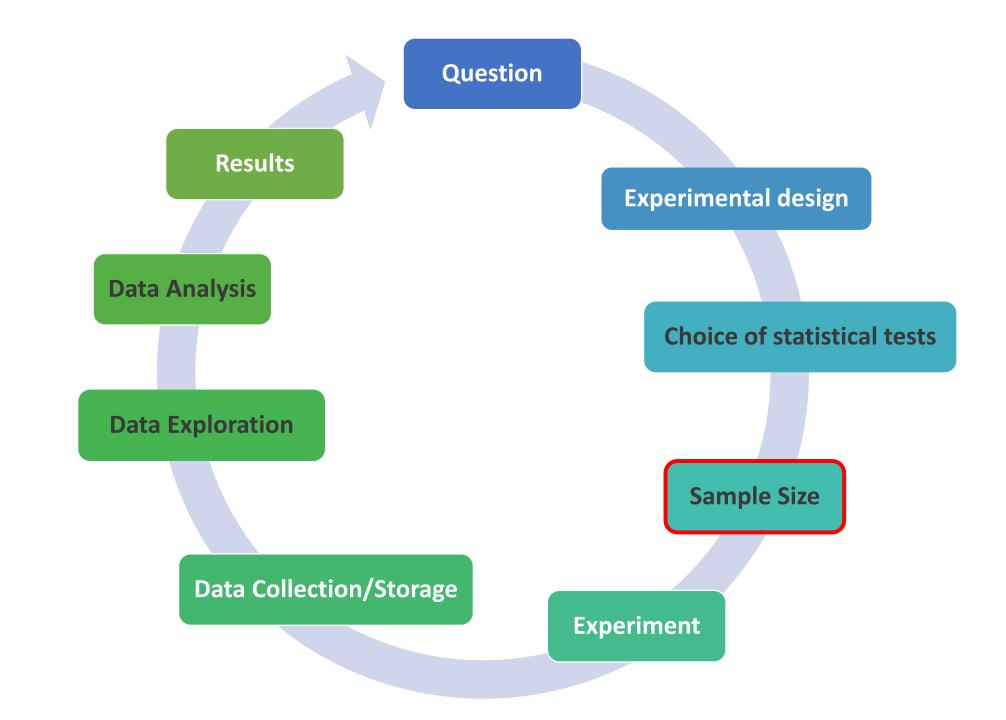


Power Analysis

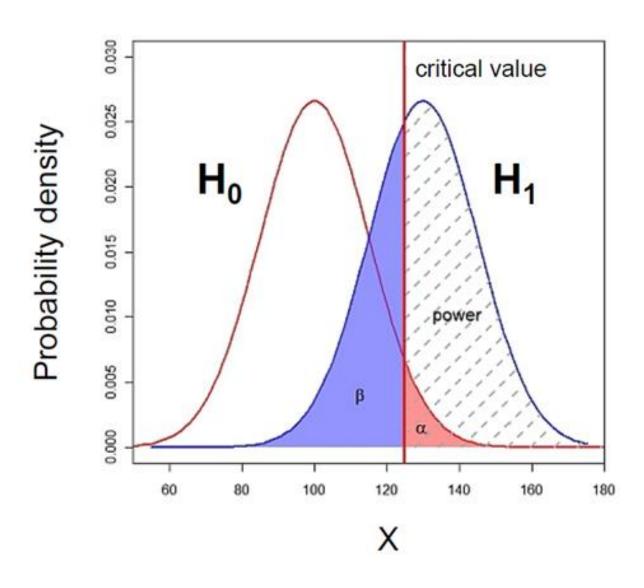
Anne Segonds-Pichon v2020-12



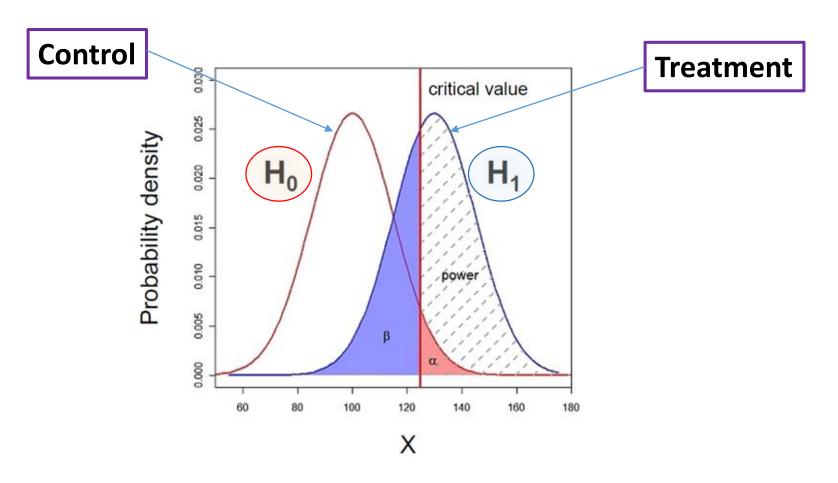
Sample Size: Power Analysis

- **Definition of power**: probability that a statistical test will reject a false null hypothesis (H_0) .
 - Translation: the probability of detecting an effect, given that the effect is really there.
- In a nutshell: the bigger the experiment (big sample size), the bigger the power (more likely to pick up a difference).
- Main output of a power analysis:
 - Estimation of an appropriate sample size
 - Too big: waste of resources,
 - Too small: may miss the effect (p>0.05)+ waste of resources,
 - Grants: justification of sample size,
 - Publications: reviewers ask for power calculation evidence,
 - Home office: the 3 Rs: Replacement, Reduction and Refinement.

What does Power look like?

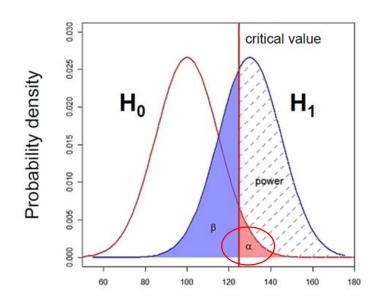


What does Power look like? Null and alternative hypotheses



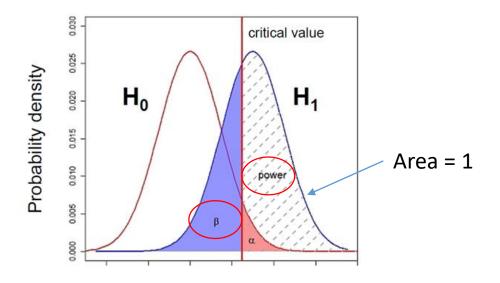
- Probability that the observed result occurs if H_0 is true
 - H_0 : **Null hypothesis** = absence of effect
 - H₁: Alternative hypothesis = presence of an effect

What does Power look like? Type I error (α)



- Type I error is the failure to reject a true H₀
 - α: probability of claiming an effect which is not there.
- **p-value**: probability that the observed statistic occurred by chance alone
 - probability that a difference as big as the one observed could be found even if there is no effect.
- Statistical significance: comparison between α and the p-value
 - p-value < 0.05: there is a difference \odot (reject H₀)
 - p-value > 0.05: there is no difference \odot (fail to reject H₀)

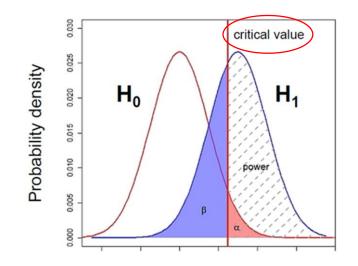
What does Power look like? Type II error (β) and Power

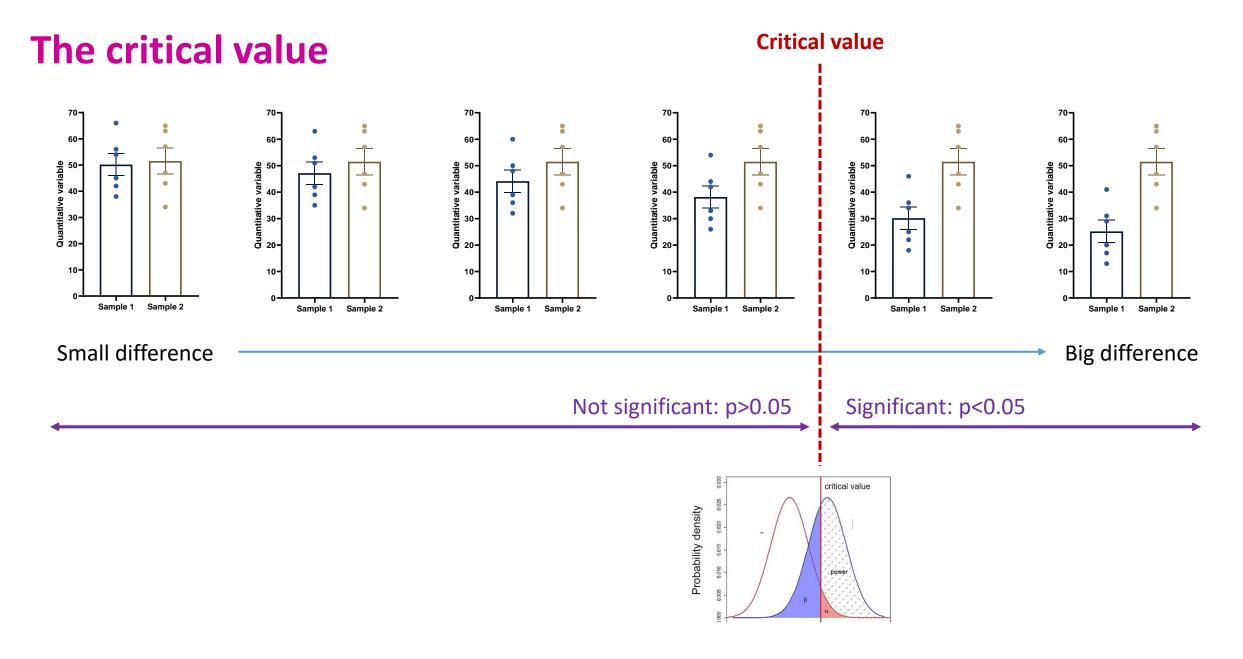


- Type II error (β) is the failure to reject a <u>false</u> H₀
 - β : Probability of missing an effect which is really there.
 - **Power**: probability of detecting an effect which is really there.
 - Direct relationship between Power and type II error:
 - Power = 1β

What does Power look like? Power = 80%

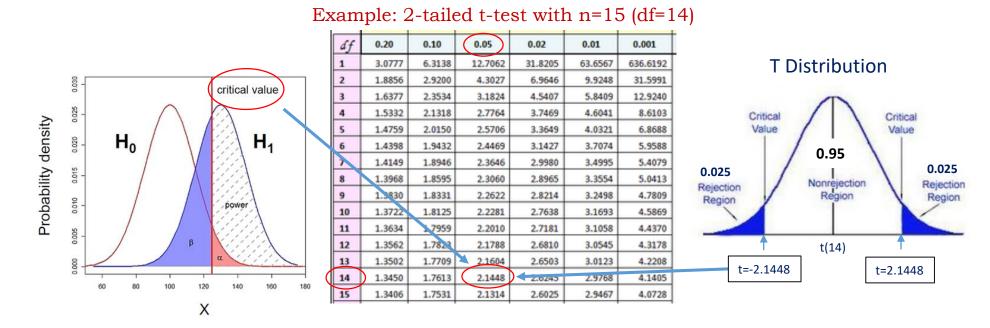
- General convention: 80% but could be more
 - if **Power** = 0.8 then β = 1- **Power** = 0.2 (20%)
- Hence a true difference will be missed 20% of the time
- Jacob Cohen (1962):
 - For most researchers: Type I errors are four times more serious than Type II errors so:
 0.05 * 4 = 0.2
 - Compromise: 2 groups comparisons:
 - 90% = +30% sample size
 - 95% = +60% sample size





Critical value = size of difference + sample size + significance

What does Power look like? Example with the t-test



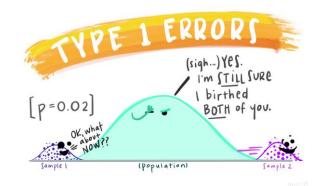
- In hypothesis testing:
 - test statistic is compared to the critical value to determine significance
 - Example of test statistic: t-value
- If test statistic > critical value: statistical significance and rejection of the null hypothesis
 - Example: t-value > critical t-value

To recapitulate:

- The null hypothesis (H_0) : H_0 = no effect
- The aim of a statistical test is to reject or not H₀.

Statistical decision	True state of H ₀		
	H ₀ True (no effect)	H ₀ False (effect)	
Reject H ₀	Type I error α	Correct	
	False Positive	True Positive	
Do not reject H ₀	Correct	Type II error β	
	True Negative	False Negative	

- High specificity = low False Positives = low Type I error
- High sensitivity = low False Negatives = low Type II error



Sample Size: Power Analysis

The power analysis depends on the relationship between 6 variables:

- the difference of biological interest
 the variability in the data (standard deviation)
- the significance level (5%)
- the desired power of the experiment (80%)
- the sample size
- the alternative hypothesis (ie one or two-sided test)

The difference of biological interest

- This is to be determined scientifically, not statistically.
 - minimum meaningful effect of biological relevance
 - the larger the effect size, the smaller the experiment will need to be to detect it.
- How to determine it?
 - Previous research, pilot study ...

The Standard Deviation (SD)

- Variability of the data
- How to determine it?
 - Data from previous research on WT or baseline ...

The effect size: what is it?

- The **effect size**: Absolute difference + variability
- How to determine it?
 - Substantive knowledge
 - Previous research
 - Conventions
- Jacob Cohen
 - Defined small, medium and large effects for different tests

	Relevant	Effect Size Threshold		
Test	effect size	Small	Medium	Large
t-test for means	d	0.2	0.5	0.8
F-test for ANOVA	f	0.1	0.25	0.4
t-test for correlation	r	0.1	0.3	0.5
Chi-square	w	0.1	0.3	0.5
2 proportions	h	0.2	0.5	0.8

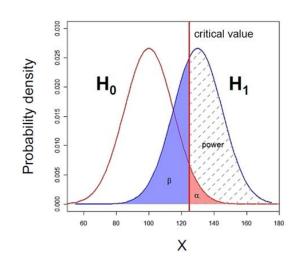
The effect size: how is it calculated? The absolute difference

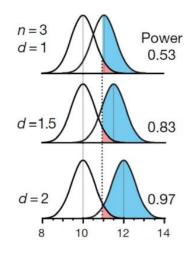
- It depends on the type of difference and the data
 - Easy example: comparison between 2 means

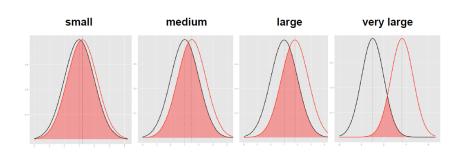
Effect Size = [Mean of experimental group] - [Mean of control group]

Standard Deviation

The bigger the effect (the absolute difference), the bigger the power
 the bigger the probability of picking up the difference



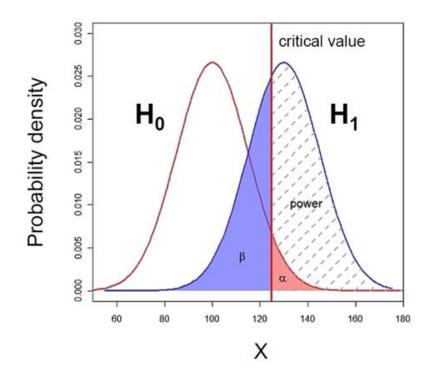


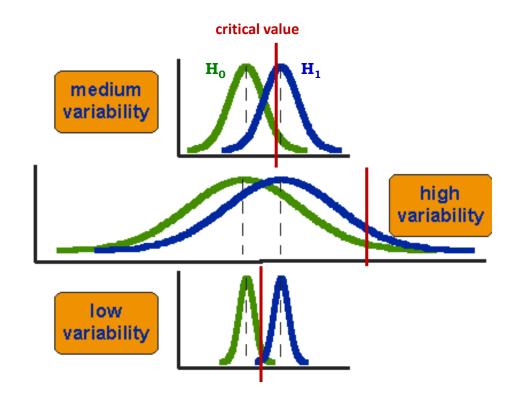


http://rpsychologist.com/d3/cohend/

The effect size: how is it calculated? The standard deviation

• The bigger the variability of the data, the smaller the power





Power Analysis

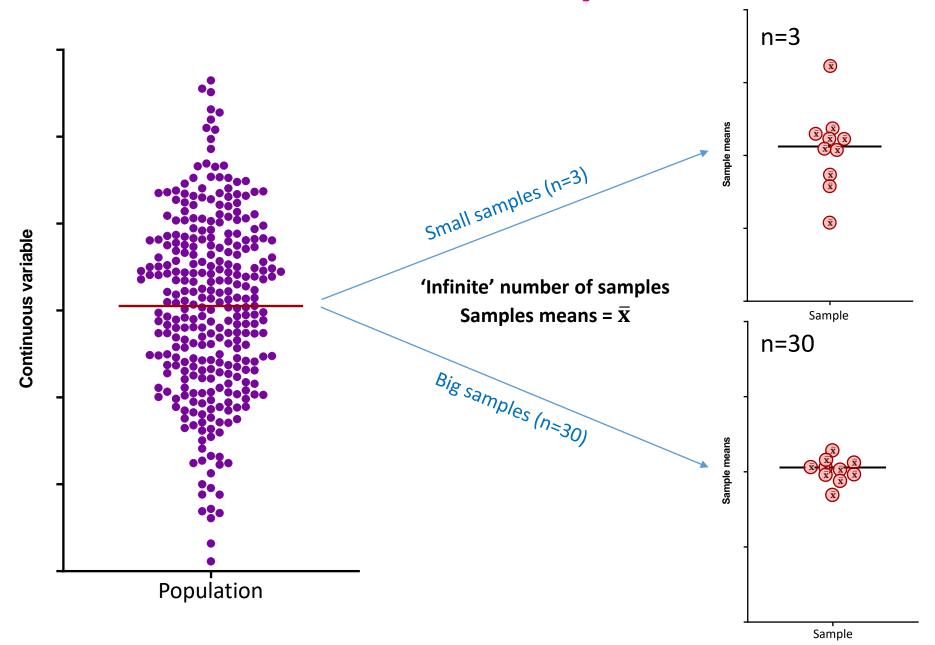
The power analysis depends on the relationship between 6 variables:

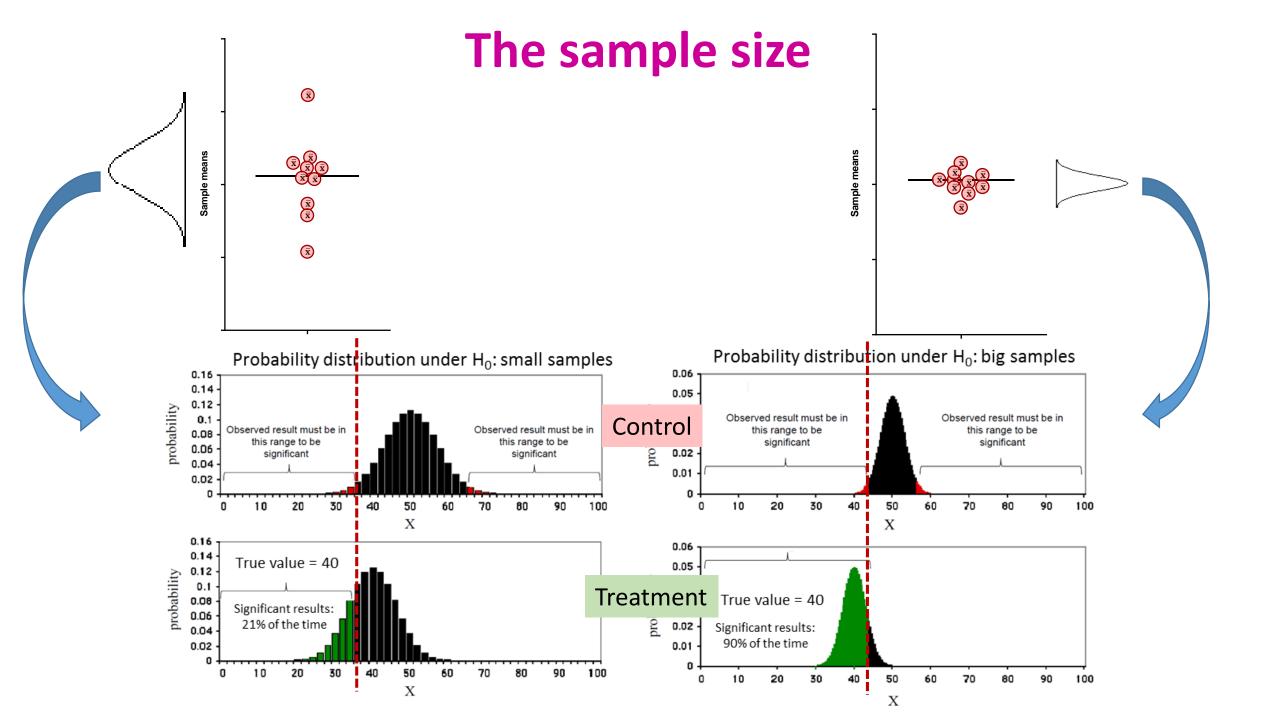
- the difference of biological interest
- the standard deviation
- the significance level (5%) (p< 0.05) α
- the desired power of the experiment (80%) β
- the sample size
- the alternative hypothesis (ie one or two-sided test)

The sample size

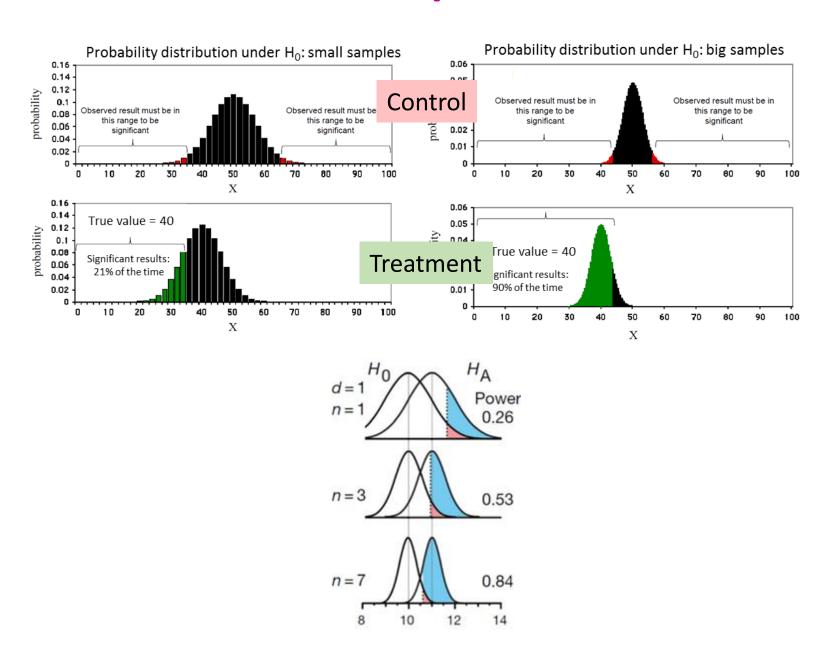
- Most of the time, the output of a power calculation.
- The bigger the sample, the bigger the power
 - but how does it work actually?
- In reality it is difficult to reduce the variability in data, or the contrast between means,
 - most effective way of improving power:
 - increase the sample size.

The sample size





The sample size

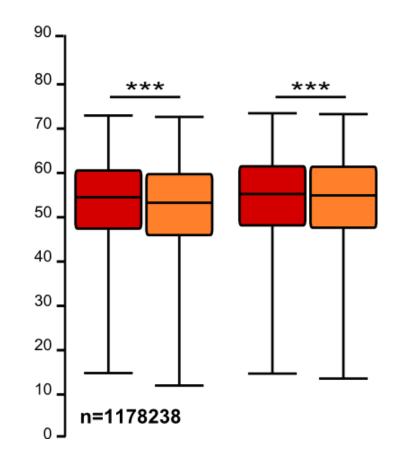


The sample size: the bigger the better?

It takes huge samples to detect tiny differences but tiny samples to detect huge differences.

- What if the tiny difference is meaningless?
 - Beware of overpower
 - Nothing wrong with the stats: it is all about interpretation of the results of the test.

- Remember the important first step of power analysis
 - What is the effect size of biological interest?



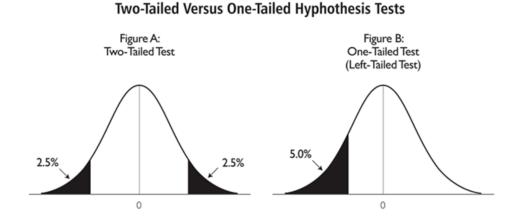
Power Analysis

The power analysis depends on the relationship between 6 variables:

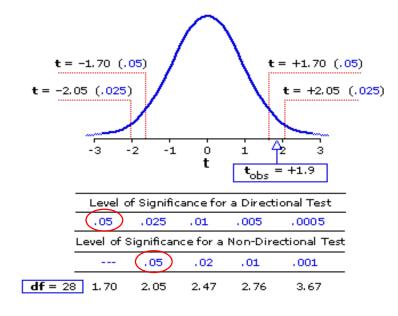
- the effect size of biological interest
- the standard deviation
- the significance level (5%)
- the desired power of the experiment (80%)
- the sample size
- the alternative hypothesis (ie one or two-sided test)

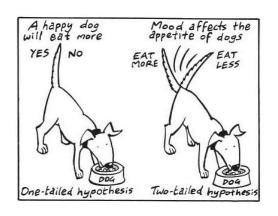
The alternative hypothesis: what is it?

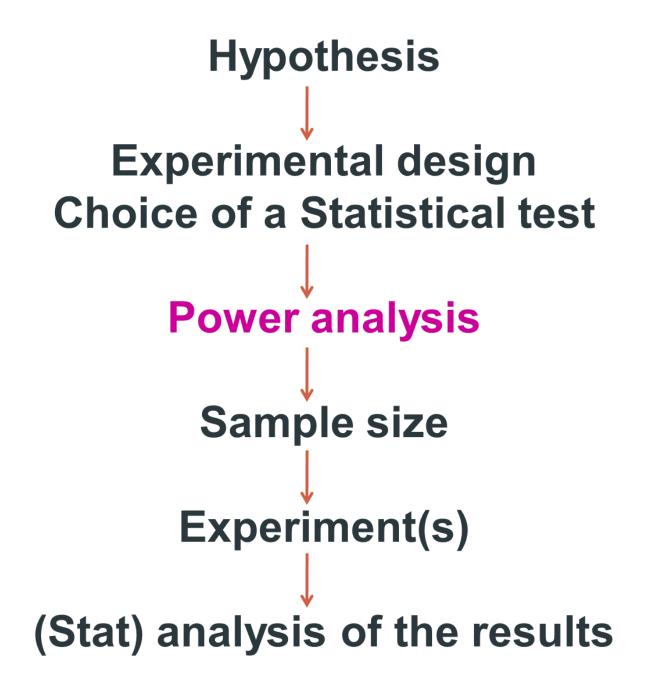
One-tailed or 2-tailed test? One-sided or 2-sided tests?



- Is the question:
 - Is the there a difference?
 - Is it bigger than or smaller than?
- Can rarely justify the use of a one-tailed test
- Two times easier to reach significance with a one-tailed than a two-tailed
 - Suspicious reviewer!







Power analysis

Fix any five of the variables, a mathematical relationship is used to estimate the sixth

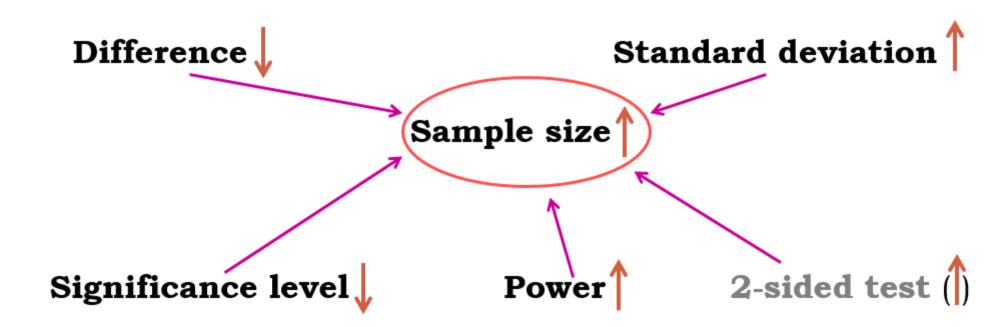
Difference of biological interest

- + Variability in the data (standard deviation)
- + Desired power of the experiment (80%)
- + Significance level (5%)
- + Alternative hypothesis (ie one or two-sided test)

Appropriate sample size

• Fix any five of the variables and a mathematical relationship can be used to estimate the sixth.

e.g. What sample size do I need to have a 80% probability (**power**) to detect this particular effect (**difference** and **standard deviation**) at a 5% **significance level** using a **2-sided test**?



Good news:

there are packages that can do the power analysis for you ... providing you have some prior knowledge of the key parameters!

difference + standard deviation = effect size

- Free packages:
 - R
 - G*Power and InVivoStat
 - Russ Lenth's power and sample-size page:
 - http://www.divms.uiowa.edu/~rlenth/Power/

- Cheap package: StatMate (~ \$95)
- Not so cheap package: MedCalc (~ \$495)

Power Analysis Let's do it

- Examples of power calculations:
 - Comparing 2 proportions: <u>Exercise 1</u>
 - Comparing 2 means: **Exercise 2**

Exercises 1 and 2

- Use the functions below to answer the exercises
 - Clue: exactly one of the parameters must be passed as NULL, and that parameter is determined from the others.
- Use R Help to find out how to use the functions
 - e.g. ?power.prop.test in the console

Exercise 1

```
power.prop.test(n=NULL, p1=NULL, p2=NULL,
sig.level=NULL, power=NULL, alternative=c("two.sided", "one.sided"))
```

Exercise 2

```
power.t.test(n=NULL, delta=NULL, sd=1, sig.level=NULL, power=NULL,
type=c("two.sample", "one.sample", "paired"),
alternative=c("two.sided", "one.sided"))
```


Exercise 1:

- Scientists have come up with a solution that will reduce the number of lions being shot by farmers in Africa: painting eyes on cows' bottoms.
- Early trials suggest that lions are less likely to attack livestock when they think they're being watched
 - Fewer livestock attacks could help farmers and lions co-exist more peacefully.
- Pilot study over 6 weeks:
 - 3 out of 39 unpainted cows were killed by lions, none of the 23 painted cows from the same herd were killed.

Questions:

- Do you think the observed effect is meaningful to the extent that such a 'treatment' should be applied?
 Consider ethics, economics, conservation ...
- Run a power calculation to find out how many cows should be included in the study.
 - Clue 1: power.prop.test()
 - Clue 2: exactly one of the parameters must be passed as NULL, and that parameter is determined from the others.

Exercise 1: Answer

- Scientists have come up with a solution that will reduce the number of lions being shot by farmers in Africa:
 - Painting eyes on the butts of cows
- Early trials suggest that lions are less likely to attack livestock when they think they're being watched
 - Less livestock attacks could help farmers and lions co-exist more peacefully.

NOTE: n is number in *each* group

- Pilot study over 6 weeks:
 - 3 out of 39 unpainted cows were killed by lions, none of the 23 painted cows from the same herd were killed.

Exercise 2:

• Pilot study: 10 arachnophobes were asked to perform 2 tasks:

<u>Task 1</u>: Group1 (n=5): to play with a big hairy tarantula spider with big fangs and an evil look in its eight eyes.

<u>Task 2</u>: Group 2 (n=5): to look at pictures of the same hairy tarantula.

- Anxiety scores were measured for each group (0 to 100).
- Use R to calculate the values for a power calculation
 - Data: spider.data.csv
 - Hint: you can use group by () and summarise ()
 - Or you can do it in Excel!
- Run a power calculation (assume balanced design and parametric test)
 - Clue 1: power.t.test()
 - Clue 2: choose the sd that makes more sense.

Picture	Real Spider	
25	45	
35	40	
45	55	
40	55	
50	65	

Exercise 2: Answer

```
spider.data %>%
  group_by(Group) %>%
  summarise(mean=mean(Scores), sd=sd(Scores))
```

Group <chr></chr>	mean <dbl></dbl>	sd <dbl></dbl>
Picture	39	9.617692
Real	52	9.746794
2 rows		

NOTE: n is number in *each* group

• To reach significance with a t-test, providing the preliminary results are to be trusted, and be confident in a difference between the 2 groups, we need about **10 arachnophobes** in each group.

Unequal sample sizes

- Scientists often deal with unequal sample sizes
 - No simple trade-off:
 - if one needs 2 groups of 30, going for 20 and 40 will be associated with decreased power.
 - Unbalanced design = bigger total sample
 - Solution:

<u>Step 1</u>: power calculation for equal sample size

Step 2: adjustment

$$N = \frac{2n(1+k)^2}{4k}$$

$$n_1 = \frac{N}{(1+k)}$$

$$n_2 = \frac{kN}{(1+k)}$$

• <u>Cow example</u>: balanced design: **n = 97**

but this time: unpainted group: 2 times bigger than painted one (k=2):

• Using the formula, we get a total:

$$N=2*97*(1+2)^2/4*2=219$$

Painted butts $(n_1)=73$ Unpainted butts $(n_2)=146$

- Balanced design: n = 2*97 = 194
- Unbalanced design: n= 70+140 = 219

Non-parametric tests

- Non-parametric tests: do not assume data come from a Gaussian distribution.
 - Non-parametric tests are based on ranking values from low to high
 - Non-parametric tests almost always less powerful
- Proper power calculation for non-parametric tests:
 - Need to specify which kind of distribution we are dealing with
 - Not always easy
- Non-parametric tests never require more than 15% additional subjects providing that the
 distribution is not too unusual.
- Very crude rule of thumb for non-parametric tests:
 - Compute the sample size required for a parametric test and add 15%.

Sample Size: Power Analysis

- What happens if we ignore the power of a test?
 - Misinterpretation of the results
- p-values: never ever interpreted without context:
 - **Significant p-value (<0.05)**: exciting! Wait: what is the difference?
 - >= smallest meaningful difference: exciting
 - < smallest meaningful difference: not exciting
 - very big sample, too much power
 - Not significant p-value (>0.05): no effect! Wait: how big was the sample?
 - Big enough = enough power: no effect means no effect
 - Not big enough = not enough power
 - Possible meaningful difference but we miss it