Power Analysis

Anne Segonds-Pichon
v2020-09
• **Definition of power**: probability that a statistical test will reject a false null hypothesis (H_0).
 • **Translation**: the probability of detecting an effect, given that the effect is really there.

• **In a nutshell**: the bigger the experiment (big sample size), the bigger the power (more likely to pick up a difference).

• **Main output of a power analysis**:
 • Estimation of an appropriate **sample size**
 • **Too big**: waste of resources,
 • **Too small**: may miss the effect ($p>0.05$) + waste of resources,
 • **Grants**: justification of sample size,
 • **Publications**: reviewers ask for power calculation evidence,
 • **Home office**: the 3 Rs: Replacement, **Reduction** and Refinement.
What does Power look like?
What does Power look like? Null and alternative hypotheses

- Probability that the observed result occurs if H_0 is true
 - H_0: Null hypothesis = absence of effect
 - H_1: Alternative hypothesis = presence of an effect
What does Power look like? Type I error α

- **Type I error** (α) is the failure to reject a **true** H_0
 - Claiming an effect which is not there.

- **p-value**: probability that the observed statistic occurred by chance alone
 - probability that a difference as big as the one observed could be found even if there is no effect.

- **Statistical significance**: comparison between α and the **p-value**
 - p-value < 0.05: reject H_0
 - p-value > 0.05: fail to reject H_0
What does Power look like? Power and Type II error β

- **Type II error** (β) is the failure to reject a false H_0
 - Probability of missing an effect which is really there.
 - **Power**: probability of detecting an effect which is really there.

- Direct relationship between **Power** and **type II error**: β
 - **Power** = $1 - \beta$
What does Power look like? Power = 80%

• **General convention:** 80% but could be more
 • if Power = 0.8 then $\beta = 1 - \text{Power} = 0.2$ (20%)

• Hence a true difference will be missed 20% of the time

• Jacob Cohen (1962):
 • For most researchers: Type I errors are four times more serious than Type II errors so: $0.05 \times 4 = 0.2$
 • Compromise: 2 groups comparisons:
 • 90% = +30% sample size
 • 95% = +60% sample size
Critical value = size of difference + sample size + significance
What does Power look like? Example with the t-test

- **In hypothesis testing:**
 - **test statistic** is compared to the **critical value** to determine significance
 - Example of test statistic: t-value

- If **test statistic** > **critical value**: statistical significance and rejection of the null **hypothesis**
 - Example: t-value > critical t-value
To recapitulate:

- The null hypothesis \((H_0)\): \(H_0 = \text{no effect}\)
- The aim of a statistical test is to reject or not \(H_0\).

<table>
<thead>
<tr>
<th>Statistical decision</th>
<th>True state of (H_0)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(H_0\ True (no effect))</td>
</tr>
<tr>
<td>Reject (H_0)</td>
<td>Type I error (\alpha)</td>
</tr>
<tr>
<td></td>
<td>False Positive</td>
</tr>
<tr>
<td>Do not reject (H_0)</td>
<td>Correct</td>
</tr>
<tr>
<td></td>
<td>True Negative</td>
</tr>
</tbody>
</table>

- **High specificity** = low **False Positives** = low **Type I error**
- **High sensitivity** = low **False Negatives** = low **Type II error**

https://github.com/allisonhorst/stats-illustrations#other-stats-artwork
The power analysis depends on the relationship between 6 variables:

- the **difference** of biological interest
- the **variability** in the data (standard deviation)
- the **significance level** (5%)
- the desired **power** of the experiment (80%)
- the **sample size**
- the alternative hypothesis (ie **one or two-sided test**)

Effect size

Sample Size: Power Analysis
The difference of biological interest

- This is to be determined scientifically, not statistically.
 - minimum meaningful effect of biological relevance
 - the larger the effect size, the smaller the experiment will need to be to detect it.

- **How to determine it?**
 - Previous research, pilot study ...

The Standard Deviation (SD)

- Variability of the data

- **How to determine it?**
 - Data from previous research on WT or baseline ...
The effect size: what is it?

- The **effect size**: Absolute difference + variability

- How to determine it?
 - Substantive knowledge
 - Previous research
 - Conventions

- **Jacob Cohen**
 - Defined small, medium and large effects for different tests

<table>
<thead>
<tr>
<th>Test</th>
<th>Relevant effect size</th>
<th>Effect Size Threshold</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Small</td>
</tr>
<tr>
<td>t-test for means</td>
<td>d</td>
<td>0.2</td>
</tr>
<tr>
<td>F-test for ANOVA</td>
<td>f</td>
<td>0.1</td>
</tr>
<tr>
<td>t-test for correlation</td>
<td>r</td>
<td>0.1</td>
</tr>
<tr>
<td>Chi-square</td>
<td>w</td>
<td>0.1</td>
</tr>
<tr>
<td>2 proportions</td>
<td>h</td>
<td>0.2</td>
</tr>
</tbody>
</table>
The effect size: how is it calculated?

The absolute difference

- It depends on the type of difference and the data
- Easy example: comparison between 2 means

 \[
 \text{Effect Size} = \frac{[\text{Mean of experimental group}] - [\text{Mean of control group}]}{\text{Standard Deviation}}
 \]

- The bigger the effect (the absolute difference), the bigger the power
 = the bigger the probability of picking up the difference

http://rpsychologist.com/d3/cohend/
The effect size: how is it calculated?

The standard deviation

• The bigger the variability of the data, the smaller the power

\[
\text{Effect Size} = \frac{[\text{Mean of experimental group}] - [\text{Mean of control group}]}{\text{Standard Deviation}}
\]
Power Analysis

The power analysis depends on the relationship between 6 variables:

• the **difference** of biological interest

• the **standard deviation**

• the **significance level** (5%) \((p< 0.05)\) \(\alpha\)

• the **desired power of the experiment** (80%) \(\beta\)

• the **sample size**

• the alternative hypothesis (ie one or two-sided test)
The sample size

• Most of the time, the output of a power calculation.

• The bigger the sample, the bigger the power
 • but how does it work actually?

• In reality it is difficult to reduce the variability in data, or the contrast between means,
 • most effective way of improving power:
 • increase the sample size.
Infinite number of samples

Samples means = \bar{x}

Sample size

Population

Continuous variable

Big samples ($n=30$)

Small samples ($n=3$)

Sample means
The sample size

Probability distribution under H_0: small samples

- Observed result must be in this range to be significant
- True value = 40
- Significant results: 21% of the time

Probability distribution under H_0: big samples

- Observed result must be in this range to be significant
- True value = 40
- Significant results: 90% of the time
The sample size

![Probability distribution under H₀: small samples](image)

- True value = 40
- Significant results: 23% of the time

![Probability distribution under H₀: big samples](image)

- True value = 40
- Significant results: 90% of the time

- $d = 1$
- $n = 1$
- Power = 0.26

- $n = 3$
- Power = 0.53

- $n = 7$
- Power = 0.84
The sample size: the bigger the better?

- It takes huge samples to detect tiny differences but tiny samples to detect huge differences.

- What if the tiny difference is meaningless?
 - Beware of *overpower*
 - Nothing wrong with the stats: it is all about interpretation of the results of the test.

- Remember the important first step of power analysis
 - What is the effect size of biological interest?
Power Analysis

The power analysis depends on the relationship between 6 variables:

• the **effect size** of biological interest
• the **standard deviation**
• the **significance level** (5%)
• the **desired power** of the experiment (80%)
• the **sample size**
• the **alternative hypothesis** (ie one or two-sided test)
The alternative hypothesis: what is it?

- One-tailed or 2-tailed test? One-sided or 2-sided tests?

- Is the question:
 - Is there a difference?
 - Is it bigger than or smaller than?

- Can rarely justify the use of a one-tailed test
- Two times easier to reach significance with a one-tailed than a two-tailed
 - Suspicious reviewer!
Hypothesis

Experimental design

Choice of a Statistical test

Power analysis

Sample size

Experiment(s)

(Stat) analysis of the results
• Fix any five of the variables and a mathematical relationship can be used to estimate the sixth.

e.g. What sample size do I need to have a 80% probability (power) to detect this particular effect (difference and standard deviation) at a 5% significance level using a 2-sided test?
• **Good news:**
there are packages that can do the power analysis for you ... providing you have some prior knowledge of the key parameters!

\[
\text{difference} + \text{standard deviation} = \text{effect size}
\]

• **Free packages:**
 • **R**
 • **G*Power**
 • **InVivoStat**

• **Cheap package:** **StatMate** (~ $95)

• **Not so cheap package:** **MedCalc** (~ $495)
Power Analysis
Let’s do it

• Examples of power calculations:
 • Comparing 2 proportions: Exercise 1
 • Comparing 2 means: Exercise 2
Exercises 1 and 2

• Use the functions below to answer the exercises
 • Clue: exactly one of the parameters must be passed as NULL, and that parameter is determined from the others.

• Use R Help to find out how to use the functions
 • e.g. ?power.prop.test in the console

Exercise 1

```r
power.prop.test(n=NULL, p1=NULL, p2=NULL,
  sig.level=NULL, power=NULL, alternative=c("two.sided", "one.sided"))
```

Exercise 2

```r
power.t.test(n=NULL, delta=NULL, sd=1, sig.level=NULL, power=NULL,
  type=c("two.sample", "one.sample", "paired"),
  alternative=c("two.sided", "one.sided"))
```
Exercise 1:

- Scientists have come up with a solution that will reduce the number of lions being shot by farmers in Africa: painting eyes on cows’ bottoms.
- Early trials suggest that lions are less likely to attack livestock when they think they’re being watched
 - Fewer livestock attacks could help farmers and lions co-exist more peacefully.
- Pilot study over 6 weeks:
 - 3 out of 39 unpainted cows were killed by lions, none of the 23 painted cows from the same herd were killed.

Questions:
- Do you think the observed effect is meaningful to the extent that such a ‘treatment’ should be applied? Consider ethics, economics, conservation ...
- Run a power calculation to find out how many cows should be included in the study.
 - Clue 1: `power.prop.test()`
 - Clue 2: exactly one of the parameters must be passed as NULL, and that parameter is determined from the others.

http://www.sciencealert.com/scientists-are-painting-eyes-on-cows-butts-to-stop-lions-getting-shot
Exercise 1: Answer

- Scientists have come up with a solution that will reduce the number of lions being shot by farmers in Africa:
 - Painting eyes on the butts of cows
- Early trials suggest that lions are less likely to attack livestock when they think they’re being watched
 - Less livestock attacks could help farmers and lions co-exist more peacefully.

- Pilot study over 6 weeks:
 - 3 out of 39 unpainted cows were killed by lions, none of the 23 painted cows from the same herd were killed.

```r
power.prop.test(p1 = 3/39, p2 = 0, sig.level = 0.05, power = 0.8, alternative="two.sided")
```

Two-sample comparison of proportions power calculation

- n = 96.92364
- p1 = 0.07692308
- p2 = 0
- sig.level = 0.05
- power = 0.8
- alternative = two.sided

NOTE: n is number in *each* group
Exercise 2:

- Pilot study: 10 arachnophobes were asked to perform 2 tasks:
 - **Task 1**: Group1 (n=5): to play with a big hairy tarantula spider with big fangs and an evil look in its eight eyes.
 - **Task 2**: Group 2 (n=5): to look at pictures of the same hairy tarantula.
- Anxiety scores were measured for each group (0 to 100).
- Use R to calculate the values for a power calculation
 - Get the data in R (spider.csv)
 - Hint: you can use `group_by()` and `summarise()`
 - Or you can do it in Excel!
- Run a power calculation (assume balanced design and parametric test)
 - Clue 1: `power.t.test()`
 - Clue 2: choose the sd that makes more sense.
Exercise 2: Answer

spider.data %>%
 group_by(Group) %>
 summarise(mean=mean(Scores), sd=sd(Scores))

<table>
<thead>
<tr>
<th>Group</th>
<th>mean</th>
<th>sd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Picture</td>
<td>39</td>
<td>9.617692</td>
</tr>
<tr>
<td>Real</td>
<td>52</td>
<td>9.746794</td>
</tr>
</tbody>
</table>

2 rows

power.t.test(delta = 52 - 39, sd = 9.75, sig.level = 0.05, power = 0.8, type = "two.sample", alternative = "two.sided")

Two-sample t test power calculation

 n = 9.889068
delta = 13
 sd = 9.75
sig.level = 0.05
 power = 0.8
alternative = two.sided

NOTE: n is number in *each* group

• To reach significance with a t-test, providing the preliminary results are to be trusted, and be confident in a difference between the 2 groups, we need about 10 arachnophobes in each group.
Unequal sample sizes

- Scientists often deal with unequal sample sizes
- No simple trade-off:
 - if one needs 2 groups of 30, going for 20 and 40 will be associated with decreased power.
- **Unbalanced design = bigger total sample**
- Solution:

 Step 1: power calculation for equal sample size
 Step 2: adjustment

\[
N = \frac{2n(1+k)^2}{4k}
\]
\[
n_1 = \frac{N}{(1+k)}
\]
\[
n_2 = \frac{kN}{(1+k)}
\]

- **Cow example**: balanced design: \(n = 97\)
 but this time: unpainted group: 2 times bigger than painted one (\(k=2\)):
 - Using the formula, we get a total:
 \[N=2*97*(1+2)^2/4*2 = 219\]
 Painted butts \((n_1)=73\) Unpainted butts \((n_2)=146\)

- **Balanced design**: \(n = 2*97 = 194\)
- **Unbalanced design**: \(n = 70+140 = 219\)
Non-parametric tests

- **Non-parametric tests**: do not assume data come from a Gaussian distribution.
 - Non-parametric tests are based on ranking values from low to high
 - Non-parametric tests almost always less powerful

- Proper power calculation for non-parametric tests:
 - Need to specify which kind of distribution we are dealing with
 - Not always easy

- Non-parametric tests never require more than 15% additional subjects providing that the distribution is not too unusual.

- **Very crude rule of thumb for non-parametric tests**:
 - Compute the sample size required for a parametric test and **add 15%**.
• What happens if we ignore the power of a test?
 • Misinterpretation of the results

• p-values: never ever interpreted without context:
 • **Significant p-value (<0.05)**: exciting! Wait: what is the difference?
 • \geq smallest meaningful difference: exciting
 • $<$ smallest meaningful difference: not exciting
 • very big sample, too much power

• **Not significant p-value (>0.05)**: no effect! Wait: how big was the sample?
 • Big enough = enough power: no effect means no effect
 • Not big enough = not enough power
 • Possible meaningful difference but we miss it