Mean

10 |std. Deviation
11 std. Error of Mean

13 Lower 95% Cle

o Clof mean

Sum

12 D'Agostino & Pearson normality test
19 | k2

20| Pvalue

21 | Passed normality test (alpha=0.05)?

22 Pvalue summary

24 Shapiro-Wilk normality test

25 | w

26 Pvalue

27 | Passed normality test (alpha=0.05)?

28 | Pvalue summary

But is a 2.3 cm difference between genders biologically relevant (<3%) ?

A

Females

43

71.00
86.00
80.00
93.50
1025

87.70
91.73

3858

4.203
0.1223
Yes

ns

0.9700
0.3164
Yes

ns

Males

43

78.00
&7.00
92.00
96.00
105.0

90.00
94.12

3958

0.5080
0.7757
Yes

ns

0.9845
0.8190
Yes

ns



The sample size: the bigger the better?

« Ittakes huge samples to detect tiny differences but tiny samples to detect huge
differences.

90 -

80 - E Ek

 What if the tiny difference is meaningless?

 Beware of overpower "

- Nothing wrong with the stats: it is all about 1

Interpretation of the results of the test. 501

40 |

30

« Remember the important first step of power 20 |
analysis — 4 _1

10 -

« What is the effect size of biological interest? n=1178238

D-




Another example of t-test:

working memory.xlsx

A group of rhesus monkeys (n=15) performs a task involving memory after having received
a placebo. Their performance is graded on a scale from 0 to 100. They are then asked to
perform the same task after having received a dopamine depleting agent.

Is there an effect of treatment on the monkeys' performance?



Another example of t-test:

working memory.xlsx

A B
3 Col. stats -
Placebo D& depletion
d Y Y
I |Number of values 15 15
]
5 |Minimum 5.000 7.000
b |25% Percentile 18.00 12.00
3 |Median 26.00 18.00
i [75% Percentile 37.00 25.00 60
T [Maximum 50.00 35.00
i
¥ |Mean 2727 18.87 ®e
0 |std. Deviation 12,85 8911 o
1 |5td. Error of Mean 3.265 2.3 (&) 40 S
2 g ®
o0
3 [Lower 95% Cl of mean 2026 13.93 E [}
4 |Upper 95% Cl of mean 24827 23.80 5 ~ ©
5
t (] ..
6 |D'Agostino & Pearson omnibus normality tegi—" — Q 20 o o
7 k2 [ |oerse 0.9315 o S S —
® ®e
8 |pvale N\ [0.7134 06122 ®
(&)
9 [Passed normality test (alpha=0.05)7 P —rr @ o)
0 |pvalue summary ns ns o0
1
2 |sum 409.0 283.0 "
= Placebo DA depletion

Normality



Another example of t-test:

working memory.xlsx

E Paired t test
A
1 Table Analyzed Working memary
2
3 Column & Placebo
4 VS, V.
5 Column B DA depletion
&
T Paired t test
g P value =0.0001
g P value summary e
10 Significantty different (P < 0.05)7? Yes 60
11 One- or two-tailed P valus? Two-tailed
12 1, df t=3.516, di=14 °e
13 Number of pairs 15
14 [+)]
15 How big is the difference? 8 40 ° o
16 Mean of differences 8.400 s Py o0
17 S0 of differences 3.776 g @
18 SEM of differences 0.9749 g ~ ® °
13 895% confidence interval 5.309 to 10.4% Q 20 Q ® o
20 R squared (partial eta squared) 0.8413 a £ _.._'_
22 How effective was the pairing? o® [e]
23 Correlation coefficient (r) 0.5586 o0
24 P value (one tailed) =0.0001
= P value summary = Placebo DA depletion

26 Was the pairing significantly effective? Yes
i



Performance

Paired t-test: Results
working memory.xlsx

0
/ Placebo

DA depla‘lh{

Difference in performance

0 -

-2 -

-4 4

-6 -

-8 M

-10 A

-12 1

-14 9

-16 9

-18

..................................................




Comparison of more than 2 means

e Running multiple tests on the same data increases the familywise error rate.

e What is the familywise error rate?
— The error rate across tests conducted on the same experimental data.

e One of the basic rules (‘laws’) of probability:

— The Multiplicative Rule: The probability of the joint occurrence of 2 or more
independent events is the product of the individual probabilities.

P(A,B) = P(A) x P(B)

For example:

P(2 Heads) = P(head) x P(head) =05 x05=0.25



Familywise error rate

Example: All pairwise comparisons between 3 groups A, B and C:
— A-B, A-Cand B-C

Probability of making the Type | Error: 5%
— The probability of not making the Type | Error is 95% (=1 — 0.05)

Multiplicative Rule:
— Overall probability of no Type | errors is: 0.95 * 0.95 * 0.95 = 0.857

So the probability of making at least one Type | Erroris 1-0.857 =0.143 or 14.3%
e The probability has increased from 5% to 14.3%

Comparisons between 5 groups instead of 3, the familywise error rate is 40% (=1-(0.95)")



Familywise error rate

Solution to the increase of familywise error rate: correction for multiple comparisons
— Post-hoc tests

Many different ways to correct for multiple comparisons:

— Different statisticians have designed corrections addressing different issues
e e.g. unbalanced design, heterogeneity of variance, liberal vs conservative

However, they all have one thing in common:
— the more tests, the higher the familywise error rate: the more stringent the correction

Tukey, Bonferroni, Sidak, Benjamini-Hochberg ...
— Two ways to address the multiple testing problem
e Familywise Error Rate (FWER) vs. False Discovery Rate (FDR)



Multiple testing problem

e FWER: Bonferroni: a,,; = 0.05/n comparisons e.g. 3 comparisons: 0.05/3=0.016
— Problem: very conservative leading to loss of power (lots of false negative)
— 10 comparisons: threshold for significance: 0.05/10: 0.005
— Pairwise comparisons across 20.000 genes ®

e FDR: Benjamini-Hochberg: the procedure controls the expected proportion of
“discoveries” (significant tests) that are false (false positive).

— Less stringent control of Type | Error than FWER procedures which control the probability of at least
one Type | Error

— More power at the cost of increased numbers of Type | Errors.

e Difference between FWER and FDR:

— a p-value of 0.05 implies that 5% of all tests will result in false positives.

— a FDR adjusted p-value (or gq-value) of 0.05 implies that 5% of significant tests will result in false
positives.



Analysis of variance

Extension of the 2 groups comparison of a t-test but with a slightly different logic:

t-test = meanl — mean2 X .-““.

Pooled SEM Pooled SEM

e

ANOVA =variance between means

<

1
Pooled SEM ‘ . «—

Pooled SEM

ANOVA compares variances:

— If variance between the several means > variance within the groups (random error) then the means
must be more spread out than it would have been by chance.



Analysis of variance

The statistic for ANOVA is the F ratio.

Variance between the groups

Variance within the groups (individual variability)

Variation explained by the model (= systematic)

Variation explained by unsystematic factors (= random variation)

If the variance amongst sample means is greater than the error/random variance, then
F>1

— Inan ANOVA, we test whether F is significantly higher than 1 or not.



Analysis of variance

Source of variation | Sum of Squares | df Mean Square |F p-value
Between Groups 2.665 4 0.6663 8.423 |<0.0001
Within Groups 5.775 73 0.0791
— vy — P~ In Power Analysis:
t . .
ote Pooled SD=\/MS(ReS|duaI)
e Variance (= SS/ N-1) is the mean square
— df: degree of freedom with df = N-1
° Between groups variability
[
°
%000°’
003::00
_ *e3gg000093® .: R
oo® a8
TP L 1—>
Y [ ) # [ ] ...
0000000°° °. L X °
coee YY) goeo ®
.0.. ) ° ) °®
° L Y
Within groups variability

Total sum of squares




Example: protein.expression.csv

e Question: is there a difference in protein expression between
the 5 cell lines?

e 1 Plot the data
e 2 Check the assumptions for parametric test

e 3 Statistical analysis: ANOVA
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Parametric tests assumptions

Col. stats

Mumber of values

Kinimum

25% Percentile
Median

T5% Percentile

Maximum

Mean
Std. Deviation
Std. Error of Mean

Lower 95% Cl of mean
Upper 95% Cl of mean

Sum

D'Agostino & Pearson normality test
K2
P wvalue
Paz=zed normality test (alpha=0.05)7

P value summary

12

0.3300
0.4864
1.208
1.485
2.088

1.088
0.5465
0.1578

0.7408
1.436

13.06

01235
0.5401
Tes

ns

12

0.2500
0.4225
0.5550
0.6925
0.8900

0.53558
1.1947
0.03620

0.4321
01.6795

6.670

07508
06870
res

ns

18

0.2400
0.4475
0.7500
1.248
31410

1.032
0.8364
0.1871

0.6157
1.445

18.57

18

0.4500
1.100
1.6590
28925
8.320

2438

2108

0.4568

1.390
3.486

43.88

18

0.3000
0.7825
1.480
2108
3.400

1.504
0.8175
0.1528

1.058
1.811

2r.0s

1.280
0.5274
ez

ns
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0.1

Transform of Protein expression

H H

0.51

e
o

uiajoid Bo7

-0.51

-1.0

107

uolssaldxa uialold




Parametric tests assumptions

W G| =l o tn| s La| R =

ma mal ma| = | ] | | | | | ] =
rI| = S| W Ga| =i B | b i B | S

[~ ]
o

4

Col. stats

Mumber of values

Minimum

25% Percentile
Median

T5% Percentie

Maximum

Mean
Std. Deviation
Std. Error of Mean

Lower 95% Clof mean
Upper 95% Cl of mean

Sum

D'Agostino & Pearson normality test
K2
P value
Pas=sed normality test (alpha=0.05}7

P walue summary

12

-0.4815
-0.3303
0.08140
0.1659
1.3196

-0.03123
0.2764
0.07578

-0.2068
0.1444

-0.3747

2.037
03611
Yes

ns

12

-0.5850
-0.3742
-0.2605
-0.1587
-0.05061

-0.2817
0.1632
0.04711

-0.3854
-0.17a0

-3.380

06827
D708
Yes

na

18

-0.6158
-0.3487
-0.1025
0.09514
0.45965

-0.1064

0.3307

0.07795

-0.2709
0.05803

-1.916

Yes

na

18

-0.30588
004117
0.2278
0.45853
0.5654

1.2740

0312

0.07338

11153
0.4288

4933

Yes

na

18

-0.5225
-0.1178
0.1842
0.3237
0.5315

01ma
0.2873
0.08772

-0.04104
02447

1.833

25802
02344
Yes

na



Analysis of variance: Post hoc tests

e The ANOVA is an “omnibus” test: it tells you that there is (or not) a difference
between your means but not exactly which means are significantly different
from which other ones.

— To find out, you need to apply post hoc tests.

— These post hoc tests should only be used when the ANOVA finds a
significant effect.



Analysis of variancec

.
Parameters: One-Way ANOVA (and Nonparametric or Mixed)

(S

-

Analyze Data

Built-in analysis -

Which analysis?

Analyze which data

= Transform, Normalize...
Transform
Transform concentrations (X)
Mormalize
Prune rows

Transpose X and ¥
Fraction of total
XY analyses
= Column analyses
t tests (and nonparametric tests)

One sample t and Wilcoxon test

Descriptive statistics

Maormality and Lognormality Tests

Frequency distribution

ROC Curwve

Bland-Altman method comparison

Identify outliers

Analyze a stack of P values
Grouped analyses

4| Tl |

Remove baseline and column math

One-way ANOVA (and nonparametric o

*

m

[ & A
[#]B:B
F]c:C
[#]0:D
FIE:E

Experimental Design |R.epeated Measures I Multiple Comparisons I Options I R.esiduals|

Experimental design
(@) Mo matching or pairing

() Each row represents matched, or repeated measures, data

() No. Use nonparametric test.

Assume equal SDs?

(@ Yes. Use ordinary ANOVA test,
| Mo, Use Brown-Forsythe and Welch ANOVA te

Based on your choices {on all tabs), Prism will perf
- Ordinary one-way ANOVA,

Select all

Group A Group B Group C Group D
EE Data Set-A | Data Set-B | Data Set-C Title
4 Y Y Y Y
1 - - -
: < L >

.
Parameters: One-Way ANOVA (and Nonparametric or Mixed)

| Experimental Design | Repeated Measures | Multiple Comparisons | Options | Resic
Followup tests

Compare the mean of each column with the mean of every other column,

() Compare the mean of each column with the mean of a control column.
Control column: | Column A: A

() Compare the means of preselected pairs of columns.
Selected pairs: Select...

(7) Test for linear trend between column mean and left-to-right column order.

Which test?

Use choices on the Options tab to choose the test, and to set the defaults for
future ANOVAS.

»
Parameters: One-Way ANOVA (and Monparametric or Mixed)

===

| Experimental Design I Repeated Measures I Multiple Comparisons| Options |R.esiduals|

Multiple comparisons test

(@ Correct for multiple comparisons using statistical hypothesis testing, Recommended.

Test: [Tukey (recommendad)

]

() Correct for multiple comparisons by controlling the False Discovery Rate.

() Don't correct for multiple comparisons. Each comparison stands alone.
Test: Fisher's LSO best
Multiple comparisons options
[] swap direction of comparisons (A-B) vs. (B-A).
Report multiplicity adjusted P value for each comparison.
Each P value is adjusted to account for multiple comparisons.

Tesk: | Two-stage step-up method of Benjamini, Krieger and Yekutieli (recommend

Family-wise significance and confidence level;

0.05 (95% confidence interval)

Graphing
[ Graph confidence intervals,
Graph ranks (nonparametric).
Graph differences {repeated measures),
Additional results
| Descriptive statistics for each data set.
"] Report comparisen of models using AICc,
Report goodness of fit.
Output
Show this many significant digits {for everything except P values): 4

P value style: [gP: 0.1234 (ns), 0.0332 (%), 0.0021 (9, 0. = |1 = |5
[ Make options on this tab be the default for future One-Way ANOVAS,

[ Learn ] [ Cancel ]

[ Learn ] [ Cancel ] I




Ordinary one-way ANDWVA

ANOWA rezults

Table Analyzed
Cata =ets analyzed

ANOVA summary
F
Fvalue

P value summary

R square

Brown-Forsythe test
F (DFn, DFd)
P value

P value summary

<0.0001

Significant diff. among means (P < 0.05)7 Yes
0.3081

Transform of Protein expression
AE

Are SDs significantty different (P = 0.05)7 Mo

Bartlett's test
Bartlett’s statistic (corrected)
Pvalue

P value summary

5.829
0.2123

ns

Are SDs significantty different (P < 0.05)? Mo

ANOVA table
Treatment (between columns)
Residual (within columns)
Total

Data summary
Number of treatments (columns)

Number of values (total)

Homogeneity of variance

F=0.6727/0.08278=8.13

55 DF M5 F (DFn, DFd) P value
2591 4 0.6727 F(4,73)=8127  P<0.0004
5.043 73 0.08273

8734 77

5

78

il

Analysis of variance: results

4

| ds| L] R -

W gal = &

Humber of families

Number of comparizens per family

Alpha

Tukey's multiple comparisons test Mean Diff.

Avs B
Avs. C
Avs. D
Avs E
Bwvs. C
Bvs. D
Bwvs E
Cvs. D
Cvs E

E

D vs.

Test details
Avs. B
Avs C
Avs. D
Avs E
Bvs. C
Bvs. D
Bwvs E
Cvs. D
Cvs. E

E

D vs.

Ordinary one-way ANOVA
Multiple comparizons

10
0.05

0.2505

0.07521
-0.3053
-0.1331
-0AT7ER
-0.5557
-0.3835
-0.3805
-0.2083
01722

Mean 1
-0.03123
-0.03123
-0.03123
-0.03123
-0.2817
-0.2817
-0.2817
-0.1064
-0.1084
0.2740

W e e e

95.00% CI of diff.
-0.07808 to 0.5780
-0.2247 1o 0.37TH
-0.6052 to -0.005355
-0.4330 to 0.1669
-0.4752 10 01247
-0.8557 to -0.2558
-0.6834 to -0.08360
-0.8487 to -0.1122
-0.4765 to 0.05888
-0.09604 to 0.4405

Mean 2
-0.2817
-0.1084
0.2740
01018
-0.1084
0.2740
01018
0.2740
URIGE
01018

Significant?
No
Mo
Yes
No
Mo
Yes
Yes
Yes
No
No

Mean Diff.
0.2505
0.07521
-0.3053
-0.1331
-0.1753
-0.5557
-0.3835
-0.3805
-0.2083
01722

Summary

Adjusted

ns 02177
ns 0.9535
* 0.0440
ns 07275
ns 0.4207
e <0.0001
= 0.0055
* 0.0015
ns 0.2021
ns 0.3839
SE of diff. ni
01175 12
01072 12
01072 1z
01072 12
01072 12
01072 1z
01072 12
0.09580 18
0.09580 12
0.095580 18

Value

A-B

n2
12
18
18
18
18
18
18
18
12
18

3.016
0.8920
4.026
1.755
23N
7.330
5.058
561
.07
2.540

DF
73
73
73
73
73
73
73
73
72
73



Correlation

e A correlation coefficient is an index number that measures:
— The magnitude and the direction of the relation between 2 variables
— It is designed to range in value between -1 and +1

[ | | || [ I |
/ 0.96 0.80 0.40 | 0.025 10 -08 -06 -04 -02 00 +02 +04 +06 +08 +1.0
: ~ S~ -
S . / 0.38 || 0.029 e
ol | s Negative Positive
. = 0.0046 Relationship Relationship |-
wX AY 3 XY

No relationship |




Correlation

Most widely-used correlation coefficient:

o 7
I

— Pearson product-moment correlation coefficient
> (5 =B -7
iml

i (x; — fj:i v _.?F}E

i=ml Tl

»=

e The 2 variables do not have to be measured in the same units but they have to be proportional
(meaning linearly related)

— Coefficient of determination:
e ris the correlation between X and Y
e r2js the coefficient of determination:

— It gives you the proportion of variance in Y that can be explained by X, in
percentage.



Correlation
Example: roe deer.xlsx

e |s there a relationship between parasite burden and body mass in roe deer?

30
® Male

® Female

N
[é)]

Body Mass
N
o

=
(&)

10
1.0 1.5 2.0 2.5 3.0 3.5

Parasites burden




r Window Help

TR Correlation

|[=|Analyze T

Fit a line with linear regression]‘

- A b
i Linear reg.
Tabular reszults Male Female
A
1 Best-fit values
2 Slope -4 621 -1.888
3 ¥-intercept 30.20 25.04
4 K-intercept 6.536 13.26 . . . .
5 A/slops -0.2164 -0.5287 Th t I t b t t I d
: P ere IS a negative correlation pbetween parasite 104
T Std. Error d f' b h- I . h- . I . .f. f h
5 sipe ana titness but this relationship Is only signiticant tor the
9 Y-intercept 3.025 3.453
. mal =0.0049 females: p=0.2940
ales(p=0. vs. females: p=0. :
11 95% Confidence Intervals
12 | Siope -7.490 to -1.753 -5.637 to 1.851
13 | Y-intercept 23,4510 35.94 17.51 to 32.58
14 X-intercept 4802 to 13.47 5.738 to +infinity
15
16 Goodness of Fit
17 Rsguare 0.5630 0.09119 " o
18 Sy.x B u L L
19 i Correlation Ve Ve
20 Is slope significantly non-zero? Male Female
2 F 12,88 1204 E
22 | DFn, DFd u
,: m ' 1 Pearsonr
P value 0.2540
2 |r -0.7504 -0.3020
24 | Deviation f ? i t
- Sviation from 2ro " 3| B5% confidence interval 0825610-0.3098  -0.7176t0 0.2722
N 4 | Rsquared 0.5530 0.09119
26 Equation ¥ =-4B21*+3020 ¥ =-1888"X+2504 =
27
6 |Pvalue
28
Data T | P (two-tailed) 0.0049 0.2940
23 Number of X values 12 28 5 Pvalue summary - ns
30 | Maxi i
Maximum number of % replicates 1 1 9 | significant? (alpha = 0.05) Yes No
H Total number of values 12 14 10
32 Number of missing values | 12 11 | Number of XY Pairs 12 1"

Example: roe deer.xlsx

49




Curve fitting

® Dose-response curves
— Nonlinear regression

— Dose-response experiments typically use around 5-10 doses of agonist, equally spaced on a
logarithmic scale

— Y values are responses

e The aim is often to determine the IC50 or the EC50

— IC50 (I=Inhibition): concentration of an agonist that provokes a response half way between the
maximal (Top) response and the maximally inhibited (Bottom) response.

— EC50 (E=Effective): concentration that gives half-maximal response

Top- Tap.

Bottom-

Bottom -

IR B B B B |

b | el b |

_I'ug [sauni:_t']
log [concentration]
Stimulation: Inhibition:
Y=Bottom + (Top-Bottom)/(1+10/((LogEC50-X)*HillSlope)) Y=Bottom + (Top-Bottom)/(1+107((X-LogIC50)))



Curve fitting
Example: Inhibition data.xlsx

5009
-8 No inhibitor

400 ] - Inhibitor

Parameters M

‘ Model |Meﬂ'|od I Compare | Constrain I Ibltal values I Range | Qutput | Confidence | Diagnostics | Flag | ‘ 2007
1004
o

Step by step analysis and considerations:

1
-10 -8 -6 -4 -2
log(Agonist], M

1- Choose a Model:
not necessary to normalise
should choose it when values defining 0 and 100 are precise
variable slope better if plenty of data points (variable slope or 4 parameters)

2- Choose a Method: outliers, fitting method, weighting method and replicates

3- Compare different conditions:

@ Mo comparizan
lef in para meters ) Foreach data set, which of bwo equations [madels] fits best?

lef between Conditions for one or more pa rameters —» () Dathe best-fit values of selected unshared parameters differ bebween data sets?
Constraint vs no constraint ) Foreach data set, does the bestfit value of a parameter differ from a hypothetical value?
Diff between conditions for one or more parameters —» ) Does one curve adequately fit all the data sets?

4- Constrain:
depends on your experiment
depends if your data don’t define the top or the bottom of the curve



Curve fitting
Example: Inhibition data.xlsx

5009
-8 No inhibitor

400 ] - Inhibitor

Model |Meﬁ10d I Compare | Constrain [Iniﬁal values I Range | Output | Confidence | Diagnostics | Flag |

[Paramet:rs Monlinear Regression lﬂ

1
-10 -8 -6 -4 -2
log(Agonist], M

Step by step analysis and considerations:

5- Initial values:
defaults usually OK unless the fit looks funny

6- Range:
defaults usually OK unless you are not interested in the x-variable full range (ie time)

7- Output:
summary table presents same results in a ... summarized way.

8 — Confidence: calculate and plot confidence intervals

9- Diagnostics:
check for normality (weights) and outliers (but keep them in the analysis)
check Replicates test
residual plots



Curve fitting
Example: Inhibition data.xlsx

Non-normalized data 3 parameters

Non-normalized data 4 parameters

é 200 EC50
T e ———— . I ............. I. : U
LogECS0 different for each data set 100 : : ® Inhibitor
= 0.0001 w0 :
Reject null hypothesis o
LogECS0 different for each data set W T atheeniey
64.86 (1,48) 100 LogECS0. |15 5011
5% Confidence Intervals
Bottom -41.39 to 2494 -2215t0 31.58
Top 3483 t0 3925 3231 to 373.0
LogECS0 -7.324 to 5.9 -5.185 to -5.837
HillSlope 0.6347 to 1.159 0.6095 to 1.186
EC50 4.73%e-008 to 1.020e-007 6.538e-007 to 1.455e-006
R square 0.9663 0.9653
T T T

Normalized data 4 param eters

LogECS0 same for all data sets

LogECS0 different for each data set

= 0.0001

Reject null hypothesis

LogECS0 different for each data set

162.8 (1,52)

g
s 60
< ECS50
w0 ¥ :
H [ [ ® No inhibitor
20 f (i
] : ® inhibitor
50 :
20 : :
1o a5 a0 w5 w0 75 70 45 40 45 80 45 40 a5 a0
log(Agonist)
LogECS0 |70 5943

95% Confidence Intervals

LogECS0 -T.137 to -6.897 -6.057 to -5.830

HilSlope 0.6094 to 0.9184 0.6467 to 0.9480

ECS0 7.295e-008 to 1.268e-007 8.763e-007 to 1.481e-008
R =guare 0.9580 0.9635

S 200
= 1m0 . . LogECS0 same for all data sets
@ No inhibitor
100 LogECS50 different for each data set
@ Inhibitor
s0 < 0.0001
T Reject null hypothesis
95 90 85 60 05 7.0 65 60 55 5.0 -45 40 35 3.0
50 log(Agonist) LogECS0 different for each data set
oo \ LogeCsn |15 5017 101.0 (1,503
§5% Confidence Intervals
Bottom -30.74t0 2478 -11.65 to 30.07
Top 348.2to 383.2 324.3to 3614
LogECS0 -7.312 to -7.006 -5.175 to -5.859
ECS0 4.875e-008 to 9.858e-008 6.577e-007 to 1.385e-006

R sguare

0.8655 0.59648

Normalized data 3 parameters

@ No inhibitor

One curve for all data sets.

Different curve for each data set

“® Inhibitor = 0.0001
10
Reject null hypothesis
e S e v 4o Ao de dnde Do do 4 4 s Different carve for cach data set
0g(Agonist)
| Logcso |-7031 |-s'958 175.0 (1,54)
95% Confidence Intervals
LogECS0 -7.144 to 5917 -5.064 to -5.848
EC50 T.1759e-008 to 1.209e-007 8.533e-007 to 1.420e-006
R square [0.8476 0.9563



Replicates test for lack of fit

SD replicates

SD lack of fit

Discrepancy (F)

P value

Evidence of inadequate model?

Replicates test for lack of fit

SD replicates

SD lack of fit

Discrepancy (F)

P value

Evidence of inadequate model?

Replicates test for lack of fit

SD replicates

SD lack of fit

Discrepancy (F)

P value

Evidence of inadequate model?

Replicates test for lack of fit

SD replicates

SD lack of fit

Discrepancy (F)

P value

Evidence of inadequate model?

Curve fitting

Example: Inhibition data.xlsx

No inhibitor

22.71
41.84
3.393
0.0247
Yes

22.71
39.22
2.982
0.0334
Yes

5.755
11.00
3.656
0.0125
Yes

5.755
12.28
4.553
0.0036
Yes

Inhibitor

25.52
32.38
1.610
0.1989
No

25.52
30.61
1.438
0.2478
No

7.100
8.379
1.393
0.2618
No

7.100
9.649
1.847
0.1246
No

Non-normalized data 4 parameters No inhibitor

@ No inhibitor

® inhibitor .@

log(Agonist)

100 | LogECS0 | EZE] 5011

00 EC50

Non-normalized data 3 parameters

i

(i @ No inhibitor
: 3 [ ® Inhibitor

log(Agonist)

LogECS0 7158 5017
1004

Normalized data 4 param eters

@ No inhibitor

@ Inhibitor

-7.017

-7.031

Inhibitor

-5.943

-5.956



My email address if you need some help with GraphPad:

anne.segonds-pichon@babraham.ac.uk






