
Introduction to Biological
Big Data
Simon Andrews

simon.andrews@babraham.ac.uk
@simon_andrews

v2023-10-12

Course Structure

• Central Dogma Data Sources
– Genomes and Annotations

– Protein Domains and Structures

– Reactions, Pathways and Interactions

• Experimental Techniques, Datatypes and Repositories
– Sequencing and Variants

– Proteomics and Metabolites

– Flow and Imaging

• Practical Computation for Bioinformatics
– Analysis approaches

– Computing platforms for big data

– Selecting bioinformatics software

– Languages, Frameworks and pipelines

Central Dogma Data
Resources

DNA
(Genome)

RNA
(Transcriptome)

Protein
(Proteome)

SNPs

Splicing

Transcription Factors

Pathways

Domains

Structures

Epigenetics

Post-translational
modifications

Non-coding RNA

Metabolites

Annotation Structure

Double Stranded
DNA (GATC)

Gene A
(top strand)

Gene B
(bottom strand)

Single Stranded
Spliced RNA

Excised Introns

Single Stranded
immature RNA

(GAUC)

Exon Exon Exon ExonIntron Intron Intron

Mature Transcript Structure

Poly-A Tail

Poly-A Signal
(AATAAA)

5 prime end
(5')

3 prime end
(3')

5' Untranslated
Region (5'UTR)

3' Untranslated
Region (3'UTR)

Start Codon
(ATG)

Kozak Sequence
(RccAUGG)

Exon 1 Exon 2 Exon 3 Exon 4 Exon 5

5' cap
(m7G)

Protein Coding Sequence (CDS)

Alternative Splicing

Major Splice Form

Skipped Exon

Retained Intron

Alternative Promoter

Alternate Poly-A

Gene

Genomes and Annotations

• Genome Assemblies

– Underlying sequence of the organism’s chromosomes

– Often starts as scaffolds / contigs

– Eventually assembled into chromosomes (still with holes)

• Only one chromosome sequence per chromosome

– Represents an ‘average’ individual (unless backcrossed)

– Variations (natural or clinical) are stored separately)

– Assembly is refined and improved over time, new releases get new names

Genome Assembly Nomenclature

• Chromosome / Scaffold sequences

– Originally deposited with ENA / NCBI as sequence records

• Genome Assembly

– Given an official name by a supervising group (sometimes two!)

– Fixed coordinates at that point

Current Human Genome

• Assembly Name: GRCh38

• Current Patch: GRCh38.p13

• Managed by: Genome Reference Consortium

• Assembly type: Chromosomal

• Chromosome: Chr1 = CM000663.2 = NC_000001.11

• Genome: GCF_000001405.39 (Assembly Refseq)

GCA_000001405.28 (Assembly Genbank)

Genome Annotation Sets

• Built on top of a specific assembly

• Combination of prediction tools and real data

• Main annotation is Genes, Transcripts, Coding Sequences

• Many other tracks often added

• Different sites will have different annotations

• Annotations updated more frequently than assemblies

Genome Annotation Details

Viewing Annotated Genomes

• Mostly web based

– Species specific sites

– Generic multi-species sites

• Often adds more information

– Regulation, conservation, repeats

– Experimental datasets

– Upload your own

Species specific genome viewer sites

https://www.arabidopsis.orgArabidopsis

https://wormbase.orgNematode worms

Drosophila https://flybase.org/

Generic genome viewer sites

UCSC Browser https://genome.ucsc.edu

https://epigenomegateway.wustl.edu/WashU Browser

https://www.ensembl.orgEnsembl

Track Based Displays

Large Scale Queries

• Large scale querying and export of genomic data

• Annotations, Sequences, Variants etc.
– Select data type (eg genes)

– Select genome species

– Select genes / regions / identifiers

– Select attributes to export

– Generate report

Genome File Formats

• Genome Assemblies

– Chr sequence, FastA format

– A small header plus DNA bases

– Also used for RNA / protein

• Gene Annotations

– GFF or GTF format (both very similar)

– Hierarchical format linking exons to transcripts to genes

https://www.ensembl.org/info/data/ftp/index.html

>I dna:chromosome chromosome:R64-1-1:I:1:230218:1 REF

CCACACCACACCCACACACCCACACACCACACCACACACCACACCACACCCACACACACA

CATCCTAACACTACCCTAACACAGCCCTAATCTAACCCTGGCCAACCTGTCTCTCAACTT

ACCCTCCATTACCCTGCCTCCACTCGTTACCCTGTCCCATTCAACCATACCACTCCGAAC

CACCATCCATCCCTCTACTTACTACCACTCACCCACCGTTACCCTCCAATTACCCATATC

>II dna:chromosome chromosome:R64-1-1:II:1:813184:1 REF

AAATAGCCCTCATGTACGTCTCCTCCAAGCCCTGTTGTCTCTTACCCGGATGTTCAACCA

AAAGCTACTTACTACCTTTATTTTATGTTTACTTTTTATAGGTTGTCTTTTTATCCCACT

TCTTCGCACTTGTCTCTCGCTACTGCCGTGCAACAAACACTAAATCAAAACAATGAAATA

CTACTACATCAAAACGCATTTTCCCTAGAAAAAAAATTTTCTTACAATATACTATACTAC

FastA Format Data

IUPAC Ambiguity Codes
IUPAC Code Meaning

A A

C C

G G

T/U T

M A or C

R A or G

W A or T

S C or G

Y C or T

K G or T

V A or C or G

H A or C or T

D A or G or T

B C or G or T

N G or A or T or C

Annotation Descriptions

Gene

Exon (combined into transcript)

Coding Exon

GFF (Strictly GFF.2)

• Comprehensive annotation format

• Tab delimited

• Flexible – able to accommodate multi-features

GFF File Fields
1. Chromosome
2. Source
3. Feature Type
4. Start
5. End
6. Score
7. Strand (+/-)
8. Frame (1,2,3)
9. Group/Attributes

1 hav gene 11869 14409 . + . ID=gene:ENSG223972;Name=DDX11L1;description=DEAD/H-box 1;gene_id=ENSG223972

1 hav transcript 11869 14409 . + . ID=transcript:ENST456328;Parent=gene:ENSG223972;Name=DDX11L1-002;

1 hav exon 11869 12227 . + . Parent=transcript:ENST456328;exon_id=ENSE2234944;rank=1

1 hav exon 12613 12721 . + . Parent=transcript:ENST456328;exon_id=ENSE3582793;rank=2

1 hav exon 13221 14409 . + . Parent=transcript:ENST456328;exon_id=ENSE2312635;rank=3

Positions are 1-indexed, fully open

GTF

• Targeted at gene structure definition

• Variant of GFF with stricter rules about attributes

– Attributes must use gene_id and transcript_id

– Commas mandatory and single space delimited

1 havana gene 11869 14409 . + . gene_id "ENSG223972"; gene_name "DDX11L1";

1 havana transcript 11869 14409 . + . gene_id "ENSG223972"; transcript_id "ENST456328"; transcript_name "DDX11L1-202";

1 havana exon 11869 12227 . + . gene_id "ENSG223972"; transcript_id "ENST456328"; exon_number "1"; exon_id "ENSE2234944";

1 havana exon 12613 12721 . + . gene_id "ENSG223972"; transcript_id "ENST456328"; exon_number "2"; exon_id "ENSE3582793";

1 havana exon 13221 14409 . + . gene_id "ENSG223972"; transcript_id "ENST456328“; exon_number "3"; exon_id "ENSE2312635";

Genome Exploration Exercise

mRNA Translation into Protein

• Most species use the same code

• Some have minor differences

https://www.ncbi.nlm.nih.gov/Taxonomy/Utils/wprintgc.cgi

GACACC ATG AGC ACT GAA ... CTG TGA

Met Ser Thr Glu Arg Stp

Start Codon Stop Codon

UTR

Codon Usage

Often
internal

Often
surface

Often
Binding or
catalytic

sites

Protein Domain Information

• A single protein can have more than one functional unit
– Proteins are annotated with functional ‘domains’
– A domain is normally linked with a globular folded structure

• Domain structures are re-used to provide modular functionality across
multiple proteins.
– Often linked to exon structures or splice variation

• It can be useful to know the key functional amino acids
– Binding pockets
– Active sites

Protein Domain Databases

http://smart.embl-heidelberg.de/

https://www.ebi.ac.uk/interpro/

Types of domain

• Globular
– Forms a concerted 3D structure
– Most catalytic and some binding domains

• Semi-ordered
– Coiled coil
– Many binding domains

• Transmembrane
– Threaded through a membrane
– Transmembrane regions, then internal and external segments

• Disordered / Low Complexity
– Linker regions
– Intrinsically disordered proteins

Key Residue Databases

Protein Structure Databases

Protein Structure Classification Databases

https://www.cathdb.info/

https://scop.mrc-lmb.cam.ac.uk/

Predicted Structure Database
Currently (Mar 2022), only 7914/22818 protein coding genes have an experimental 3D structure available

https://alphafold.ebi.ac.uk/

Protein Annotation Exercise

Pathways

Hierarchy of Reaction Annotations

• Components (Reactants / Products)

• Proteins (Enzymes)

• Reactions

• Pathways

• Processes

A + B C + D
X

D + E F + G
Y

Reactions

Enzyme Databases

• Enzymes are described by an Enzyme Commission (EC) number

– EC 2.7.1.10 is phosphoglucokinase

– Hierarchical structure

• Main Enzyme databases

– Expasy Enzyme

–

Chemical entities of biological interest
A database of "small" molecules with biological relevance
Natural or synthetic products which intervene in the processes of living organisms

Pathways

Reactome

KEGG

Functional Gene Sets

Root ontology terms
1 2 3

general

specific

Parent

Child

big

small

Genes assigned to ontology terms

• Cellular Component
– GO:0005634 nucleus
– GO:0005654 nucleoplasm
– GO:0005730 nucleolus

• Molecular Function
– GO:0003677 DNA binding
– GO:0003700 transcription factor activity,

sequence-specific DNA
binding

– GO:0003714 transcription corepressor
activity

– GO:0005515 protein binding
– GO:0043565 sequence-specific DNA

binding

• Biological Process
– GO:0001714 endodermal cell fate

specification
– GO:0006351 transcription, DNA-templated
– GO:0006355 regulation of transcription, DNA-

templated
– GO:0007275 multicellular organism

development
– GO:0008283 cell proliferation
– GO:0019827 stem cell population

maintenance
– GO:0030154 cell differentiation
– GO:0035019 somatic stem cell population

maintenance
– GO:0045595 regulation of cell differentiation
– GO:0045944 positive regulation of

transcription from RNA
polymerase II promoter

– GO:1903507 negative regulation of nucleic
acid-templated transcription

Nanog homeobox [Source:HGNC Symbol;Acc:HGNC:20857]

Reactions and Pathways Exercise

Regulation and Interactions

• The regulation of genes is as important as their structure or
function

• Several sources of useful information

– Regulatory binding proteins, mostly transcription factors

– Interactions with other proteins to form complexes

– Composition of known complexes

Transcription Factor Information

Transcription Factor Information

Genes Regulated by a Transcription Factor

• Difficult to predict - lots of false positives

– Swiss Regulon

–

–

–

Gene Interactions

• Many genes form stable or transitory interactions with others

• Knowing the genes that interact helps understand biology

Types of Interaction

• Physical

– Two proteins directly interact, either stably or transiently

• Genetic

– One gene influences another, normally after modification

• Co-expression

• Knockout compensation

Complex Prediction

• Many proteins interact with several others, but at different
times

• Complexes suggest that multiple proteins directly associate

– Can't always be clearly predicted from pairwise interactions

– Other experimental methods are required

Regulatory Information Exercise

Sequence Variants

Reference GATCTTAGCTGA

Variant GATCTTACCTGA

Sequence Variants

• Germline variants
– Happen in sperm or eggs
– Completely inherited into the next generation
– Can cause genetic disease

• Somatic variants
– Happen in other tissues
– Partially penetrant
– Common cause of cancer

Types of Variant

Ref GATCTTAGCTGA

Var GATCTTACCTGA

Substitution
Single Nucleotide Polymorphism
SNP

Ref GATCTTAG..CTGA

Var GATCTTACAACTGA
Insertion

Ref GATCTTAGCTGA

Var GATCTTAC..GA
Deletion

InDel

Functional Variant Consequences

• Within Coding Region
– Silent (codon changes, but same translation)

– Missense (change translation from one amino acid to another)

– Nonsense (change translation from one amino acid to STOP)

– Frameshift (InDel changing the translation frame)

• Outside CDS
– Breaks or adds splice junction

– Changes functional binding site

Structural variants

• Chromosomal copy number change

– Gain or loss of a chromosome

– Leads to serious genetic disease

• Segmental Deletion / Duplication

– Large parts of chromosomes deleted, duplicated, inverted, translocated

– 1kb to 3Mbp

– Affects many genes, can lead to gene fusions

Databases of Variants

• Common genomic variants
– Measured across a large population

– Shows natural variation

– Not necessarily linked to disease

– Used for studying populations and families

• Functional variants
– Variants with an associated phenotype

– Often disease related but can be any measurable phenotype

Variant Databases
• Single Variants

– dbSNP (https://www.ncbi.nlm.nih.gov/snp/)
• Full reference for any reported SNPs, mix of functional and non-functional

– HGMD (http://www.hgmd.cf.ac.uk)
• Human genetic disease focussed database

– COSMIC (https://cancer.sanger.ac.uk/cosmic)
• Mutations observed in Cancer
• Also has details of mutations in immortalised cell lines

• Larger Regions
– dbVar (https://www.ncbi.nlm.nih.gov/dbvar/)

• Counterpart to dbSNP for larger variants

– ClinVar (https://www.ncbi.nlm.nih.gov/clinvar/)
• Larger variants with clinical relevance

– OMIM (https://www.ncbi.nlm.nih.gov/omim)
• A more wide ranging collection of the phenotypic variation linked to genes

https://www.ncbi.nlm.nih.gov/snp/
http://www.hgmd.cf.ac.uk/
https://cancer.sanger.ac.uk/cosmic
https://www.ncbi.nlm.nih.gov/dbvar/
https://www.ncbi.nlm.nih.gov/clinvar/
https://www.ncbi.nlm.nih.gov/omim

Variant Terminology

• Minor Allele Frequency (MAF)

– How prevalent the variant is in the population

• Impact scores (SIFT / PolyPhen etc)

– A quantitative value assessing the likely biological impact of a variant

Variant Exercise

Other Information and Data Sources

Gene Expression Information

Gene Expression Information

Gene Expression Information

Post translational Modifications

• Many proteins are modified after they have been translated

– Phosphorylation

– Glycosylation

– Ubiquitination

– Nitrosylation

– Methylation

– Acetylation

– Lipidation

– Proteolysis

Both PTMs observed on a protein and proteins
modified by a query gene.

Combined Gene/Protein Centric Datasources

Gene https://www.ncbi.nlm.nih.gov/gene/

https://www.genecards.org

https://www.wikigenes.org/

https://www.uniprot.org/

Disease Relevance
High Impact publication summaries
Biological Context
Anatomical Context
Chemical Compound Associations
Physical Interactions
Enzymatic Interactions
Regulatory relationships
Analytical, diagnostic and therapeutic context
References

Gene

Final Summary Exercise

Experimental Data Types and
Repositories

Simon Andrews, Chris Hall, Judith Webster, Eoin Fahy,
Laura Biggins, Hanneke Okkenhaug, Simon Walker

DNA
(Genome)

RNA
(Transcriptome)

Protein
(Proteome)

SNPs

Splicing

Transcription FactorsEpigenetics

PathwaysPost-translational
modifications

Non-coding RNA

Domains

Structures
Metabolites

Big Data Generation

• High throughput sequencing
– Genomics, Transcriptomics, Epigenetics

• Multi-channel Flow Cytometry
– Cell surface proteomics

• Mass Spectrometry
– Proteomics, Metabolomics

• Biological Imaging
– Cell / Tissue structure, Proteomics, Metabolomics

Data Repositories

• For many techniques deposition
of data in a suitable repository is
a condition of publication

• Repositories are more developed
and complete for some
techniques than others

• Still a growing area

FAIR Data Principles

• Designed to make data as useful as possible to future researchers

–Findable
• Unique accession code
• Rich metadata

–Accessible
• Automated query and download API

–Iteroperable
• Use of open formats
• Standard Ontologies for descriptions

–Reusable
• Clear licensing
• Annotated to common community standards

High Throughput Sequencing

Illumina Novaseq

ONT MinION

PacBio Revio

Data Generation Capacity

Sequencer Read Length Bases per run

Illumina NovaSeq 50-250bp 3000 Gbp

ONT Promethion 48 1kb - 80Mbp 48 x 20-90 Gbp

PacBio Revio 1kb - 20kb 90 Gbp

What can you measure?

• Genomics
– Whole genome sequencing, Targeted Sequencing

• Transcriptomics
– RNA-Sequencing

• Regulation
– Accessible DNA (ATAC-Seq), Histone Modifications, Transcription Factor binding

sites

• Epigenetics
– DNA Methylation, Chromatin Structure

Genome Sequencing

DNA

Fragment DNA (Sonnication, Tagmentation)

Size Select

Sequence Everything
Whole Genome Sequencing (WGS)
Shotgun sequencing

Hybridise to Capture Baits for Exons

Sequence Captured Material
Whole Exome Sequencing (WES)

A
A

RNA-Sequencing

rRNA depleted mRNA

Fragment

Random prime + RT

2nd strand synthesis (+ U)

A-tailing

Adapter Ligation

(U strand degradation)

Sequencing

NNNN

u u u u

u u u u

u u u u A
A
T

T

A T

Enrichment Sequencing

DNA

DNA

Cross-link proteins to DNA

Fragment DNA (sonication, MNase etc)

Y
Capture

Elute Remove Crosslinks
Size Select
Add Adapters
Sequence

Bisulphite Sequencing

CCAGTCGCTATAGCGCGATATCGTA
me me

TTAGTTGCTATAGTGCGATATTGTA

TTAGTTGCTATAGTGCGATATTGTA

...CCAGTCGCTATAGCGCGATATCGTA...
|||||||||||||||||||||||||

Convert

Map

10X Single Cell RNA-Seq

Cells Barcoded Beads

OilRT
Reagents

Gel Beads in Emulsion (GEMs)

10X Single Cell RNA-Seq Adapter System

Oligo dT
UMI (all different)
Cell barcode (same within GEM)
Priming site

Multi-measure single cell

Spatial Transcriptomics

• 10X Visium

• Nanostring CosMX

• Vizgen Merscope

@HWUSI-EAS611:34:6669YAAXX:1:1:5069:1159 1:N:0:

TCGATAATACCGTTTTTTTCCGTTTGATGTTGATACCATT

+

IIHIIHIIIIIIIIIIIIIIIIIIIIIIIHIIIIHIIIII

@HWUSI-EAS611:34:6669YAAXX:1:1:5243:1158 1:N:0:

TATCTGTAGATTTCACAGACTCAAATGTAAATATGCAGAG

+

DF=DBD<BBFGGGGGGGBD@GGGD4@CA3CGG>DDD:D,B

@HWUSI-EAS611:34:6669YAAXX:1:1:5266:1162 1:N:0:

GGAGGAAGTATCACTTCCTTGCCTGCCTCCTCTGGGGCCT

+

:GBGGGGGGGGGDGGDEDGGDGGGGDHHDHGHHGBGG:GG

FastQ Format Data

Public Sequencing Databases

• GEO (NCBI)

• Array Express (EBI)
– Databases for quantitated sequencing data.

Provide experimental annotation and
metadata and processed quantitated data

• SRA (NCBI)

• ENA (EBI)
– Provide raw sequencing data as fastq files

Accession Codes

GSExxxx
GEO Study

GSMxxxx
GEO Sample

SRRxxxx
SRA Run

Sequence
Data

SRXxxxx
SRA Experiment

SRPxxxx
SRA Study

sradownloader SRR9924120

Sequencing Data Exercise

Flow Cytometry

Flow Cytometry

Small Scale Measurement

https://flowjo.com

https://flowjo.com/

Using Flow for Sorting Cells

• Cell subpopulations

• CRISPR screens

• Cow sexing!

Large Scale Measurement

https://doi.org/10.3389/fimmu.2019.01194

https://doi.org/10.3389/fimmu.2019.01194

Problems with multiple fluorescent markers

Lu
Nd Tb

Ba

Traditionally filters measure one wavelength per fluor

Spectral Flow Cytometry measures the whole
spectrum and can deconvolve overlapping emissions
spectra
Allows for 40+ markers to be used simultaneously.

Public Flow Data Repository

• Deposition of FCS files

– Instrument details

– Raw data

– Analysis details

• Basic description of experiment structure

Flow Exercise

Mass Spec

• General purpose method to measure the accurate masses of small
molecules

• Can be used to identify
– Proteins (plus modifications)

– Metabolites
• Sugars

• Nucleotides

• Amino Acids

• Lipids

Protein Mass Spec

Too Big

Proteins

Too Many

Peptides

Non-specific

A peptide

Digest Separate

Protein Mass Spec Workflow

Protein Mix

Digestion

Peptide Mix

Separation

Chromatography
Column (s)

Mass SpecIdentificationPeptide Masses
Plus Retention

Protein Mass Spec Results

https://www.maxquant.org/

Protein Identification

http://www.ohri.ca/proteomics/

Post Translational Modifications

• When doing tandem mass spectrometry you can also identify
modified peptides

• Phosphorylation
• Acetylation
• Methylation
• Palmitylation
• Acylation
• Ubiquitination
• etc.

High throughput proteomics

30 samples per day Evosep workflow,
>12 000 proteins were identified in 48 h
of mass spectrometry time

10,000 proteins per sample
37,000 phosphosites per sample

Expanding Mass Spec Technology

1,400 proteins measured from a single cell

Mass Spectral Imaging
Fix a sample to a surface and then do scanning
Ionisation over it to get a spectrum for each point.

You can then pick any fragment and image its
distribution over the original sample

Data Repositories for Proteomics Mass Spec

Data Repositories for Proteomics Mass Spec

• Varying amounts of experimental annotation

• Good description of processing and preparation

• Raw data files available

– Mass spec still uses a lot of proprietary vendor file formats

– Open mzML format is defined but often not used

– Converters exist but often lose information.

Metabolite Mass Spectrometry

• Similar concepts to protein mass spec

• Range of starting material

– Serum

– Urine

– Cerebrospinal fluid

– Saliva

• Different separations

• Up to 5000 different metabolites to find

Data Repository for Metabolomics Data

• Reference spectra for biological molecules

– Used for searching and quantitation

• Experimental datasets of MassSpec Studies

– Used to answer biological questions

– Also provides visualisations and tools

Metabolomics Workbench

Mass Spec Data Exercise

Imaging Analysis

• What can you measure with imaging?

• Cell structure and morphology
– In both live and fixed cells

• Targeted molecules (fluorescence microscopy)
– Antibodies to proteins
– Fluorescent fusion proteins

• Functional readouts
– Redox state
– pH

Types of Microscopy

• Light Microscopy

– Sample is illuminated, some light goes to the viewer

– Biological samples are generally clear, so hard to see

– Can use stains (often toxic) or reflection or phase shift to see better

https://zeiss-campus.magnet.fsu.edu/articles/basics/contrast.html

Types of Microscopy

• Fluorescence Microscopy

– Uses molecules which excite at one wavelength and emit at another

– Allow the tagging of specific biological molecules

– Confocal microscopes allow clear views of a single plane in the sample

DOI:10.3390/ijms20082033

Ultra-plex fluorescence imaging

Simon Walker – BI Imaging Facility

Types of Microscopy

• Electron Microscopy

– Fixed and processed samples only (not live)

– Very high resolution

https://www.ncl.ac.uk/emrs/

High Content Imaging

• Microscopy traditionally operated on small numbers of
individual samples

• Improved equipment and automation now allows for more
ambitious studies
– 384 well plates

– 30 images per well

– 5 different markers

– Thousands of images

– Hundreds of measured features per cell

Imaging Flow Cytometry
High Content Imaging from Flowed Cells

Up to 5000 cells per second
Automated real-time feature extraction

High Content Applications

• Screening for drugs with specific phenotypic effects

• Measuring CRISPR library phenotypes

• Measuring RNAi library phenotypes

Image Data Resource

Imaging Data Exercise

Graphical Software for Sequence Exploration

• IGV
– Viewer for multiple library types

– Generally works with BAM or VCF files

– Looks at sequence level alignments of reads against genomes

• SeqMonk
– Visualisation and analysis for mapped datasets

– Looks at positions rather than sequence

– RNA-Seq, ChIP, ATAC, BS-Seq etc

– Works with BAM files

Using IGV

Integrative Genomics Viewer (IGV)

Software from the Broad Institute http://software.broadinstitute.org/software/igv/home

Interactive tool for the visual exploration of genomic data

Available to download and run as a desktop java application

Also available as an online application https://igv.org/app/

James T. Robinson, Helga Thorvaldsdóttir, Wendy Winckler, Mitchell Guttman, Eric S. Lander, Gad Getz, Jill P.
Mesirov. Integrative Genomics Viewer. Nature Biotechnology 29, 24–26 (2011).

http://software.broadinstitute.org/software/igv/home
https://igv.org/app/
http://www.nature.com/nbt/journal/v29/n1/abs/nbt.1754.html

IGV
Can use it without data to explore genes in the genome (similar to Ensembl / UCSC)

Upload bam files for data exploration – must have accompanying index file in the same
location as the bam file (.bai)

Upload VCF files for variant analysis – must have accompanying index file in the same
location at the VCF file (.tbi)

IGV web app with no data
loaded

IGV desktop – initial view

Zoomed right out
showing all the
chromosomes

No reads are shown
at this zoom level

Track at the bottom
shows gene density

Gene level view – ‘expanded’

Zoom in to see
coverage track and
aligned reads.

Track at the bottom
shows genes.

Exons are solid
rectangles, strand is
shown by arrows

Can click on gene to
see more info, link to
ncbi

To see splice variants,
right click on gene and
select “Expanded”

Gene level view – ‘squished’

Colours represent
different chromosomal
events

• Blue - inserts that are
smaller than expected

• Red - inserts that are
larger than expected.

• Inter-chromosomal
rearrangements are
color-coded by
chromosome.

Sequence level view

Zoom right in to base
pair resolution.

Clicking on reference
nucleotides shows or
hides the 3 frame aa
translation

Forward strand is
shown – change this
by clicking small
arrow to the left of
the DNA sequence

Sequence level view

SNPs are highlighted in the coverage track if
the nucleotide differs from the reference in
>= 20% of reads

Variants – variant call format (VCF) files

VCF files only show
variation from reference

Default – dark blue is
heterozygous and light
blue is homozygous for
SNP

Can supply a metadata
file - tab delimited file
with sample names the
same as the tracks

IGV Exercise

SeqMonk

SeqMonk Exercise

Computational Environments for
Processing and Analysing Big Data

Simon Andrews

Computation for Big Data

• Physical
– What sort of machine / storage can I use?
– What will I need?

• Software
– What programs exist to process / analyse my data?
– What operating system will they run under?

• Programming / Analysis
– How can I write new analysis tools or perform programmatic analyses?

Topics for Today

• Running programs in a command line environment

• How to select which programs / methods to use?

• Programmatic analysis with R and Tidyverse

• Developing new analysis tools with python

Big Data Operating Systems

What (exactly) is Linux?

Why Linux?

• Programs are long running and require automation

– Need a command line driven operating system

– Easy text based remote access

• Computers need to operate at scale

– Free and open source are a real benefit

– Can tinker with everything to tune performance

Types of Linux installation

• Bare metal
– Physical hardware
– CD / DVD / USB / Network installation
– Can be physically accessible (desktop) or remote (server / cluster)

• Virtual Machine
– Runs within another operating system
– Portable / disposable
– Install from ISO / Network

• Cloud
– Virtual machine on someone else's hardware
– Amazon / Google are the main providers
– Range of available hardware and OS images available
– Pay by the hour

Single Machines vs Clusters

1 physical box
28 CPU cores
512GB RAM

User 1’s Machine

Compute
Node

Compute
Node

Compute
Node

Compute
Node

Compute
Node

Compute
Node

Compute
Node

Compute
Node

Intranet

Storage Array

Head Node
Private Network

User 2’s Machine

20 physical boxes
~700 CPU cores

7TB RAM

Cluster Queues

fastqc data.fq.gz

ssub

-o f.log

--cores=2

--mem=5G

fastqc data.fq.gz

Workflows

• Larger Scale Automation

• Multiple Programs

• Multiple Files

• Integrates with Clusters

nf_rnaseq --genome GRCh38 *fastq.gz

executor > slurm (21)

[15/929bd5] process > FASTQC (lane8_DD_P9_TGACCA_L008) [100%] 4 of 4 ✔

[b9/674ced] process > FASTQ_SCREEN (lane8_FF_P4_ATCACG_L008) [100%] 4 of 4 ✔

[ca/b39d14] process > TRIM_GALORE (lane8_FF_P9_CGATGT_L008) [100%] 4 of 4 ✔

[c0/4dcaf9] process > FASTQC2 (lane8_FF_P9_CGATGT_L008) [100%] 4 of 4 ✔

[58/879cf5] process > HISAT2 (lane8_FF_P9_CGATGT_L008) [100%] 4 of 4 ✔

[c4/cfe1f1] process > MULTIQC [100%] 1 of 1 ✔

Completed at: 05-Feb-2021 08:47:47

Duration : 4m 2s

CPU hours : 1.9

Succeeded : 21

Running programs in the BASH shell

Running programs in Linux

• Two major methods
– Graphical
– Command line

• Graphical launches only work for graphical programs accessed
through a graphical environment

• Most data processing will be command line based, as will most
remote access
– Graphical programs can still be launched from the command line

Shells

• A shell is a command line interpreter, used to launch software
in Linux

• Text commands are used to launch programs

• We will use the most popular shell, BASH

What does a shell provide

• Command line editing and construction tools

• History

• Job control

• Automation

– Scripting language

– Variables, functions etc

Running programs

• Type the name of the program you want to run

– Add on any options the program needs

– Press return - the program will run

• When the program ends control will return to the shell

• Run the next program!

Running programs

student@ip1-2-3-4:~$ ls

Desktop Documents Downloads examples.desktop Music

Pictures Public Templates Videos

student@ip1-2-3-4:~$

Command prompt - you can't enter a command unless you can see this

The command we're going to run (ls in this case, to list files)

The output of the command - just text in this case

Running graphical programs

student@ip1-2-3-4:~$ xeyes

student@ip1-2-3-4:~$

Note that you can't enter another command
until you close the program you launched

The structure of a unix command

ls -ltd --reverse Downloads/ Desktop/ Documents/

Program
name

Switches Data
(normally files)

Each option or section is separated by spaces. Options or files with spaces in must be put in quotes.

Command line switches

• Change the behaviour of the program
• Come in two flavours (each option usually has both types available)

– Minus plus single letter (eg -x -c -z)
• Can be combined (eg -xcz)

– Two minuses plus a word (eg --extract --gzip)
• Can't be combined

• Some take an additional value, this can be an additional option, or
use an = to separate (it's up to the program)
– -f somfile.txt (specify a filename)
– --width=30 (specify a value)

Manual pages

• All core programs will have a manual page to document the
options for the command

• Manual pages are accessible using the man program followed
by the program name you want to look up.

• All manual pages have a common structure

Manual Pages (man cat)
CAT(1) User Commands CAT(1)

NAME

cat - concatenate files and print on the standard output

SYNOPSIS

cat [OPTION]... [FILE]...

DESCRIPTION

Concatenate FILE(s) to standard output.

With no FILE, or when FILE is -, read standard input.

-A, --show-all

equivalent to -vET

-n, --number

number all output lines

-T, --show-tabs

display TAB characters as ^I

--help display this help and exit

EXAMPLES

cat f - g

Output f's contents, then standard input, then g's contents.

cat Copy standard input to standard output.

Help Pages

• For non core programs (ie analysis / processing) you won't
have a man page

• Instead use --help to get the help page

$ hisat2 --help

HISAT2 version 2.1.0 by Daehwan Kim (infphilo@gmail.com, www.ccb.jhu.edu/people/infphilo)

Usage:

hisat2 [options]* -x <ht2-idx> {-1 <m1> -2 <m2> | -U <r> | --sra-acc <SRA accession number>} [-S <sam>]

<ht2-idx> Index filename prefix (minus trailing .X.ht2).

<m1> Files with #1 mates, paired with files in <m2>.

Could be gzip'ed (extension: .gz) or bzip2'ed (extension: .bz2).

<m2> Files with #2 mates, paired with files in <m1>.

Could be gzip'ed (extension: .gz) or bzip2'ed (extension: .bz2).

<r> Files with unpaired reads.

Could be gzip'ed (extension: .gz) or bzip2'ed (extension: .bz2).

<SRA accession number> Comma-separated list of SRA accession numbers, e.g. --sra-acc SRR353653,SRR353654.

<sam> File for SAM output (default: stdout)

<m1>, <m2>, <r> can be comma-separated lists (no whitespace) and can be

specified many times. E.g. '-U file1.fq,file2.fq -U file3.fq'.

Options (defaults in parentheses):

Exercise 12
Running Programs in Bash

Understanding Unix File Systems

Unix File Systems

• Consists of a hierarchical set of directories (folders)

• Each directory can contain files

• No drive letters (drives can appear at arbitrary points in the file
system)

• No file extensions (you can add them, but they're not required)

A simple unix filesystem

/ (Always the top of the file system)

anne/

home/ (Directory containing all home directories)

simon/

Documents/ (All names are case sensitive)

test.txt (A file we want to work with)

media/

myusb/ (A USB stick added to the system)

/home/simon/Documents/test.txt

Creating and moving into directories

• Every Unix session has a ‘working directory’ which is a folder where the shell looks for file
paths

• You can see your current working directory with pwd

• Your initial working directory will be your home directory (/home/user)

• You can change your working directory with cd [new working directory]

• Running cd on its own takes you back home

• You can create a new directory with mkdir [new directory name]

Specifying file paths

• Some shortcuts

– ~ (tilde, just left of the return key) - the current user's home
directory

– . (single dot) - the current directory

– .. (double dot) - the directory immediately above the current
directory

Specifying file paths

• Absolute paths from the top of the file system
– /home/simon/Documents/Course/some_file.txt

• Relative paths from whichever directory you are currently in
– If I'm working in /home/simon/Course/
– big_data.csv = /home/simon/Course/big_data.csv

• Paths using the home shortcut
– ~/Documents/Course/some_file.txt will work for user simon

anywhere on the system

Command line completion

• Most errors in commands are typing errors in either program
names or file paths

• Shells (ie BASH) can help with this by offering to complete path
names for you

• Command line completion is achieved by typing a partial path
and then pressing the TAB key (to the left of Q)

Command line completion

Actual files in a folder:

Desktop

Documents

Downloads

examples.desktop

Music

Pictures

Public

Templates

Videos

If I type the following and press tab:

De [TAB] will complete to Desktop as it is the only option

T [TAB] will complete to Templates as it is the only option

Do [TAB] will no nothing (just beep) as it is ambiguous

Do [TAB] [TAB] will show Documents and Downloads since
those are the only options

Do [TAB] [TAB] c [TAB] will complete to Documents

You should ALWAYS use TAB completion to fill in paths for
locations which exist so you can't make typing mistakes

(it obviously won't work for output files though)

Wildcards
• Another function provided by your shell (not your application)

• A quick way to be able to specify multiple related file paths in a single operation

• There are two main wildcards

– * = Any number of any characters
– ? = One of any character

• You can include them at any point in a file path and the shell will expand them before
passing them on to the program

• Multiple wildcards can be in the same path.

• Command line completion won't work after the first wildcard

Wildcard examples

$ ls Monday/*txt

Monday/mon_1.txt Monday/mon_2.txt Monday/mon_3.txt
Monday/mon_500.txt

$ ls Monday/mon_?.txt

Monday/mon_1.txt Monday/mon_2.txt Monday/mon_3.txt

$ ls */*txt

Friday/fri_1.txt Monday/mon_1.txt Monday/mon_3.txt
Tuesday/tue_1.txt

Friday/fri_2.txt Monday/mon_2.txt Monday/mon_500.txt
Tuesday/tue_2.txt

$ ls */*1.txt

Friday/fri_1.txt Monday/mon_1.txt Tuesday/tue_1.txt

The structure of a Unix command

ls -ltd --reverse Downloads/ Desktop/ Documents/

Program
name

Switches Data
(normally files)

Each option or section is separated by spaces. Options or files with spaces in must be put in quotes.

D*

Manipulating files

• You will spend a lot of time managing files on a Linux system.

– Viewing files (normally text files)

– Editing text files

– Moving or renaming files

– Copying files

– Deleting files

– Finding files

Viewing Files
• Simplest solution

– cat [file] Sends the entire contents of a file (or multiple files) to the screen.

• Quick look
– head or tail will look at the start/end of a file

• head -10 [file]

• tail -20 [file]

• More scalable solution
– less is a 'pager' program, sends output to the screen one page at a time

• Return / j = move down one line
• k = move up one line
• Space = move down one page
• b = go back one page
• /[term] = search for [term] in the file
• q = quit back to the command prompt

less -S (no wrapping)

Editing files

• Lots of text editors exist, both graphical and command line

• Many have special functionality for specific content (C, HTML
etc)

• nano is a simple command line editor which is always present

Using nano to edit text files

• nano [filename] (edits if file exists, creates if it doesn't)

Moving / Renaming files

• Uses the mv command for both (renaming is just moving from one name to another)

• mv [file or directory] [new name/location]

• If new name is a directory then the file is moved there with its existing name

• Moving a directory moves all of its contents as well

• Examples
– mv old.txt new.txt

– mv old.txt ../Saved/

– mv old.txt ../Saved/new.txt

– mv ../Saved/old.txt .

Copying files

• Uses the cp command
• cp [file] [new file]

• Operates on a single file
• Can copy directories using recursive copy (cp -r)

• Examples
– cp old.txt new.txt

– cp old.txt ../Saved/

– cp old.txt ../Saved/new.txt

– cp ../Saved/old.txt .

– cp -r ../Saved ./NewDir

– cp -r ../Saved ./ExistingDir/ (only if ExistingDir exists)

Deleting files

• Linux has no undo.
• Deleting files has no recycle bin.
• Linux will not ask you "are you sure"

• Files can be deleted with the rm command
• Directories (and all of their contents) can be deleted with rm -r

• Examples
– rm test_file.txt test_file2.txt

– rm *.txt (be VERY careful using wildcards. Always run ls first to see what will go)
– rm -r Old_directory/

Exercise 13:
Using the filesystem

More clever BASH usage

What we know already

• How to run programs

• How to modify the options for a program using switches

• How to supply data to programs using file paths and wildcards

What else can we do

• Record the output of programs

• Check for errors in programs which are running

• Link programs together into small pipelines

• Automate the running of programs over batches of files

• All of these are possible with some simple BASH scripting

Recording the output of programs

• One of the aspects of POSIX is a standard system for sending data to and
from programs.

• Three data streams exist for all Linux programs (though they don't have to
use them all)
– STDIN (Standard Input - a way to send data into the program)
– STDOUT (Standard Output - a way to send expected data out of the program)
– STDERR (Standard Error - a way to send errors or warnings out of the program)

• By default STDOUT and STDERR are connected to your shell, so when you
see text coming from a program, it's coming from these streams.

Recording the output of programs

• Rather than leaving these streams connected to the screen,
you can link them to either files, or other programs to either
create logs, or to build small pipelines

programSTDIN
STDOUT

STDERR

Redirecting standard streams

• You can redirect using arrows at the end of your command
– > [file] Redirects STDOUT
– < [file] Redirects STDIN
– 2> [file] Redirects STDERR
– 2>&1 Sends STDERR to STDOUT so you only have one output stream

$ find . -print > file_list.txt 2> errors.txt

$ ls

Data Desktop Documents Downloads errors.txt examples.desktop file_list.txt Music Pictures Public Templates Videos

$ head file_list.txt

.

./Downloads

./Pictures

./Public

./Music

./.bash_logout

./.local

./.local/share

./.local/share/icc

./.local/share/icc/edid-33d524c378824a7b78c6c679234da6b1.icc

Throwing stuff away

• Sometimes you want to be able to hide output

– STDOUT - I just want to test whether something worked

– STDERR - I want to hide progress / error messages

• Linux defines a special file /dev/null which you can write to but
just discards all data sent to it
– might_fail > /dev/null

– chatty_app 2> /dev/null

Linking programs together with pipes

• Part of the original UNIX design was to have lots of small
programs doing specific jobs, and then to link them together to
perform more advanced tasks.

• Pipes are designed to do this by connecting STDOUT from one
program to STDIN on another

Linking programs together using pipes

• Pipes are a mechanism to connect the STDOUT of one program
to the STDIN of another. You can use them to build small
pipelines

• To create a pipe just use a pipe character | between programs

$ ls | head -2

Data

Desktop

Useful programs for pipes

• Whilst you can theoretically use pipes to link any programs, there
are some which are particularly useful, these are things like:

– wc to do word and line counting

– grep to do pattern searching

– sort to sort things

– uniq to deduplicate things

– less to read large amounts of output

– zcat/gunzip/gzip - to do decompression or compression

Small example pipeline

• Take a compressed fastq sequence file, extract from it all of the
entries containing the telomere repeat sequence (TTAGGG) and
count them

• zcat file.fq.gz | grep TTAGGGTTAGGG | wc -l

$ zcat file.fq.gz | wc -l

179536960

$ zcat file.fq.gz | grep TTAGGGTTAGGG | wc -l

3925

Iterating over files

• When processing data it is common to need to re-run the same
command multiple times for different input/output files.

• Some programs will support being provided with multiple
input files, but many will not.

• You can use the automation features of the BASH shell to
automate the running of these types of programs

The BASH for loop

• Simple looping construct

– Loop over a set of files

– Loop over a set of values

• Creates a temporary environment variable which you can use
when creating commands

Examples of for loops

for value in {5,10,20,50}

do

run_simulation --iterations=$value > ${value}_iterations.log 2>&1

done

for value in {10..100}

do

run_simulation --iterations=$value > ${value}_iterations.log 2>&1

done

for file in *txt

do

echo $file

grep .sam $file | wc -l

done

Job Control

• By default you run one job at a time in a shell
– Shells support multiple running jobs

• States of job
– Running - foreground (shell has the attention of the job)

– Running - background (output goes to the shell but other jobs can
run)

– Suspended - background (job exists but is paused, consumes no CPU)

– Running - disconnected (output is no longer attached to the shell)

Job Control

• prog_to_run (starts in foreground)

• prog_to_run & (starts in background)

• Control of running jobs

– jobs lists the jobs in this shell

– Control + Z suspends the current job

– bg puts the current suspended job into the background

– fg [num] puts the selected job back in the foreground

Job Control - nohup

• nohup prog_to_run

– Merges STDOUT and STDERR

– Disconnects from the terminal

– Can't be killed when the terminal exits

– Output appended to nohup.out

– Can redirect with > logfile.txt

Exercise 14: Automation in BASH

Selecting Analysis Tools

RNA-Seq Aligner Selection

• ABMapper
• BBMap
• ContextMap
• CRAC
• GSNAP
• GMAP
• Hisat
• Hisat2
• HMMSplicer
• MapSplice
• MapNext
• Olego
• PALMapper
• Pass

• PASSion
• PASTA
• QPALMA
• RAZER
• SeeSaw
• SoapSplice
• SpliceMap
• SplitSeq
• STAR
• Subjunc
• SuperSplat
• TopHat

• Local Knowledge
• Relevant increases in sensible metrics
• Ease of installation / use / defaults
• Documentation
• Longevity and support

Installing New Software

Different Options

• Ask someone to do it for you
– Best option if you're on a managed system

• Manual Installation
– Look for install instructions - sometimes trivial, sometimes horrific

• Containerised Applications
– Docker or Singularity

• Automated Installation
– BioConda

Containers

• Single applications or pipelines in a VM

• Lighter than normal virtual machines

• Every app operates in an isolated environment

• All dependencies handled for you

• Not easy to modify or debug

• Software black box

• Collection of recipes to install applications on different systems

• Handles dependencies and versioning

• Local installation per user

• Options to install mutually incompatible software

• Great when it works
– Users love it

– Sysadmins hate it

• A nightmare when it doesn't work
– Debugging is really complex

[Optional BioConda Exercise]

Programmatic Environments

Different Types of Programmatic Environment

Data Analysis

• Alternative to GUI exploration/analysis

• Interactive Environment

• Graphing and Statistics

• Report Generation

• Reproducible

• Automatable

• Flexible

• Often one-off

Application Development

• Data processing and extraction

• Automation and pipelining

• Use of remote resources

• Interaction with users

• Non-interactive use

• Advanced command line options

• Longer term development

Programmatic Analysis

• Alternative and complement to exploratory graphical tools

• Positives
– Reproducible and automatable

– Completely flexible and scalable

• Negatives
– Tends to encourage repetition without exploration

– Can be difficult to spot unusual behaviour / bugs

R, Rstudio, Tidyverse, Notebooks

Notebook Structure

• Single overall text document,
split into sections

– Header (mostly preferences)

– Body
• Commentary (default)

• R Code

• Output (graphical and text)

Header (global preferences)

Code Block1

Code Block 1 Output

Formatted Text

Code Block1

Code Block 1 Output

Formatted Text

Code

Output

Creating a Notebook in RStudio

• You may need to install some
packages (Rstudio will prompt
you if you do)

• Opens a default template which
you can then edit

Notebook sections
Header

Commentary

Code

Sections are marked by special quotes

--- for header

```{r}

``` for R code

Default for unquoted text is commentary

Notebook workflow

• Create new notebook document

• Save it straight away (use a .Rmd extension)

• Add commentary in Markdown format

• Add R sections using Insert > R

• Run code blocks to generate output

• Knit document to HTML / PDF / Word

Commentary sections use ‘Markdown’

• Simple markup language

• Designed to be nicely readable as plain text

• Compiles to properly formatted text

• Simple syntax

Markdown basics

• Headings
Heading1

Heading 2

Heading 3 etc.

Heading 1

=========

Heading 2

• Lists (need a blank line first)

* Bullet 1

* Sub-bullet 1

* Bullet 2

1. Numbered 1

2. Numbered 2

[Tab]

Headings also give you navigation for your document, so they’re worth using!

Data Processing with Tidyverse

Basic Structures in R

myfunc(x, value=y) Runs myfunc using data x and y

100 -> saveme Saves a value under a name

myfunc(x,y) -> saveme Saves the output of myfunc

saveme Shows the contents of saveme

funca() %>% funcb() Passes data from funca to funcb

Reading Files

• Tidyverse functions for reading text files into data structures

read_delim("file.csv") -> data

read_tsv("file.tsv") -> data

> read_delim("trumpton.txt") -> trumpton
Rows: 7 Columns: 5

-- Column specification ----------------
Delimiter: "\t"
chr (2): LastName, FirstName
dbl (3): Age, Weight, Height

> trumpton
A tibble: 7 x 5

LastName FirstName Age Weight Height
<chr> <chr> <dbl> <dbl> <dbl>

1 Hugh Chris 26 90 175
2 Pew Adam 32 102 183
3 Barney Daniel 18 88 168
4 McGrew Chris 48 97 155
5 Cuthbert Carl 28 91 188
6 Dibble Liam 35 94 145
7 Grub Doug 31 89 164

Reading files with readr

Tidyverse Data Processing

• select pick columns by name/position

• filter pick rows based on the data

• arrange sort rows

Combining multiple operations

trumpton %>%
filter(Age > 30) %>%
arrange(Height)

A tibble: 4 x 5
LastName FirstName Age Weight Height
<chr> <chr> <dbl> <dbl> <dbl>

1 Dibble Liam 35 94 145
2 McGrew Chris 48 97 155
3 Grub Doug 31 89 164
4 Pew Adam 32 102 183

Running R code in a notebook

Code Block

Run Button

Inserted Output

Plotting Graphs with GGPlot

• Say what data you want to use

• Say what graph type you want to use

• Say how you want the data to affect the graph

• Plot the graph

Geometries and Aesthetics

• Geometries are types of plot
geom_point() Scatterplots

geom_jitter() Stripcharts

geom_boxplot() Box plots

geom_col() Barplots

• Aesthetics are graphical parameters in a given geometry
– Size

– Colour

– Fill

– X/Y position

Setting Aesthetics

• Aesthetic Mappings

– A column in your data defines the value for the aesthetic

• Height is the position on the x, Weight is the position on the y

• Colour the graph by experimental condition

– Set an aesthetic to a fixed value

• Fill all bars with yellow

• Make all of the points size 5

An Example GGplot

expression %>%

ggplot (aes(x=WT, y=KO)) +

geom_point(color="red2", size=5)

Set the data to use

Set the aesthetic mappings

Set the plot type and fixed aesthetics

Statistics in Tidyverse

• Just more functions

anova_test Comparison of multiple means

tukey_hsd Multiple pairwise comparisons

data %>% anova_test (x~y)

x is a quantitative column

y is a categorical column

Test how well we can predict x if we know y

R / Tidyverse / GGPlot / Notebook Exercise

• Create a Notebook

• Write some commentary in markdown

• Load in a dataset

• Plot out the data

• Calculate some summaries

• Run some statistics

Exercise 15: Interactive Data Analysis in R

Application Development in Python

Python is a ‘scripting’ language

#!/usr/bin/env python

print("I am a python program")

C:\Introduction to Python>python example.py
I am a python program

python
python.exe
python3
python3.exe

https://www.python.org/

Different environments for writing python

#!/usr/bin/env python

print("I am a python program")

C:\Users\andrewss\>python
Python 3.9.1 (tags/v3.9.1:1e5d33e, Dec 7 2020,
17:08:21) [MSC v.1927 64 bit (AMD64)] on win32
Type "help", "copyright", "credits" or
"license" for more information.
>>>
>>> print("I am an interactive session")
I am an interactive session
>>>

Scripted: code in text file, output in console

Interactive: code and output in console

Notebook: code, commentary and output in a
single file

Python script basics

#!/usr/bin/env python

my_name = "Simon"

print (my_name,"wrote his first python program")

print ("He is very proud")

Where to find an interpreter
(optional)

Series of python ‘statements’.
One per line (generally). These
are executed in order, from the
top of the file to the bottom.

Your program finishes at the
end of the file

Thonny

• Simple python editor

• Editor at the top

• Interaction at the bottom

• Write

• Save

• Run

– Debug!

Functions vs Methods

• Functions

– Named pieces of code. All data
must be passed in to them.

• Methods

– Functions which are associated
with a piece of data. Called via the
data, you don’t need to pass the
data in to the method

len("Simon")
5

"Simon".upper()
'SIMON'

Text manipulation
string — Common string operations
re — Regular expression operations

Data Types
datetime — Basic date and time types
zoneinfo — IANA time zone support
calendar — General calendar-related functions
array — Efficient arrays of numeric values
copy — Shallow and deep copy operations
pprint — Data pretty printer
graphlib — Operate with graph-like structures

Numeric and Mathematical Modules
math — Mathematical functions
random — Generate pseudo-random numbers
statistics — Mathematical statistics functions

File and Directory Access
os.path — Common pathname manipulations
stat — Interpreting stat() results
tempfile — Generate temporary files and directories
glob — Unix style pathname pattern expansion
shutil — High-level file operations

Data Persistence
pickle — Python object serialization
sqlite3 — DB-API 2.0 interface for SQLite databases

Data Compression and Archiving
gzip — Support for gzip files
bz2 — Support for bzip2 compression
zipfile — Work with ZIP archives
csv — CSV File Reading and Writing

Generic Operating System Services
os — Miscellaneous operating system interfaces
io — Core tools for working with streams
time — Time access and conversions
argparse — Parser for command-line options

Internet Data Handling
email — An email and MIME handling package
json — JSON encoder and decoder

Graphical User Interfaces with Tk
tkinter — Python interface to Tcl/Tk

Software Packaging and Distribution
distutils — Building and installing Python modules
venv — Creation of virtual environments

Packages we're going to use

• requests - fetches data from a web resource and saves it into
your program

• biopython - lots of functionality related to bioinformatics.
We're using it to parse a sequence file, but there's lots of stuff
in there

Using functions from packages

import math
math.sqrt(10)

3.162277

Use functions via the package

from math import sqrt
sqrt(10)

3.162277

Import individual functions

APIs

• Lots of resources make their data available programmatically

• An API describes how to query and access the data

Using APIs

Code Blocks in Python

animals = ["dog","cat","mouse","elephant"]

for animal in animals:
print(animal.lower())
print(animal.upper())

print("Finished listing animals")

4 space indent

Block starts

Block finished

Exercise 16
Application Development in Python Exercise

• Ask the user for the name of a gene

• Use the Ensembl API to get the Ensembl ID for that gene

• Use the Ensembl API to get the transcript sequences

• Use BioPython to parse the sequences

• Write out a list of the transcripts and their lengths

