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Outline of the course

• Short introduction to Power analysis

• Analysis of qualitative data:
• Chi-square test

• Analysis of quantitative data:
• Student’s t-test, One-way ANOVA and correlation



R packages needed

beanplot

pastecs

plotrix

reshape2



• Definition of power: probability that a statistical test will reject a false null hypothesis (H0).
• Translation: the probability of detecting an effect, given that the effect is really there.

• In a nutshell: the bigger the experiment (big sample size), the bigger the power (more likely 
to pick up a difference).

• Main output of a power analysis:
• Estimation of an appropriate sample size

• Too big: waste of resources,

• Too small: may miss the effect (p>0.05)+ waste of resources,

• Grants: justification of sample size,

• Publications: reviewers ask for power calculation evidence,

• Home office: the 3 Rs: Replacement, Reduction and Refinement.

Power analysis



Experimental design

Think stats!!

• Translate the hypothesis into statistical questions:

• What type of data?

• What statistical test ?

• What sample size?

• Very important: Difference between technical and biological replicates.

Biological

n=3

Technical

n=1



What does Power look like?



• Probability that the observed result occurs if H0 is true
• H0 : Null hypothesis = absence of effect
• H1: Alternative hypothesis = presence of an effect

What does Power look like? Null and alternative hypotheses



• α : the threshold value that we measure p-values against.
• For results with 95% level of confidence: α = 0.05
• = probability of type I error

• p-value: probability that the observed statistic occurred by chance alone

• Statistical significance: comparison between α and the p-value
• p-value < 0.05: reject H0 and p-value > 0.05: fail to reject H0

What does Power look like? Type I error α



• Type II error (β) is the failure to reject a false H0

• Probability of missing an effect which is really there.
• Power: probability of detecting an effect which is really there

• Direct relationship between Power and type II error: 
• Power = 1 – β

What does Power look like? Power and Type II error β



• Type II error (β) is the failure to reject a false H0

• Probability of missing an effect which is really there.

• Power: probability of detecting an effect which is really there
• Direct relationship between Power and type II error: 
• if   Power = 0.8 then β = 1- Power = 0.2 (20%)

• Hence a true difference will be missed 20% of the time

• General convention: 80% but could be more

• Cohen (1988): 
• For most researchers: Type I errors are four times more serious than 
Type II errors so 0.05 * 4 = 0.2

• Compromise: 2 groups comparisons: 
• 90% = +30% sample size 
• 95% = +60%s sample size

What does Power look like? Power = 80%



• In hypothesis testing, a critical value is a point on the test distribution that is compared to 
the test statistic to determine whether to reject the null hypothesis
• Example of test statistic: t-value

• If the absolute value of your test statistic is greater than the critical value, you can declare 
statistical significance and reject the null hypothesis
• Example: t-value > critical t-value

Example: 2-tailed t-test with n=15 (df=14)

What does Power look like? Critical value



To recapitulate:

• The null hypothesis (H0): H0 = no effect 

• The aim of a statistical test is to reject or not H0.

• Traditionally, a test or a difference are said to be “significant” if the probability of type I 
error is: α =< 0.05

• High specificity = low False Positives = low Type I error

• High sensitivity = low False Negatives = low Type II error

Statistical decision True state of H0

H0 True (no effect) H0 False (effect)

Reject H0 Type I error α

False Positive

Correct

True Positive

Do not reject H0 Correct

True Negative

Type II error β

False Negative



The power analysis depends on the relationship between 6 variables:

• the difference of biological interest

• the variability in the data (standard deviation)

• the significance level (5%)

• the desired power of the experiment (80%)

• the sample size

• the alternative hypothesis (ie one or two-sided test)

Effect size

Sample Size: Power Analysis



The difference of biological interest

• This is to be determined scientifically, not statistically.

• minimum meaningful effect of biological relevance 

• the larger the effect size, the smaller the experiment will need to be to detect it.

• How to determine it?
• Substantive knowledge, previous research, pilot study …

The Standard Deviation (SD)
• Variability of the data 

• How to determine it?
• Substantive knowledge, previous research, pilot study …

• In ‘power context’: effect size: combination of both:

• e.g.: Cohen’s d = (Mean 1 – Mean 2)/Pooled SD



Power Analysis

The power analysis depends on the relationship between 6 variables:

• the difference of biological interest

• the standard deviation

• the significance level (5%) (p< 0.05) α

• the desired power of the experiment (80%) β

• the sample size

• the alternative hypothesis (ie one or two-sided test)



Power Analysis

The power analysis depends on the relationship between 6 variables:

• the effect size of biological interest

• the standard deviation

• the significance level (5%)

• the desired power of the experiment (80%)

• the sample size

• the alternative hypothesis (ie one or two-sided test)



The alternative hypothesis: what is it?

• One-tailed or 2-tailed test? One-sided or 2-sided tests?

• Is the question:
• Is the there a difference?
• Is it bigger than or smaller than?

• Can rarely justify the use of a one-tailed test
• Two times easier to reach significance with a one-tailed than a two-tailed

• Suspicious reviewer!

Critical value



• Fix any five of the variables and a mathematical relationship can be used
to estimate the sixth.

e.g. What sample size do I need to have a 80% probability (power) to detect this particular
effect (difference and standard deviation) at a 5% significance level using a 2-sided test?



• Good news:
there are packages that can do the power analysis for you ... providing you have some prior
knowledge of the key parameters!

difference + standard deviation = effect size

• Free packages:
• R

• G*Power and InVivoStat

• Russ Lenth's power and sample-size page:
• http://www.divms.uiowa.edu/~rlenth/Power/

• Cheap package: StatMate (~ $95)

• Not so cheap package: MedCalc (~ $495)

http://www.divms.uiowa.edu/~rlenth/Power/


+ Noise +

Statistical inference

Difference Meaningful? Real?

Statistical test

Statistic
e.g. t, F …

Big enough?

Difference

Sample Population

Sample

=

Yes



Qualitative data



Qualitative data

• = not numerical

• = values taken = usually names (also nominal)
• e.g. causes of death in hospital

• Values can be numbers but not numerical
• e.g. group number = numerical label but not unit of measurement

• Qualitative variable with intrinsic order in their categories = ordinal

• Particular case: qualitative variable with 2 categories: binary or dichotomous
• e.g. alive/dead or presence/absence



Example: cats.dat

• Cats trained to line dance
• 2 different rewards: food or affection
• Question: Is there a difference between the rewards?

• Is there a significant relationship between the 2 variables?

– does the reward significantly affect the likelihood of dancing?

• To answer this type of question:

– Contingency table

– Fisher’s exact or Chi2 tests

Fisher’s exact and Chi2

Food Affection

Dance ? ?

No dance ? ?

But first: how many cats do we need?



Power analysis: Fisher’s test
• Preliminary results from a pilot study: 25% line-danced after having received affection as a reward vs. 70%

after having received food.

power.prop.test(n = NULL, p1 = NULL, p2 = NULL , sig.level = NULL, power = NULL , alternative 

= c("two.sided", "one.sided")

• Exactly one of the parameters n, p1, p2, power and sig.level must be passed as NULL, and that 
parameter is determined from the others. “two-sided” is the default.

Providing the effect size observed in the experiment is similar to the one observed in the pilot study, we will 
need 2 samples of about 18 cats to reach significance (p<0.05) with a Fisher’s exact test.

power.prop.test(p1 = 0.25, p2 = 0.7, sig.level = 0.05, power = 0.8)



plot(cats.data$Training, cats.data$Dance, xlab = "Training", ylab = "Dance")

head(cats.data)

table(cats.data)

Plot  ‘cats.dat’ (From raw data)



contingency.table <- table(cats)

contingency.table <- prop.table(contingency.table,1)

contingency.table100 <- round(contingency.table*100)

contingency.table100

contingency.table100<-cbind(contingency.table100[,"Yes"],contingency.table100[,"No"])

colnames(contingency.table100) <- c("Yes", "No")

contingency.table100

barplot(t(contingency.table100),

legend.text=TRUE,

ylab = "Percentages",

las = 1

) 

Plot cats data (From raw data) 



barplot(t(contingency.table100), 

col=c("chartreuse3","lemonchiffon2"),

cex.axis=1.2, 

cex.names=1.5,

cex.lab=1.5,

ylab = "Percentages",

las=1)

legend("topright",

title="Dancing", 

inset=.05, 

c("Yes","No"), 

horiz=TRUE, 

pch=15,

col=c("chartreuse3","lemonchiffon2"))

Plot cats data (From raw data)  Prettier!



Chi-square and Fisher’s tests
• Chi2 test very easy to calculate by hand but Fisher’s very hard

• Many software will not perform a Fisher’s test on tables > 2x2

• Fisher’s test more accurate than Chi2 test on small samples
• Chi2 test more accurate than Fisher’s test on large samples

• Chi2 test assumptions:
• 2x2 table: no expected count <5
• Bigger tables: all expected > 1 and no more than 20% < 5

• Yates’s continuity correction
• All statistical tests work well when their assumptions are met
• When not: probability Type 1 error increases
• Solution: corrections that increase p-values

• Corrections are dangerous: no magic
• Probably best to avoid them



• In a chi-square test, the observed frequencies for two or more groups are compared with
expected frequencies by chance.

• With observed frequency = collected data

• Example with ‘cats.dat’

Chi-square test



• Formula for Expected frequency = (row total)*(column total)/grand total

Example: expected frequency of cats line dancing
after having received food as a reward:

Expected = (38*76)/200=14.44

Alternatively:
Probability of line dancing: 76/200
Probability of receiving food: 38/200

(76/200)*(38/200)=0.072

Expected: 7.2% of 200 = 14.44

Chi2 = (114-100.4)2/100.4 + (48-61.6)2/61.6 + (10-23.6)2 /23.6 + (28-14.4)2/14.4 
= 25.35

Is 25.35 big enough for the test to be significant?

Chi-square test



Answer: Training significantly affects the likelihood of cats line dancing (p=4.8e-07). 

Ratio of the odds

Odds of dancing
48/114 = affection

28/10 = food

food
affection = 6.6

Chi-square and Fisher’s Exact tests



Quantitative data



Quantitative data

• They take numerical values (units of measurement)

• Discrete: obtained by counting
• Example: number of students in a class

• values vary by finite specific steps

• or continuous: obtained by measuring
• Example: height of students in a class

• any values

• They can be described by a series of parameters:

• Mean, variance, standard deviation, standard error and confidence interval



Measures of central tendency
Mode and Median

• Mode: most commonly occurring value in a distribution

• Median: value exactly in the middle of an ordered set of numbers



• Definition: average of all values in a column

• It can be considered as a model because it summaries the data

• Example: a group of 5 lecturers: number of friends of each members of the group: 1, 
2, 3, 3 and 4
• Mean: (1+2+3+3+4)/5 = 2.6 friends per person

• Clearly an hypothetical value

• How can we know that it is an accurate model?

• Difference between the real data and the model created

Measures of central tendency
Mean



• Calculate the magnitude of the differences between each data and the mean:

• Total error = sum of differences

= 0 = Σ(𝑥𝑖 − 𝑥) = (-1.6)+(-0.6)+(0.4)+(1.4) = 0

No errors ! 

• Positive and negative: they cancel each other out.

From Field, 2000

Measures of dispersion



Sum of Squared errors (SS)

• To avoid the problem of the direction of the errors: we square them
• Instead of sum of errors: sum of squared errors (SS): 

𝑆𝑆 = Σ 𝑥𝑖 − 𝑥 𝑥𝑖 − 𝑥

= (1.6) 2 + (-0.6)2 + (0.4)2 +(0.4)2 + (1.4)2

= 2.56 + 0.36 + 0.16 + 0.16 +1.96

= 5.20

• SS gives a good measure of the accuracy of the model
• But: dependent upon the amount of data: the more data, the higher the SS.

• Solution: to divide the SS by the number of observations (N)
• As we are interested in measuring the error in the sample to estimate the one in the population  we 

divide the SS by N-1 instead of N and we get the variance (S2) = SS/N-1



Variance and standard deviation

• 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑠2 =
𝑆𝑆

𝑁−1
=

Σ 𝑥𝑖− 𝑥 2

𝑁−1
=

5.20

4
= 1.3

• Problem with variance: measure in squared units

• For more convenience, the square root of the variance is taken to obtain a measure in 
the same unit as the original measure: 
• the standard deviation

• S.D. = √(SS/N-1) = √(s2) = s = 1.3 = 1.14

• The standard deviation is a measure of how well the mean represents the data.



Standard deviation

Small S.D.: 
data close to the mean: 
mean is a good fit of the data

Large S.D.: 
data distant from the mean: 
mean is not an accurate representation



SD and SEM  (SEM = SD/√N) 

• What are they about?

• The SD quantifies how much the values vary from one another: scatter or spread 
• The SD does not change predictably as you acquire more data. 

• The SEM quantifies how accurately you know the true mean of the population. 
• Why? Because it takes into account: SD + sample size

• The SEM gets smaller as your sample gets larger 

• Why? Because the mean of a large sample is likely to be closer to the true mean than is the 
mean of a small sample. 



The SEM and the sample size

A population



Small samples (n=3)

Big samples (n=30)

‘Infinite’ number of samples
Samples means = 
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n
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The SEM and the sample size



SD and SEM

The SD quantifies the scatter of the data. The SEM quantifies the distribution 
of the sample means.



SD or SEM ?

• If the scatter is caused by biological variability, it is important to show the 
variation. 
• Report the SD rather than the SEM. 

• Better even: show a graph of all data points.

• If you are using an in vitro system with no biological variability, the scatter is 
about experimental imprecision (no biological meaning). 
• Report the SEM to show how well you have determined the mean.



Confidence interval 

• Range of values that we can be 95% confident contains the true mean of the population.

- So limits of 95% CI: [Mean - 1.96 SEM; Mean + 1.96 SEM] (SEM = SD/√N)

Error bars Type Description

Standard deviation Descriptive Typical or average difference

between the data points and their

mean.

Standard error Inferential A measure of how variable the

mean will be, if you repeat the

whole study many times.

Confidence interval

usually 95% CI

Inferential A range of values you can be 95%

confident contains the true mean.



Analysis of Quantitative Data

• Choose the correct statistical test to answer your question:

• They are 2 types of statistical tests:

• Parametric tests with 4 assumptions to be met by the data,

• Non-parametric tests with no or few assumptions (e.g. Mann-Whitney test) 
and/or for qualitative data (e.g. Fisher’s exact  and χ2 tests). 



• All parametric tests have 4 basic assumptions that must be met for the 
test to be accurate.

1) Normally distributed data

• Normal shape, bell shape, Gaussian shape

• Transformations can be made to make data suitable for parametric analysis.

Assumptions of Parametric Data



• Frequent departures from normality:
• Skewness: lack of symmetry of a distribution

• Kurtosis: measure of the degree of ‘peakedness’ in the distribution
• The two distributions below have the same variance approximately 

the same skew, but differ markedly in kurtosis.

Flatter distribution: kurtosis < 0More peaked distribution: kurtosis > 0

Skewness > 0Skewness < 0 Skewness = 0

Assumptions of Parametric Data



2) Homogeneity in variance

• The variance should not change systematically throughout the data

3) Interval data (linearity)

• The distance between points of the scale should be equal at all parts along the scale.

4) Independence

• Data from different subjects are independent
• Values corresponding to one subject do not influence the values corresponding to another subject.

• Important in repeated measures experiments

Assumptions of Parametric Data



• Is there a difference between my groups regarding the variable I am measuring?
• e.g. are the mice in the group A heavier than those in group B?

• Tests with 2 groups:

• Parametric: Student’s t-test
• Non parametric: Mann-Whitney/Wilcoxon rank sum test

• Tests with more than 2 groups: 

• Parametric: Analysis of variance (one-way ANOVA)
• Non parametric: Kruskal Wallis

• Is there a relationship between my 2 (continuous) variables?
• e.g. is there a relationship between the daily intake in calories and an increase in body weight?

• Test: Correlation (parametric) and curve fitting

Analysis of Quantitative Data



+ Noise +

Statistical inference

Difference Meaningful? Real?

Statistical test

Statistic
e.g. t, F …

Big enough?

Difference

Sample Population

Sample

=

Yes



• Stats are all about understanding and controlling variation.

signal

noise

signal

noise

If the noise is low then the signal is detectable …
= statistical significance 

… but if the noise (i.e. interindividual variation) is large
then the same signal will not be detected 
= no statistical significance

• In a statistical test, the ratio of signal to noise determines the significance.

+ NoiseDifference

Difference

Noise

Signal-to-noise ratio 



• Basic idea: 
• When we are looking at the differences between scores for 2 groups, we have to judge 

the difference between their means relative to the spread or variability of their scores.
• Eg: comparison of 2 groups: control and treatment

Comparison between 2 groups: 
Student’s t-test 



Student’s t-test 



Student’s t-test 
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CI overlap ~ 1 n=3
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• 3 types:

• Independent t-test
• compares means for two independent groups of cases. 

• Paired t-test
• looks at the difference between two variables for a single group:

• the second ‘sample’ of values comes from the same subjects (mouse, petri dish …).

• One-Sample t-test 
• tests whether the mean of a single variable differs from a specified constant (often 0) 

Student’s t-test 



Before going any further

• Data format: melt()wide vs long (molten) format

• Some extra R:
– tapply()

– par(mfrow)

– y~x



• Wide vs long (molten) format

Wide

Long

cond A cond B

5 2

8 5

9 0

4 2

3 3

Predictor Outcome

In R: melt() ## reshape2 package ##

condition measure

A 5

A 8

A 9

A 4

A 3

B 2

B 5

B 0

B 2

B 3

Data file format



• Want to compute summaries of variables? tapply()
– break up a vector into groups defined by some classifying factor, 

– compute a function on the subsets, 

– and return the results in a convenient form.

• tapply(data,groups,function)

tapply(some.data$measure, some.data$condition, mean)

Some.data
Condition Measure

Cond.A 5

Cond.A 8

Cond.A 9

Cond.A 4

Cond.A 3

Cond.B 2

Cond.B 5

Cond.B 0

Cond.B 2

Cond.B 3

Extra R: tapply() 

(Long format)



• Want to create a multi-paneled plotting window? par(mfrow) 

– Rather par(mfrow=c(row,col))

– Will plot a window with x rows and y columns

• We want to plot conditions A, B, C and D on the same panel
par(mfrow=c(2,2)) so that’s 2 row and 2 columns

barplot(some.data$cond.A, main = "Condition A", col="red")

barplot(some.data$cond.B, main = "Condition B", col="orange")

barplot(some.data$cond.C, main = "Condition C", col="purple")

barplot(some.data$cond.D, main = "Condition D", col="pink")

dev.off()

Some.data

Extra R: par(mfrow)



• Want to plot and do stats on long-format file? y~x

– break up a vector into groups defined by some classifying factor, 

– compute a function on thesubsets

– creates a functional link between x and y, a model

– does what tapply does but in different context.

• function(y~x): y explained/predicted by x, y=f(x)

beanplot(some.data$measure~some.data$condition)

Some.data
Condition Measure

Cond.A 5

Cond.A 8

Cond.A 9

Cond.A 4

Cond.A 3

Cond.B 2

Cond.B 5

Cond.B 0

Cond.B 2

Cond.B 3

y = measure

x = condition

Extra R: y~x



Example: coyote.csv

• Question: do male and female coyotes differ in size?

• Sample size 

• Data exploration

• Check the assumptions for parametric test

• Statistical analysis: Independent t-test



No data from a pilot study but we have found some information in the
literature.

In a study run in similar conditions as in the one we intend to run, male coyotes
were found to measure: 92cm+/- 7cm (SD).

We expect a 5% difference between genders.
• smallest biologically meaningful difference

Power analysis

power.t.test(n = NULL, delta = NULL, sd = 1, sig.level = NULL, power = NULL, 

type = c("two.sample", "one.sample", "paired"),alternative = c("two.sided","one.sided"))



power.t.test(n = NULL, delta = NULL, sd = 1, sig.level = NULL, 

power = NULL, type = c("two.sample", "one.sample", "paired"),

alternative = c("two.sided", "one.sided"))

Independent t-test

A priori Power analysis

Example case:

We don’t have data from a pilot
study but we have found some
information in the literature.

In a study run in similar conditions
as in the one we intend to run,
male coyotes were found to
measure:
92cm+/- 7cm (SD)

We expect a 5% difference
between genders with a similar
variability in the female sample.

Mean 1 = 92
Mean 2 = 87.4 (5% less than 92cm)

delta = 92 – 87.4
sd = 7

power.t.test(delta=92-87.4, sd = 7, 

sig.level = 0.05, power = 0.8)

We need a sample size of n~76 (2*38)

Power analysis



Data exploration ≠ plotting data

• Download: coyote.csv
• Explore data using 4 different representations: boxplot, histogram, beanplot and stripchart

function(y~x)

tapply()

segment()

par(mfrow=c(?,?))

coyote[only female]$length

coyote[only male]$length
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Outlier

Upper Quartile (Q3) 75th percentile



http://upload.wikimedia.org/wikipedia/commons/8/89/Boxplot_vs_PDF.png


Exploring data: quantitative data
Boxplots or beanplots

Bimodal Uniform Normal
Distributions

A bean= a ‘batch’ of data

Data density mirrored by the shape of the polygon

Scatterplot shows individual data



boxplot(coyote$length~coyote$gender,

col=c("orange","purple"), 

las=1,

ylab="Length (cm)")

beanplot(coyote$length~coyote$gender,

las=1,

ylab="Length (cm)")

## beanplot package ##

Boxplots and beanplots



par(mfrow=c(1,2))

hist(coyote[coyote$gender=="male",]$length, main="Male", xlab="Length", col="lightgreen", las=1)

hist(coyote[coyote$gender=="female",]$length, main="Female", xlab="Length", col="tomato1", las=1)

Histograms



stripchart(coyote$length~coyote$gender,

vertical=TRUE, 

method="jitter", 

las=1, 

ylab="Length",

pch=16, 

col=c("darkorange","purple"), 

cex=1.5

)

length.means <- tapply(coyote$length, coyote$gender, mean) 

segments(x0, y0, x1, y1)

segments( x0=1:2-0.15,

y0=length.means, 

x1=1:2+0.15, 

y1=length.means, 

lwd=3

)

x0

Y0= Y1

x1
21

Stripcharts



boxplot(coyote$length~coyote$gender, 

lwd = 2, 

ylab = "Length",

cex.axis=1.5,

las=1, 

cex.lab=1.5)

stripchart(coyote$length~coyote$gender, 

vertical = TRUE, 

method = "jitter", 

pch = 20, 

col = 'red', 

cex=2,

add = TRUE)

beanplot(coyote$length~coyote$gender,

las=1, overallline = "median", 

ylab = 'Length', 

cex.lab=1.5, 

col="bisque",

what = c(1, 1, 1, 0),

cex.axis=1.5)

boxplot(coyote$length~coyote$gender, 

col=rgb(0.2,0.5,0.3, alpha=0.5), 

pch = 20,  

cex=2, 

lwd=2, 

yaxt='n',

xaxt='n',

add=TRUE)

Graphs combinations



• First assumption: Normality
 Shapiro-Wilk test  shapiro.test()

• Second assumption: Homoscedasticity
 Bartlett test  bartlett.test()

Assumptions of Parametric Data



Normality 

tapply(coyote$length,coyote$gender, shapiro.test)

• First assumption: Normality
 Shapiro-Wilk test  shapiro.test()

• Second assumption: Homoscedasticity
 Bartlett test  bartlett.test()

Assumptions of Parametric Data

bartlett.test(coyote$length~coyote$gender)

Homogeneity in variance 



• How many more coyotes to reach significance?

power.t.test(delta=92-89.7, sd = 7, sig.level = 0.05, power = 0.8)

Independent Student’s t-test

t.test(coyote$length~coyote$gender, var.equal=T)

But does it make sense? 

Answer: males coyote are longer than females but not significantly so (p=0.1045).



The sample size: the bigger the better?

• What if the tiny difference is meaningless?
• Beware of overpower
• Nothing wrong with the stats: it is all about 

interpretation of the results of the test.

• Remember the important first step of power analysis
• What is the effect size of biological interest?

• It takes huge samples to detect tiny differences but tiny samples to detect huge differences. 



Plot ‘coyote.csv’ data

bar.length<-barplot(length.means, 

col=c("darkslategray1","darkseagreen1"),

ylim=c(50,100),

beside=TRUE, 

xlim=c(0,1),

width=0.3, 

ylab="Mean length", 

las=1, 

xpd=FALSE)

length.se <- tapply(coyote$length,coyote$gender,std.error) 

## plotrix package ## 

bar.length

arrows(x0=bar.length, 

y0=length.means-length.se, 

x1=bar.length, 

y1=length.means+length.se, 

length=0.3, 

angle=90, 

code=3)

0.21

y0

y1

0.57

X0= X1



Dependent or Paired t-test
working.memory.csv

• A researcher is studying the effects of dopaminedepletion on working memory in rhesus monkeys.

• Question: does dopamine affect working memory in rhesus monkeys?

• Load working.memory.csv and use head()to get to know the structure of the data.

• Work out the difference: DA.depletion – placebo and 
assign the difference to a column: working.memory$difference

• Plot the difference as a stripchart with a mean

• Add confidence intervals as error bars
• Clue 1: you need std.error()from # plotrix package #
• Clue 1 alternative: write a function to calculate the SEM (SD/√N)
• Clue 2: interval boundaries: mean+/-1.96*SEM

• Run the paired t-test.



working.memory<-read.csv("working.memory.csv", header=T)

head(working.memory)

working.memory$difference <- working.memory$placebo-working.memory$DA.depletion

stripchart(working.memory$difference,

vertical=TRUE, 

method="jitter", 

las=1, 

ylab="Differences",

pch=16, 

col="blue", 

cex=2)

diff.mean <- mean(working.memory$difference)

centre<-1

segments(centre-0.15,diff.mean, centre+0.15, diff.mean, col="black", lwd=3)

diff.se <- std.error(working.memory$difference) ## plotrix package ##

lower<-diff.mean-1.96*diff.se

upper<-diff.mean+1.96*diff.se

arrows(x0=centre, 

y0=lower, 

x1=centre, 

y1=upper, 

length=0.3, 

code=3, 

angle=90,

lwd=3)

Dependent or Paired t-test - Answers

Alternative to using the plotrix package:
length.se<-tapply(coyote$length,coyote$gender,

function(x) sd(x)/sqrt(length(x)))



t.test(working.memory$placebo, working.memory$DA.depletion,paired=T)

Question: does dopamine affect working memory in rhesus monkeys?

Answer: the injection of a dopamine-depleting agent 
significantly affects working memory in rhesus monkeys 
(t=8.62, df=14, p=5.715e-7).

Dependent or Paired t-test - Answers



Comparison of more than 2 means

• Running multiple tests on the same data increases the familywise error rate.

• What is the familywise error rate?

• The error rate across tests conducted on the same experimental data.

• One of the basic rules (‘laws’) of probability:

• The Multiplicative Rule: The probability of the joint occurrence of 2 or more 
independent events is the product of the individual probabilities.



Familywise error rate

• Example: All pairwise comparisons between 3 groups A, B and C: 
• A-B, A-C and B-C

• Probability of making the Type I Error: 5%
• The probability of not making the Type I Error is 95% (=1 – 0.05)

• Multiplicative Rule:
• Overall probability of no Type I errors is: 0.95 * 0.95 * 0.95 = 0.857

• So the probability of making at least one Type I Error is 1-0.857 = 0.143 or 14.3%
• The probability has increased from 5% to 14.3%

• Comparisons between 5 groups instead of 3, the familywise error rate is 40% (=1-(0.95)n)



• Solution to the increase of familywise error rate: correction for multiple comparisons
• Post-hoc tests

• Many different ways to correct for multiple comparisons:
• Different statisticians have designed corrections  addressing different issues

• e.g. unbalanced design, heterogeneity of variance, liberal vs conservative

• However, they all have one thing in common: 
• the more tests, the higher the familywise error rate: the more stringent the correction

• Tukey, Bonferroni, Sidak, Benjamini-Hochberg …
• Two ways to address the multiple testing problem

• Familywise Error Rate (FWER) vs. False Discovery Rate (FDR)

Familywise error rate



• FWER: Bonferroni: αadjust  = 0.05/n comparisons e.g. 3 comparisons: 0.05/3=0.016
• Problem: very conservative leading to loss of power (lots of false negative)
• 10 comparisons: threshold for significance: 0.05/10: 0.005
• Pairwise comparisons across 20.000 genes 

• FDR: Benjamini-Hochberg: the procedure controls the expected proportion of 
“discoveries” (significant tests) that are false (false positive).
• Less stringent control of Type I Error than FWER procedures which control the probability of at least one 

Type I Error
• More power at the cost of increased numbers of Type I Errors.

• Difference between FWER and FDR: 
• a p-value of 0.05 implies that 5% of all tests will result in false positives. 

• a FDR adjusted p-value (or q-value) of 0.05 implies that 5% of significant tests will result in false 
positives. 

Multiple testing problem



• Extension of the 2 groups comparison of a t-test but with a slightly different logic:

• t-test = mean1 – mean2

Pooled SEM

• ANOVA = variance between means

Pooled SEM                                                     

• ANOVA compares variances: 
• If variance between the several  means > variance within the groups (random error) then the means 

must be more spread out than it would have been by chance.

Analysis of variance

Pooled SEM

Pooled SEM



• The statistic for ANOVA is the F ratio.

• F =

• F =

• If the variance amongst sample means is greater than the error/random variance, then F>1
• In an ANOVA, we test whether F is significantly higher than 1 or not.

Variance between the groups

Variance within the groups (individual variability)

Variation explained by the model (= systematic)

Variation explained by unsystematic factors (= random variation)

Analysis of variance



• Variance (=  SS / N-1) is the mean square
• df: degree of freedom with df = N-1

Total sum of squares

Between groups variability

Source of variation Sum of Squares df Mean Square F p-value

Between Groups 2.665 4 0.6663 8.423 <0.0001

Within Groups 5.775 73 0.0791

Total 8.44 77

Within groups variability

Analysis of variance



• Question: is there a difference in protein expression between the 5 cell 
lines?

• 1 Plot the data

• 2 Check the assumptions for parametric test

• 3 Statistical analysis: ANOVA

Example: One-way ANOVA: protein.expression.csv



• Question: Difference in protein expression between 5 cell types? 

• Load protein.expression.csv

• Restructure the file: wide to long
• Clue: melt() ## reshape2 ##

• Rename the columns: "line" and "expression"
• Clue: colnames()

• Remove the NAs
• Clue: na.omit

• Plot the data using at least 2 types of graph

Example: One-way ANOVA: protein.expression.csv



protein<-read.csv("protein.expression.csv",header=T)

protein.stack<-melt(protein) ## reshape2 package ## 

colnames(protein.stack)<-c("line","expression")

protein.stack.clean <- na.omit(protein.stack)

head(protein.stack.clean)

stripchart(protein.stack.clean$expression~protein.stack.clean$line,vertical=TRUE, method="jitter", las=1, 

ylab="Protein Expression",pch=16,col=1:5)

expression.means<-tapply(protein.stack.clean$expression,protein.stack.clean$line,mean)

segments(1:5-0.15,expression.means, 1:5+0.15, expression.means, col="black", lwd=3)

boxplot(protein.stack.clean$expression~protein.stack.clean$line,col=rainbow(5),ylab="Protein Expression",las=1)

beanplot(protein.stack.clean$expression~protein.stack.clean$line, log="",ylab="Protein Expression",las=1)

## beanplot package ##

Example: One-way ANOVA: protein.expression.csv



tapply(protein.stack.clean$expression,protein.stack.clean$line, shapiro.test)

protein.stack.clean$log10.expression<-log10(protein.stack.clean$expression)

Assumptions of Parametric Data



beanplot(protein.stack.clean$expression~protein.stack.clean$line, ylab="Protein Expression", las=1)

stripchart(protein.stack.clean$expression~protein.stack.clean$line,vertical=TRUE, 

method="jitter", las=1, ylab="Protein Expression",pch=16,col=rainbow(5),log="y")

expression.means<-tapply(protein.stack.clean$expression,protein.stack.clean$line,mean)

segments(1:5-0.15,expression.means, 1:5+0.15, expression.means, col="black", lwd=3)

boxplot(protein.stack.clean$log10.expression~protein.stack.clean$line,col=rainbow(5), ylab="Protein 

Expression",las=1)

Plot ‘protein.expression.csv’ data
Log transformation



Normality-ish

tapply(protein.stack.clean$log10.expression,protein.stack.clean$line,shapiro.test)

bartlett.test(protein.stack.clean$log10.expression~protein.stack.clean$line)

Homogeneity in variance 

Assumptions of Parametric Data



Analysis of variance: Post hoc tests

• The ANOVA is an “omnibus” test: it tells you that there is (or not) a difference 
between your means but not exactly which means are significantly different 
from which other ones.

• To find out, you need to apply post hoc tests.

• These post hoc tests should only be used when the ANOVA finds a significant effect.



anova.log.protein<-aov(log10.expression~line,data=protein.stack.clean)

summary(anova.log.protein)

pairwise.t.test(protein.stack.clean$log10.expression,protein.stack.clean$line, p.adj = "bonf")

TukeyHSD(anova.log.protein,"line")

Analysis of variance



bar.expression<-barplot(expression.means, beside=TRUE, ylab="Mean expression", ylim=c(0, 3), las=1)

expression.se <- tapply(protein.stack.clean$expression,protein.stack.clean$line,std.error) 

arrows(x0=bar.expression, y0=expression.means-expression.se,

x1=bar.expression, y1=expression.means+expression.se, length=0.2, angle=90,code=3)

Analysis of variance



Association between 2 continuous variables



Correlation

• A correlation coefficient is an index number that measures:

• The magnitude and the direction of the relation between 2 variables

• It is designed to range in value between -1 and +1



• Most widely-used correlation coefficient:

• Pearson product-moment correlation coefficient “r”

• The 2 variables do not have to be measured in the same units but they have to be proportional 
(meaning linearly related)

• Coefficient of determination:
• r is the correlation between X and Y

• r2 is the coefficient of determination: 

• It gives you the proportion of variance in Y that can be explained by X, in 
percentage.

Correlation



• Assumptions for correlation
• Regression and linear Model (lm)

• Linearity: The relationship between X and the mean of Y is linear.

• Homoscedasticity: The variance of residual is the same for any value of X.

• Independence: Observations are independent of each other.

• Normality: For any fixed value of X, Y is normally distributed. 

Correlation



• Assumptions for correlation

• Regression and linear Model (lm)

• Outliers: the observed value for the point is very different from that predicted by the 
regression model.

• Leverage points: A leverage point is defined as an observation that has a value of x that is 
far away from the mean of x.

• Influential observations: change the slope of the line. Thus, have a large influence on the 
fit of the model. 

One method to find influential points is to compare the fit of the model with and without 
each observation.

• Bottom line: influential outliers are problematic.

Correlation



Correlation: exam.anxiety.dat
• Is there a relationship between time spent revising and exam anxiety?

exam.anxiety<-read.table("Exam Anxiety.dat", sep="\t",header=T) 

head(exam.anxiety)

plot(exam.anxiety$Revise,exam.anxiety$Anxiety,col=exam.anxiety$Gender,pch=16)

legend("topright", title="Gender",inset=.05, c("Female","Male"), horiz=TRUE, pch=16,col=1:2)



• Is there a relationship between time spent revising and exam anxiety?
•lm() linear modelling
• model(x) = y  (e.g. mean(3, 5, 6) = 4.7)
• lm(outcome ~ predictor) (e.g. in mammals: lm(weight ~ sex) 

fit.male<-lm(Anxiety~Revise,data=exam.anxiety[exam.anxiety$Gender=="Male",])

fit.female<-lm(Anxiety~Revise,data=exam.anxiety[exam.anxiety$Gender=="Female",])

abline((fit.male), col="red")

abline((fit.female), col="black")

Correlation: exam anxiety.dat



par(mfrow=c(2,2))

plot(fit.male)

Linearity, homoscedasticity and outlier Normality and outlier

Homoscedasticity Influential cases

Correlation: exam anxiety.dat
Assumptions, outliers and influential cases



plot(fit.female)

Linearity, homoscedasticity and outlier Normality and outlier

Homoscedasticity Influential cases

Correlation: exam anxiety.dat
Assumptions, outliers and influential cases



cor(exam.anxiety[exam.anxiety$Gender=="Male", 

c("Exam","Anxiety","Revise")])

cor(exam.anxiety[exam.anxiety$Gender == "Female", 

c("Exam","Anxiety","Revise")])

Anxiety=84.19-0.53*Revise

Anxiety=91.94-0.82*Revise

Correlation: exam anxiety.dat



Correlation: exam anxiety.dat
Influential outliers (fit2)

Anxiety=86.97-0.61*Revise Anxiety=92.25-0.86*Revise

exam.anxiety.filtered <- exam.anxiety[c(-78,-87),]



Correlation
without the outlier/influential case

plot(exam.anxiety$Revise,exam.anxiety$Anxiety,col=exam.anxiety$Gender,pch=16)

legend("topright", title="Gender",inset=.05, c("Female","Male"), horiz=TRUE, pch=16,col=1:2)

abline((fit.male), col="red")

abline((fit.female), col="black")

abline((fit.male2), col="red“,lty=3)

abline((fit.female2), col="black“,lty=3)





My email address if you need some help with GraphPad:

anne.segonds-pichon@babraham.ac.uk

Slides and manual available on:

https://www.bioinformatics.babraham.ac.uk/training.html

mailto:anne.segonds-pichon@babraham.ac.uk
https://www.bioinformatics.babraham.ac.uk/training.html

