[image:] Exercises: Unix Intro		2

[image: bioinformatics_logo]

Exercises:
Introduction to Unix

Version 2023-01

4
[image:] Exercises: Unix Intro

Licence
This manual is © 2018-2023, Simon Andrews.

This manual is distributed under the creative commons Attribution-Non-Commercial-Share Alike 2.0 licence. This means that you are free:

1. to copy, distribute, display, and perform the work

1. to make derivative works

Under the following conditions:

1. Attribution. You must give the original author credit.

1. Non-Commercial. You may not use this work for commercial purposes.

1. Share Alike. If you alter, transform, or build upon this work, you may distribute the resulting work only under a licence identical to this one.

Please note that:

1. For any reuse or distribution, you must make clear to others the licence terms of this work.
1. Any of these conditions can be waived if you get permission from the copyright holder.
1. Nothing in this license impairs or restricts the author's moral rights.

Full details of this licence can be found at
http://creativecommons.org/licenses/by-nc-sa/2.0/uk/legalcode

Exercise 1: Connecting to a Linux Server

· Find the server address, username and password which have been assigned to you
· Connect to the server via the web interface and check you can see your desktop

Exercise 2: Basic Unix commands

· Run the ls program to see what files and folders are in your home directory
· Run ls -l to get the output in “long” format with the owner, size and file type listed

· The figlet command draws pretty graphical representations of text you supply, something like this:
 ___ _ _ _
|_ _| | | _____ _____ | | (_)_ __ _ ___ __
 | | | |/ _ \ \ / / _ \ | | | | '_ \| | | \ \/ /
 | | | | (_) \ V / __/ | |___| | | | | |_| |> <
|___| |_|___/ _/ ___| |_____|_|_| |_|__,_/_/_\

· Read the man page for figlet to work out how to use it (man figlet)
· Get the program to write your name. If you put spaces in your name you’ll need to put your name into quotes.
· Find the correct switch to add to the command to get your name centred in the terminal	

· xcowsay is a graphical program which makes a cow say something
· Run xcowsay -t 0 "I am a graphical program"
· Note that you can’t enter more commands in the terminal until you click on the cow to make it go away
· Read the man page to find out what the -t 0 means

· Look at the help page for the multiqc program by running multiqc --help Note that there isn’t a man page for this since it isn’t a core piece of software.

Exercise 3: File system basics

· Check where your working directory currently is by running pwd
· List the files folders in the directory using ls -l
· Use mkdir to create a folder called compare then run ls -l to check that you can see it
· Use cd to move into the seqmonk_genomes/Saccharomyces cerevisiae directory in your home directory. Make sure you use tab completion to write the folder names.

· Run ls -l to see what folders you can see. Each of these represents a different genome assembly of the worm genome.

· Using ls list the contents of directories containing a 4 in their name (ls *4*)

· Use the head command to simultaneously show the first line only of all of the I.dat files in any of the subdirectories (*/I.dat)
· Are the chrI sequences all the same length?

· Use cd to move into the EF4 directory, then use less to look at the contents of Mito.dat
· See if you can find the first rRNA gene (type /rRNA to search in a less session)
· What is its position?

· Using cp copy Mito.dat into the compare directory in your home directory
· It will be cp Mito.dat ~/compare/ where the ~ means your home dir

· Use cd to move back to the ~/compare/ directory
· Use nano to edit the Mito.dat file
· Change Mito to Mitochondrion in the ID and AC header lines at the top of the file
· Save the file with Control+o and then exit nano with Control+x
· Use mv rename the file from Mito.dat to Mitochondrion.txt

· Using ln –s create a symlink from the original Mito.dat file to the same filename in your current directory (the compare directory). Remember to use tab completion to write the folder/file names.

ln -s ../seqmonk_genomes/Saccharomyces\ cerevisiae/EF4/Mito.dat .

· Run diff Mitochrondrion.txt Mito.dat to see what differences it can find between the two versions of the file.

Exercise 4: Redirection and Bash Loops

· Go into the FastQ_Data directory and look at one of the fastq files using less
· Less is clever enough to realise that the file needs to be decompressed so you can just pass the file to less directly
· Now validate that one of the files can be successfully decompressed
· Run zcat on the file, but…
· Throw away the STDOUT output (using > /dev/null) so that you just see errors or warnings

· Calculate the signatures of all of the fastq files using the sha1sum program (with a number 1 in the middle, not the letter l)
· Start by running sha1sum on one fastq file to see how it works
· Now run it on the entire contents of FastQ_Data using a wildcard *fastq.gz (rather than a loop)
· Write the results (STDOUT) to a file in your home directory using >~/signatures.txt
· Write any errors to a different file in your home directory (2>~/errors.txt)

· Use nohup to run the fastqc program on all of the fastq.gz files (*fastq.gz)
· [bookmark: _GoBack]Check the nohup.out file to see that it has finished.

· Once the fastqc jobs have finished, run multiqc . (note the dot to specify it should run in the current directory) to assemble the fastqc output into a single report.

If you have time

· Write a bash loop which will go through every .dat file in seqmonk_genomes and will count the number of lines containing rrna (case insensitive). The process will be:
· Move to the seqmonk_genomes/Saccharomyces cerevisiae folder
· Use a shell wildcard which will find all of the .dat files (*/*.dat)
· Write a loop to iterate over these. For each one
· Use echo to write out the name of the file plus a space (check for how to not include a newline at the end)
· Use grep to get the lines containing “rrna” (check for case insensitive)
· Use wc to get and print the number of lines of hit (check how to just get the line count)
· Run the loop and save the results to a file called rrna_count.txt

· Convert every fastq.gz file in FastQ_Data into a fastq.bz2 file
· Read the file with zcat
· Pipe it to bzip2 (with the option to write to stdout)
· Redirect the output to a new file with .bz2 on the end

image1.png
Babraham ;)
Bioinformatics

image2.png
Babraham D)
Bioinformatics

