

Understanding Object
Oriented Programming in

Python

An introduction to object oriented programming for experienced
Python programmers

Version 2020-08

 Understanding Object Oriented Programming in Python

2

Licence
This manual is © 2020, Steven Wingett & Simon Andrews.

This manual is distributed under the creative commons Attribution-Non-Commercial-Share Alike 2.0
licence. This means that you are free:

• to copy, distribute, display, and perform the work

• to make derivative works

Under the following conditions:

• Attribution. You must give the original author credit.

• Non-Commercial. You may not use this work for commercial purposes.

• Share Alike. If you alter, transform, or build upon this work, you may distribute the resulting
work only under a licence identical to this one.

Please note that:

• For any reuse or distribution, you must make clear to others the licence terms of this work.
• Any of these conditions can be waived if you get permission from the copyright holder.
• Nothing in this license impairs or restricts the author's moral rights.

Full details of this licence can be found at
http://creativecommons.org/licenses/by-nc-sa/2.0/uk/legalcode

 Understanding Object Oriented Programming in Python

3

Table of Contents	
Licence .. 2
Table of Contents .. 3
Introduction ... 4

Object-oriented programming overview .. 4
What this course covers ... 4
Is this course intended for me? .. 4

What is a Python object? .. 5
Defining classes .. 5
Instance attributes .. 5

Access methods .. 6

Predicate methods ... 7
Initialisation methods ... 8
String methods .. 9
Modification methods ... 10
Additional methods .. 10
Class attributes .. 11
Static methods ... 12

Inheritance ..12
Inheritance and super() .. 13

Concluding remarks ...16

 Understanding Object Oriented Programming in Python

4

Introduction

Object-oriented programming overview
A strength of Python and a feature that makes this language attractive to so many, is that Python is
what is known as an object-oriented programming language (OOP). (You may occasionally see this
written as “orientated” in British English.)

The alternative programming style is procedural, which may be thought of as a set of ordered
instructions. Giving someone geographical directions makes a good analogy to procedural instructions:
e.g. 1) take the second right, 2) go straight on at the roundabout and 3) turn left at the lights. This style
is what most people think of by the term programming and indeed, this is how we have approached
programming up until now in this course, since it is a simple and effective way to complete tasks of
basic-to-intermediate complexity. As you build more complex programs, however, you may find it
becomes ever more difficult to keep track in your own mind as to what is going on. What does a
particular function or variable do? How should I arrange my many pages of code? Should I make a
value accessible to all parts of my code? These questions you may ask yourself as your codebase
increases in size.

OOP is easier for humans to understand, particularly as a program increases with size, because it
models our everyday world. That is to say, it categorises its components into objects, which may be
thought of as self-contained entities that have their own properties. Different objects may interact with
one another and related objects constitute groups know as classes.

In reality, the distinction between an OOP language and a procedural language is somewhat blurred.
Perl (previously the most popular bioinformatics language) for example has an OOP component, but it
is quite common for even experienced aficionados to hardly ever use this aspect of the language. The
statistical programming language R is similar in this regard, but many users will only explicitly deal with
R objects when processing the output from external modules. In contrast, Java was designed as OOP
from the ground up, and learners will be introduced to these concepts right from the start. Python falls
between Perl and Java in that it is quite possible for programmers to write code with only a passing
familiarity with objects, such as when executing methods on particular objects. However, with a little
bit more experience it is quite possible to build complex object-orientated software in a style more typical
to Java.

What this course covers
This is a short course that introduces the basic concepts of OOP. It then goes into more detail
explaining how to build and manipulate objects. While this course does not provide an exhaustive
discussion of OOP in Python, by the end of the course attendees should be able to build sophisticated
objects to aid analysis and research. Attendees should also learn about the online resources and
documentation to become adept with Python OOP.

Is this course intended for me?
This course is aimed at people who understand the material in the Introduction to Python and Advanced
Python courses. People attending this course should also be interested in building complex Python
programs.

 Understanding Object Oriented Programming in Python

5

What is a Python object?
An exact definition is not easy to give. Many programmers will insist that technically everything in
Python is an object. While this may be true, in this course we referring generally referring to objects as
customised data structures defined by the programmer.

Defining classes
As mentioned before, classes are groups of related objects. For example, a particular dog is an
instance but of the dog class. If we wanted to create a dog in our program, we would define the dog
class, and then make a specific dog from that class. Each dog would constitute a separate Python
object, modelling the real world. (Technically speaking, in Python even the abstract concept of a class
is an object in its own right, but nevertheless you should get the idea that when using this programming
style we create discrete data structures analogous to physical objects.)

So, we would define our dog class using the keyword class, as shown in the simple example below.
Please note: by convention, class names begin with capital letters.

class Dog:

 pass

All the dog class contains is the keyword pass, the placeholder value that allows a block of code to do
nothing, without generating an error. If you were now to type Dog() into the interpreter, you should
see a message similar to this:

<__main__.Dog object at 0x0341D7B0>

The text “__main__” is the name of the module to which the dog class belongs (main is the Python
interpreter). Next is the name of the class followed by an internal memory address (written in
hexadecimal).

To make an instance of the dog class, simply call the class as you would a function:

snoopy = Dog()

This instance of the dog class is named snoopy. You may view its memory location as well:

>>> Dog

<__main__.Dog object at 0x0410D7F0>

Instance attributes
Instances of a class may have methods (such as already seen with built-in objects) and store
information in what is known as fields. Collectively, methods and fields are known as attributes. Both
of these may be accessed using the dot notation.

 Understanding Object Oriented Programming in Python

6

Suppose we wanted to set a field for our dog, snoopy, we would do the following:

snoopy.colour = 'White'

print(snoopy.colour)

All other instances of the Dog class will not have a colour field; only snoopy will be changed by this
statement. Although this is a simple and quick way to edit the snoopy instance, there are better ways
to do this. We shall now work through the commonly used attributes of an instance, building our dog
class as we go.

Definition ambiguity
For this course, we have used the terms methods, fields and attributes as described previously.
Unfortunately, there is no consensus in the Python community as to what these terms mean exactly:
sometimes methods are referred to as method attributes, and fields as value attributes. On other
occasions, the term attribute corresponds to the definition of field given above. Furthermore, other
Python programmers refer to fields as properties. This can be confusing for the beginner. We are not
saying that such different usage is incorrect and you should be aware of the different vocabulary in this
area. We shall, however, be adhering to our definitions during this course.

Access methods
This type of method returns values based on the fields of an instance. The code below re-writes the
dog class so that now instead of simply the pass keyword, the class now has a method named
get_colour. To define a method within a class, use the def keyword which we encountered when
creating functions. You can see that calling this method returns the value self.colour. But where
does self.colour come from? Well, self refers to the current instance of a class, and so the return
statement is in effect saying “return the value of colour associated with this instance (i.e. snoopy) of
the dog class”.

class Dog:

 def get_colour(self):

 return self.colour

>>> snoopy.get_colour()

'White'

You may be wondering as to the point of writing such a method. Wouldn’t it be easier simply to type
the following?

>>> snoopy.colour

'White'

And you would be correct, this is easier and quicker to do and will return the correct answer. Suppose,
however, that at a later date you, or someone else, changes how the Dog colour values are stored
within a class. Maybe you decide to store all useful variables in a dictionary. This will mean that code
that interacted directly with the colour name will no longer work. Having methods to enable your class
instance to interact with the outside world enables programmers to modify the internal structure of such
an object, while still allowing the object to function correctly.

 Understanding Object Oriented Programming in Python

7

While access methods retrieve values based on the current state of an instance of a class, these
methods do not simply have to return a value. They may, for example, perform a test of some kind
before returning a value. In the code printed below, we have modified the Dog class once more to
include an action method that will evaluate the mood of the dog and return a different string response
depending on that mood. Consequently, when snoopy is happy he wags his tail, but when he is angry
you need to watch out, because he will bite!

class Dog:

 def get_colour(self):

 return self.colour

 def animate(self):

 if self.mood == 'Happy':

 return('Wag Tail')

 elif self.mood == 'Angry':

 return('Bite')

 else:

 return('Bark')

snoopy = Dog()

snoopy.mood = "Happy"

print((snoopy.animate()))

snoopy.mood = "Angry"

print((snoopy.animate()))

>>>

Wag Tail

Bite

Predicate methods
A predicate method returns either a True or False value. By convention, such methods begin with
an is_ prefix (or sometimes has_, depending on the grammatical context of the method name).

In the example below, we have modified the Dog class to contain a predicate method that reports
whether a dog is hungry (for brevity, we have removed the other methods from the class). The degree
to which the dog’s stomach is full is associated with the name stomach_full_percentage. If this
value drops below 30, the is_hungry predicate method will return true.

class Dog:

 stomach_full_percentage = 20

 def is_hungry(self):

 if(self.stomach_full_percentage < 30):

 return True

 else:

 Understanding Object Oriented Programming in Python

8

 return False

snoopy = Dog()

print(snoopy.is_hungry())

An import method to add to a class is the ability to sort instances when compared to one other. By
convention, a way to do this is to contract an _lt__ method, which evaluates whether one class is less
than another class. We have added this method to the new version of the Dog class. The method
takes as arguments: itself and another object of the same type (it then checks whether the arguments
passed are indeed of the same type). The method sorts dogs by their ages. We create two dogs, to
which we allocate ages and then sort using the __lt__ method. Running the script confirms that
snoopy is older than scooby.

class Dog:

 def get_age(self):

 return self.age

 def __lt__(self, other):

 if type(self) != type(other):

 raise Exception(

 'Incompatible argument to __lt__:' +

 str(other))

 return self.get_age() < other.get_age()

snoopy = Dog()

snoopy.age = 9

scooby = Dog()

scooby.age = 6

print(snoopy.__lt__(scooby))

>>>

False

Initialisation methods
When creating a new class, it is often useful to set (or initialise) its variables at time of creation. This
is done using a special initialisation method: __init__. This is the usual way to assign values to all
fields in the class (even if they are assigned to None). By convention and ease of use, the __init__
method should be at the top of the code in a class.

You will see we have rewritten the Dog class below, but now with an __init__ method that sets the
dog’s age. As you can see, we then create an instance of a dog called snoopy with an age initialised
to 10 years old.

 Understanding Object Oriented Programming in Python

9

class Dog:

 def __init__(self, data):

 self.age = data

 def get_age(self):

 return self.age

snoopy = Dog(10)

print(snoopy.get_age())

>>>

10

String methods
Sometimes it is useful to be able to print a class to the screen to read its contents. To be able to do
this, you need to write a method that defines how the output should be displayed on printing. There are
special Python methods named __str__ and __repr__ explicitly for this purpose. The __str__ will
be returned after calling print, whereas __repr__ would be returned by the interpreter.

If you look at the new version of the dog class printed below, in which the name of the dog is set during
the initialisation step. Passing the instance of the class (dog1) to the interpreter – or indeed printing
the class – causes the memory location to be returned.

class Dog:

 def __init__(self, data):

 self.name = data

dog1 = Dog("Snoopy")

print(dog1)

>>> dog1

<__main__.Dog object at 0x0405D6B0>

>>> print(dog1)

<__main__.Dog object at 0x0405D6B0>

>>>

However, after adding _init__ and __str__, a human-readable name printed to the screen, which
is defined within the class.

class Dog:

 def __init__(self, data):

 self.name = data

 Understanding Object Oriented Programming in Python

10

 def __str__(self):

 return 'Dog:' + self.name

 def __repr__(self):

 return self.name

>>> dog1

Snoopy

>>> print(dog1)

Dog:Snoopy

Modification methods
So, we have methods that access fields within a class. We also have methods that can modify fields
within a class. In the example below the dog’s mood by default is set to “Sad”. However, the
modification method set_mood will adjust the mood of the dog. In this example, we change the mood
of the dog from “Sad” to “Happy” by using the modification method.

class Dog:

 def __init__(self):

 self.mood = "Sad"

 def get_mood(self):

 return self.mood

 def set_mood(self, data):

 self.mood = data

dog1 = Dog()

print(dog1.get_mood())

dog1.set_mood("Happy")

print(dog1.get_mood())

>>>

Sad

Happy

Additional methods
In addition to the methods described above, there are action methods, which will exert some kind of
effect outside their class. There are also support methods that are used internally within the class, to
assist methods that interact with code outside that class. The code is subdivided in this way for
readability and preventing the re-use of the same chunks of code. Remember earlier in the course we
mentioned how it is often useful to break down large functions into several smaller functions. Well, the
same is true of class methods.

 Understanding Object Oriented Programming in Python

11

Class attributes
Up until now we have looked at attributes that work at the level of each instance of a class. Their impact
is restricted to their own instance and do not affect the other instances of the same class. In contrast,
there are attributes whose scope, or namespace, operate at the wider level of the whole class.

It is quite common and simple need for class attributes is in the recording of the number of instances of
a class. Of course, the wider program could keep track of this, but it is much neater if the class itself
records this value. The code below (generating a sheep class this time) does just this task.

You will notice there is a top-level field called Counter. Fields declared here work at the class-level
and by convention begin with a capital letter. Having made a class field, we now need a class method
to modify it. To make class methods, simply follow the standard way of making an instance method but
place the special indicator @classmethod on the line immediately above the definition. The class
method AddOne simply increments the Counter value by one after being called.

The first sheep instantiated is dolly. The initialisation method calls the AddOne class method and then
assigns the value of the Counter to the instance field id. Consequently, the id of dolly will be set to
1. Repeating this process for flossy further increment the class field Counter, and consequently flossy
will have an id of 2.

class Sheep:

 Counter = 0

 @classmethod

 def AddOne(self):

 self.Counter += 1

 def __init__(self):

 self.AddOne()

 self.id = self.Counter

 def get_id(self):

 return self.id

dolly = Sheep()

flossy = Sheep()

print(dolly.get_id())

print(flossy.get_id())

>>>

1

2

 Understanding Object Oriented Programming in Python

12

Static methods
It is just worth briefly mentioning static methods. These methods are different in that they can be called
directly from a class, without the need for creating an instance of that class. This is illustrated in the
code below. Similar to before, to make a static method place the special indicator @staticmethod
on the line immediately above the definition.

class Utilities:

 @staticmethod

 def miles_to_km(miles):

 return(miles * 1.60934)

journey = 10

journey_km = Utilities.miles_to_km(journey)

print(journey_km)

>>>

16.0934

Static methods are useful when we need to make use of a class’s functionality but we will not need that
class at any other point in the code. When (or indeed whether) to use a static method is often a case
of coding style, but they do help to simplify code.

Inheritance
The concept of inheritance is central to object orientated programming and allows programmers to
write code much more efficiently. The rationale owes much to the phenomenon of the same name
observed in biology, in which organisms with a certain set of traits produce offspring with largely the
same characteristics. In OOP, once we have defined a class, we can easily define a subclass that
automatically “inherits” the code of its parent class (now referred to as the superclass). We can then
change the properties of the subclass, so while it resembles the superclass in many ways, it also has
its own distinct functionality.

This ability of OOP is advantageous as it allows coders to produce objects (remember, all classes are
objects) with a wide range of functions with a much-reduced code base. It also prevents duplication of
code, which is good since if we subsequently need to make changes, we should only have to make the
modification in one place and not in many different locations. The process of inheritances may take
place over many generations i.e. it is possible to make a subclass and then make a subclass of that.

To illustrate this idea, let’s revisit one of the dog classes we generated previously in the section:

class Dog:

 def __init__(self):

 self.mood = "Sad"

 def get_mood(self):

 return self.mood

 Understanding Object Oriented Programming in Python

13

 def set_mood(self, data):

 self.mood = data

The class dog contains the field mood which may be set by the method get_mood, or may be modified
by the method set_mood. The initial value is set to “Sad”. As we have seen before, running the
following code:

dog1 = Dog()

print(dog1.get_mood())

Will return the results:
>>>

Sad

Now, let’s suppose we want to create a subclass of dog. To illustrate this concept of inheritance, let’s
suppose we want to create a breed of dog, for example a Rottwieler. The code to do this is actually
quite simple and entails using the class keyword, followed by the new class name to be made, followed
in parentheses by the superclass.

class Rottweiler(Dog):

 pass

So, we have now generated the rottweiler subclass (for the code to function correctly, we need to
place the keyword pass after the indentation, since the contents of the subclass cannot be left empty).
The subclass rottweiler has inherited the properties of the superclass dog.

rottweiler1 = Rottweiler()

print(rottweiler1.get_mood())

>>>

Sad

Inheritance and super()
The previous example with the Dog and Rottweiler demonstrates how to make a subclass, but at
this stage the benefits of this may not seem apparent. We have simply created a class that, for all
intents of purposes, is identical to the parent class. Why not simply instantiate a new member of the
dog class? Well, we shall now illustrate some of the power of class inheritance.

The Rectangle class represents rectangles that we may encounter in the everyday world, or in
mathematics. Everything in the code should look familiar. The __init__ method allows the user to
specify the length and width of the rectangle, which is all that is needed to define this shape. Having
instantiated a rectangle, there are a couple of methods at our disposal to report the area and perimeter
of any given rectangle.

 Understanding Object Oriented Programming in Python

14

class Rectangle:

 def __init__(self, length, width):

 self.length = length

 self.width = width

 def area(self):

 return self.length * self.width

 def perimeter(self):

 return 2 * self.length + 2 * self.width

This is all well and good, but what about the special case where the length and width of a rectangle are
equal? The above code may work fine in such eventualities, but it is probably easier to have a separate
Square class to deal with these shapes. Not only does a Square class make the code easier to read
(since it will be obvious we are working with a square and rectangle), such classes should be easier to
instantiate, since we only need to know one side length for a square (as opposed to two side lengths
for a rectangle). We could write a separate Square class from scratch, but a more parsimonious
strategy is to create a Square subclass of Rectangle:

class Square(Rectangle):

 def __init__(self, length):

 super().__init__(length, length)

The first line of code generates the Square class and specifies that this will inherit its properties from
the Rectangle class. On the second line we now need a new initialisation method, since we only
need to specify the length of one side of a square. The block of code within the initialisation method
comprises one line, where we introduce the keyword super. As the name suggests, this is used to
refer to the superclass. So this line of code references the __init__ method in the superclass of
Square (which is Rectangle). We then pass length twice to this initialisation method, which is
exactly what we want to do, for if we define a rectangle in which the length was the same as the width,
we will have defined a square. This process of taking a generalised class and then creating more
specific subclass from it is a central concept in object oriented programming.

You will see that we have an __init__ method in our subclass as well as our superclass. If we require
a method in the child (sub) class to do something different from the parent, simply define the method in
the child class. The method defined in the child class will take priority over the parent class, and this
feature of object orientated programming – known as overriding – applies to any method.

OOP is a huge area in computing, and although to become an expert there is still a great deal to learn,
this chapter and the accompanying examples should make you familiar with the main concepts of this
programming schema.

A brief note on creating exceptions
In the Advanced Python course we discussed how to deal with errors and enable programs to fail
gracefully. While Python has a wide range of built-in errors, when developing more complex code there
may be times when you need to define custom errors. We shall not cover this in detail in this course,
but if you ever do this, you will need to understand OOP. Exceptions in Python are instances of the

 Understanding Object Oriented Programming in Python

15

built-in class Errors. To create your own error, you would need to import that class and then define
your custom error as a subclass.

 Understanding Object Oriented Programming in Python

16

Concluding remarks
We have now covered everything in the course. You should now be familiar the concept of object-
oriented programming and how to define and instantiate classes. You have also learnt how to structure
classes and how attributes may be used to store data and interact with code external to a given class.
In addition, you now know how to make code more succinct by taking advantage of class inheritance.

For further details on more advanced OOP features, we recommend the official Python documentation:
www.python.org

Also, don’t forget the Babraham Bioinformatics pages listing available courses and providing training
materials: https://www.bioinformatics.babraham.ac.uk/training

As mentioned previously, learning Python is akin to learning a foreign language. There is a great deal
to take in and becoming fluent takes practice, practice, practice.

Happy coding!
The Babraham Bioinformatics Team

