Developing R Packages

Simon Andrews
simon.andrews@babraham.ac.uk
@simon_andrews

V2022-03

Babrm
Bioinformatics



Writing R Functions

Function name Function Arguments

bmi <- function(weight, height) {
height/100 -> height
heightA2 -> height Code Block
return(weight/height)

}

Return value

> bm1(90,175) > bmi1(c(90,102), c(175,183))
[1] 29.38776 [1] 29.38776 30.45776



Making functions robust

* More important when your function will be run by people
other than you!

 Two main changes:

1. Make sure your function isn’t affected by the environment in the
script in which it’s run

2. Validate the input data and provide helpful error messages if
anything is wrong



Encapsulation

e A function should only refer to data passed in as an argument.
* |t shouldn’t read or modify data in the users environment

* |t should only send data back via the return statement and let
the user decide how to use it



The wrong way to do it...

read delim("Child Variants.csv") -> variants
how many genes <- function() {
variants %>%
distinct (GENE) $%>%

nrow () -> gene count

print (pastel ("There are ",gene count," genes"))

how many genes ()

[1] "There are 10321 genes"



The right way to do it...

read delim("Child Variants.csv") -> varilants

how many genes <- function (variant data) {
variant data %>%
distinct (GENE) $%>%
nrow () -> gene count

return (gene count)

}

print (pastel ("There are ",how many genes(variants)," genes"))

[1] "There are 10321 genes"



Data Guarantees

how many genes <- function(variant data, chr=NULL) ({

1f (! is.null (chr)) {
variant data %>%
filter (CHR==chr) -> varilant data

variant data %>%
distinct (GENE) $%>%
nrow () -> gene count

return (gene count)

}

print (pastel ("There are ",how many genes (variants)," genes"))
[1] "There are 10321 genes"

print (pastelO ("There are ",how many genes (variants,2)," genes on chr 2"))
[1] "There are 647 genes on chr 2"



Data Guarantees

function (variant data, chr=NULL)

e variant should be a tibble (or data frame)
 chr should be either text or integer

— Could get the wrong data type
— Could get multiple values when only one is required
— Could have an empty dataset

— Could get an invalid value
* Non-existent chromosome
* NA, negative or infinite value

* R provides no guarantees —it’s all up to the function author



Actions upon problems

* message (): print a message to inform the user about something
* warning (): print a warning message but keep going
* stop ():printan error message and stop the script execution

> message ("This 1s a message")
This 1s a message

> warning ("Thlis 1s a warning")
Warning message:
This 1s a warning

> stop ("I will go no further")
Error: I will go no further



Conditional Statements

value <- -10

if (value < 0) {

warning (paste ("Values should be positive, yours was",value))
} else {

message (paste ("The value",value,"was fine"))

}

Warning message:
Values should be positive, yours was -10

value <- ¢ (1,2,-10)
Warning message:
In 1if (value < 0) {

the condition has length > 1 and only the first element will be used



Collapsing logical vectors

c(l,5,-10) > O
[1] TRUE TRUE FALSE

any(c(1,5,-10) > 0)
[1] TRUE

all(c(1,5,-10) > 0)
[1] FALSE

value <- c¢(1,2,-10)

1f (any(value < 0)) {
warning ("Values should be positive, one of yours wasn't")



Argument checking

how many genes <- function(variant data, chr=NULL) {

if (length(chr) != 1) {
stop("You can only analyse one chromosome")

}

if (!is.null(chr) & !chr %in% variant dataSCHR) {
warning (paste ("No data for chr",chr))

how many genes (variants,"z")
Warning message:
In how many genes (variants, "Z") : No data for chr Z

how many genes (variants,c(1l,2,"X"))
Error in how many genes (variants, c (1, 2, "X"))
You can only analyse one chromosome



Argument Checking

(with assertthat package)

Raw Data Types and Values

is.scalar a single value
is.number a single number
i1s.numeric a numeric vector
1s.count a positive integer
is.string a single text value
1s.character atextvector
is.flag a single logical
is.logical a logical vector
is.date a date

noNA no NA values
not empty some data in it

Data structure checks
e is.tibble a tibble
e jis.data.frame adataframe

e is.list a list

File operations
e is.dir a directory
* is.readable areadablefile

e is.writeable a writeable file

has.extensioncorrect extension



Simpler checking with assert that ()

* assert that(x) isequivalentto if (x) {stop () }
* Constructs nice messages (or make your own)

> assert that (is.number ("X"))
Error: "X" 1s not a number (a length one numeric vector).

> assert that (is.readable("missing.txt"))
Error: Path 'missing.txt' does not exist

> assert that(is tibble(4))
Error: is tibble(x = 4) 1s not TRUE

> assert that(is tibble(4), msg = "This was not a tibble")
Error: This was not a tibble



Easier Checking with assertthat

library(assertthat)
how many genes <- function(variant data, chr=NULL) ({

assert that(is.data.frame(variant data), msg="Not a data frame")
assert that ("GENE" $in% colnames (variant data), msg="No GENE column")

1f(!is.null (chr) {
assert that(is.scalar (chr))
assert that(is.count (chr) |is.string(chr), msg="chr must be text or int")

}

how many genes (variants)

how many genes ("variants")

how many genes (variants,c(1l,2,3))
how many genes (variants, TRUE)



Writing Functions

xvalues <- positions$x
yvalues <- positions$y

mean (xvalues) —-> centrex
mean (yvalues) -> centrey

xvalues—-centrex ** 2 -> xdiff?2
yvalues-centrey ** 2 -> ydiff?2

sgrt (xdiff2+ydiff2) -> distance

> head (xdiff2)
[1] -10355.55 -10358.47 -10356.25

-10355.67 -10358.12

10-

-10357.46



Writing Functions

xvalues <- positions$x

yvalues <- positions$y 10-
mean center distance <- function(xvalues, yvalues) ({ > oo

mean (xvalues) -> centrex

mean (yvalues) -> centrey 6

(xvalues-centrex) ** 2 -> xdiff?2 a-

(yvalues—-centrey) ** 2 -> ydiff?2

sgrt (xdiff2+ydiff2) -> distance

return (distance)



Debugging Functions

* You can add browser () to any point if your code
— Stops execution at that point
— Opens an interactive debugger

 Current variables are shown in Environment

* Controls allow you to step through the code one line at a time to see changes

Conscle  Terminal Jobs Environment  History  Connections  Tutorial
C:/Users/andrewss/Desktop/Final Dropin/ List =
G=Next | (V| b Continue B oo = mean_centre_distance]) =

= mean_centre_distance(c{1:10),c{11:20)) - values

Called flnm mean_centre_distance{c({1:10), c{11:20)) centrex 5.5

Browse[l]> n centrey 15.5

debug at #4: centrex =- mean({xvalues) xvalues int [1:10] 1 2 34 56 7 8 9 10

Browse[2]> n
debug at #5: centrey <- mean(yvalues)
Browse[2]= n Traceback Show internals

7. . _ _. _ - A
:sEU?E?E H# | XeifT2 <= xvalues centrexas w mean_centre_distance(c(1:10), c(11:20))

yvalues int [1:10] 11 12 13 14 15 16 17 18 19 .



Exercise 1 — Writing Robust Functions



Putting functions into
packages

Babrm
Bioinformatics



Toolchain

* Operating system packages
— Rtools
 Compiler
* Make system

* R helper packages
— devtools (many convenience methods)
— roxygen2 (documentation)
— testthat (test suite)
— knitr (vignettes)



Rtools

F Setup - Rtools version 4.0 — *

° O SX IHSFTI:.IaI:;?Nait while Setup installs Rtools on your computer., @

— Command line developer tools N

' C:'Vrtools40Ymingw 32Yib\gocj686-wa4-mingw 3248, 3.0%cc 1plus. exe

xcode-select --install —
* Linux

— R development package

sudo apt -y install r-base-dev
* Windows

— Rtools40

— Install from https://cran.r-project.org/bin/windows/Rtools/



https://cran.r-project.org/bin/windows/Rtools/

R helper packages

install.packages (c (

"devtools", # Development helpers
"roxygen2", # Documentation
"testthat", # Testing

"knitr")) # Writing vignettes



Starting a package - naming

* Rules!
— Only letters, numbers and dots (not hyphens or underscores)
— Can’t start with a number
— Can’t end with a dot

* Guidelines
— Don’t use dots
— All lowercase is best
— Don’t use a name already in CRAN or Bioconductor



Starting a package — create git repository

* |t's easiest to create a new git repository first rather than
creating a package and adding the repository later.

Create a new repository Initialize this repository with:
A repository contains all project files, including the revision history. Already have a project repository elsewhere? Skip this step if you're importing an existing repository.
Import a repository.

Add a README file

This is where you can write a long description for your project. Learn more.

Owner * Repository name * Add .gitignore
3 s-andrews « X sangr \/ Choose which files not to track from a list of templates. Learn more,

Great repository names are short and memorable. Need inspiration? How about legendary-spork? e

Description (optional) Choose a license

. i i A license tells others what they can and can't do with your code, Learn more,
An R package for simulating Sanger sequencing chromatograms

License; GMU General Public Li... =

® Public o ) )
= This will set ¥ main as the default branch. Change the default name in your settings.

Anyone on the internet can see this repository. You choose who can commit.

@] 6 Private
Yfou choose who can see and commit to this repository. Create repository



Bring your package into RStudio

Mew Project Wizard

Or...
git clone https://github.com/s-andrews/sangr.git

Create Project

R New Directory N
Start a project in a brand new working directory
R Existing Directory N
Associate a project with an eusting working directory |\ Project Wizard
A Version Control Back Create Project from Version Control
Checkout a project from a version control repository

Git New Project Wizard

Clone a project from a Git repository

Gi+

Back Clone Git Repository

Repository URL:
https://github.com/s-and re'.'.-s;testpackage.git|

I+

Project directory name:
testpackage
Create project as subdirectory of:

C:/Users/andrewss/Desktop Browse...

Onen in new cacsin . -
SranlnEte=s Create Project Cance



Starting a package — create package ()

* Check out your git repository
* Load devtools (1ibrary (devtools))
* Use create package () to make the basic file structure*

 The newly created project should automatically open

library (devtools)
create package ("C:/Users/andrewss/git/sangr/")

Commit and Push to github (R folder won’t add until somethingisin it)

* If you use the GUI to import your repository you'll get a warning when running create package



> create package ("C:/Users/andrewss/git/sangr/")
\V Setting active project to 'C:/Users/andrewss/git/sangr'
\V Creating 'R/
V Writing 'DESCRIPTION'
Package: sangr
Title: What the Package Does (One Line, Title Case)
Version: 0.0.0.9000
Authors@R (parsed) :
* First Last <first.last@example.com> [aut, cre] (YOUR-ORCID-ID)
Description: What the package does (one paragraph).
License: "use mit license() , use gpl3 license() or friends to
pick a license
Encoding: UTF-8
LazyData: true
Roxygen: list (markdown = TRUE)
RoxygenNote: 7.1.1
Writing 'NAMESPACE'
Writing 'sangr.Rproj'
Adding '.Rproj.user' to '.gitignore'
Adding '”“sangr\\.Rprojs$', '""\\.Rproj\\.user$S' to '.Rbuildignore'
Opening 'C:/Users/andrewss/git/sangr/' in new RStudio session
Setting active project to '<no active project>'

2L 2 =2 2 2 2



Configuring your package

* Package metadata is in the
DESCRIPTION file

* Edit this file to specify
suitable values for the
metadata

e Just do the Title, Authors
and Description to start
with

Package: sangr
Title: SihatdteRogdagsdooen (Orpedhnemitts Cavs)
Version: 0.0.0.9000
Authors@R:
person(given = "bintn",

family = "Basdlews",

role = ¢("aut", "cre"),

email = "firsiolast@ezavn@l badoraliam.ac.uk”,

comment = ¢(ORCID = "90QRIDRCHAG)3507"))
Description: BGératritiespaithagedobs te e psitygdapdhfor
Lineulsée dlsangeit Skcpresades use_gpl3_license()” or friends to
Ligeicken ligemsmit_license()’, ‘'use_gpl3_license() or friends to
Enpattindiddhbeld
Eangoling: tilie-8
Razygeta:list{(enarkdown = TRUE)
RoxygenNatignvatdkdown = TRUE)
RoxygenNote: 7.1.1



Exercise 2: Creating your package



Importing and Modifying Functions



Package development workflow

* Write R code
— Editing .R files under the R folder in the package

* Reload the package to test the new code
—Call load all () to bringthe new code into your environment

* Update Tests
— Write code to test the new or updated functionality



Writing R Code

* Create a new .R file under the R directory
— Best to use the use r () function to create the file

* Write one or more functions within the newly created file

use r("simulate sanger data")

Setting active project to 'C:/Users/andrewss/git/sangr'
Modify 'R/simulate sanger data.R'

Call "use test() to create a matching test file

* ok 2V



Functions and Files

How many R files do you make?
How do you divide your functions between them?

Put each public function in its own file

Name the file after the function (foo () goesin foo.R)

Helper functions can either go alongside the main ones or be in a
separate file of their own (eg utils.R)



Functions and Files

simulate_sanger_data.R

simulate sanger data()
add base ()
add noise ()

degrade signal ()

draw_chromatogram.R

* draw_chromatogram()

merge_sanger_data.R

* merge sanger data()



library (tidyverse)
theme set (theme classic(base size = 16))

simulate sanger data <- function(sequence, sd=5, noise=0.2, degrade=0.8) {

trace length <- 20* (nchar (sequence) +2)
start signal <- rep(0,trace length)

tibble (

POS=1:trace length,

G=start signal,A=start signal,T=start signal,C=start signal
) —> base data

for (i1 in 1l:nchar (sequence)) {
base <- substr (sequence, i, 1)
position <= 20 * (i+1)
add base (base data,base,position,sd) -> base data

}

add noise (base data,noise) -> base data
degrade signal (base data, degrade) -> base data

return (base data)



Making functions robust

* More important when your function will be run by people
other than you!

 Two main changes:

1. Make sure your function isn’t affected by the environment in the
script in which it’s run

2. Validate the input data and provide helpful error messages if
anything is wrong



Making functions robust

* More important when your function will be run by people
other than you!

* Two main changes:

1. Make sure your function isn’t affected by the environment in the
script in which it’s run

2. Validate the input data and provide helpful error messages if
anything is wrong



Being a good citizen

 We should ensure our function can’t be broken by the
environment in which it’s run (ie what the user has already
done in their R session)

 We should ensure that nothing our function does could break
other code in the users R session



How R finds functions

tibble (x=1:10,y=21:30) -> data > library (MASS)
how many rows <- function(x) { Attaching package: ‘MASS’

return (nrow (x) ) The following object is masked from

J ‘package:dplyr’

nrow <- function (x) { select
return (5)

> search ()

how many rows (data) [1] ".GlobalEnv" "package:MASS"

[1] 5 [3] "package:dplyr" "tools:rstudio"
[5] "package:stats" "package:graphics"
[7] "package:grDevices" "package:utils"
[9] "package:datasets" "package:methods"
[11] "Autoloads" "package:base"



Stop Relyingon .Global:

tibble (x=1:10,y=21:30) -> data

how many rows <- function(x) {
return (base {xhyow (x) )

}

nrow <- function (x) {
return (5)

}

how many rows (data)
[1] 30




Don’t modify .GlobalEnv

User’s Code Your Package’s Code

library (MASS) library (dplyr)
library (your package)

myfunc <- function (x) {
select (some data) select (x,1:5)

}

You just broke their script!



Things your package code shouldn’t do!

Use 1ibrary to load other packages
Rely on .GlobalEnv to find functions that it uses

Change or rely on the working directory
Create or rely on any global variables

Change or rely on any global options

— Graphics parameters (eg ggplot theme or par)

— System options (eg locale)

— Random number generator seed (restore it if used)



Using other packages in your R code

* Add the package as a dependency in your metadata
e Call functions with explicit package names

tibble: :tibble
POS=1:trace length,
G=start signal,A=start signal,T=start signal,C=start signal

)

* Core functions mostly come from the base: : package, but
there are other default packages (eg stats: :)



Which package is a function from?

> dnorm

function (x, mean = 0, sd = 1, log = FALSE)
.Call (C dnorm, x, mean, sd, log)

<bytecode: 0x00000210017f5ae8>
<environment: namespace:stats>

> NIrow

function (x)

dim(x) [1L]

<bytecode: 0x0000021000399240>
<environment: namespace:base>

*If the function says "Primitive" then it's not in a package and you don't need to change it



Adding Dependencies

* You need to tell R if your code relies on functions from other
packages. Dependencies are recorded in the DESCRIPTION file

* The easiest way to add dependencies to your project is with
use package ()

use package ("readr")

use package ("readr",min version="2.0.0")



Adding Dependencies

* The easiest way to add dependencies to your project is with
use package ()

use package ("tibble")
use package ("tibble", "Suggests")

use package ("tibble", "Suggests",min version="3.0.0")

use package('"tibble") LazyData: true

V Adding 'tibble' to Imports field in Roxygen: list (markdown = TRUE)
DESCRIPTION RoxygenNote: 7.1.1

* Refer to functions with “tibble::fun()" lmports:

tibble



Unusual dependencies

* |f you use the $>% pipe then you need to add that as a

dependency. It’s not a function so you do need to import it into
the environment with

use pipe ()



Example Modification

assert_that(is.character(seq))

Two functions, assert_that and is.character. Find where they come from

> assert_that
function (..., env = parent.frame(), msg = NULL)

{
res <- see_ if(..., env = env, msg = msg)
if (res)
return(TRUE)
stop(assertError(attr(res, "msg")))

}
<bytecode: 0x0000017e3c20d728>

<environment: namespace:assertthat>

Need to modify this code to add package name

> is.character
function (x)

No action required

assertthat::assert_that(is.character(seq))

use_package("assertthat")

.Primitive("is.character")



Trying out new code

* You can simulate updating and loading a modified package
using the load all () function

* Functions from the package will be imported into your
environment similar to if you'd used 1ibrary ()

> load all()
Loadling sangr

> packageVersion ("sangr")
[1] Y0.0.0.9000"



More thorough testing

* To do a more complete check of the structure, code and

metadata in your package you can do a full build using the
check () function.

* This is a more complete (and slower) option than
load all () itdoes much more than just re-import your

functions.



-- R CMD check results ----——7=>----""""""""""---———— sangr 0.0.0.9000 ----
Duration: 23s

> checking DESCRIPTION meta-information ... WARNING
Non-standard license specification:
"use mit license() , use gpl3 license() or friends to pick a license

Standardizable: FALSE

> checking top-level files ... NOTE
File LICENSE i1s not mentioned in the DESCRIPTION file.

> checking R code for possible problems ... NOTE

add base: no visible global function definition for ':='
add base: no visible global function definition for 'sym'
add base: no visible global function definition for 'dnorm'
Undefined global functions or variables:

:= dnorm sym
Consider adding

importFrom("stats", "dnorm")
to your NAMESPACE file.

0 errors V | 1 warning x | 2 notes x



Exercise 3: Importing and Modifying your Functions



Metadata and Documentation



Package Versions

* Package versions are generally split into numeric sections,
separated by dotseg (2.10.5)

— Major version (2)
— Minor version (10)
— Patch version (5)

* Sometimes the version will be followed by a dev version — always
above 9000 for development (never releases)eg 2.10.5.9000



Package versions

* Major
— Starts at 0 and moves to 1 when all basic functionality is complete.

— Increments when adding significant new functionality, or breaking backwards
compatibility

e Minor

— Starts at 0 and increases within the same major version any time any
functionality is added or changed

e Patch
— Starts at 0 and increases every time a bug is fixed within the same minor version



Package Version Examples

e 1.0.0to1.0.1—-Bugfixin afunction or documentation
update

e 1.0.0to1.1.0—-Added anew function or improved the
functionality of an existing function

e 1.0.0to2.0.0—Made amajor change in the way that
something works — possibly breaking existing code



Choosing a License

e The DESCRIPTION file specifies the license under which your
code is to be made available

* You need to use a standard license if you want to submit to
CRAN

* Private code stored on github can use any license (including
none)



Standard CRAN licenses (for code)

* MIT (use mit license())
— Very simple and permissive
— Anyone can use the code in any way they like with no conditions
— Standard disclaimer to protect you from litigation

* Apache2 (use apl2 license())
— Very similar to MIT, very permissive
— Provides some protection against the use of software patents

* GNU Public License (use gpl3 license())
— Permissive in that people can *use™* the code without restriction

— Restrictive in that if others modify and distribute the code they must share their
changes under the same license



Applying a license

> use gpl3 license (name="Simon Andrews")

V Setting License field in DESCRIPTION to 'GPL-3'
V Writing 'LICENSE.md'

V Adding '~LICENSE\\.md$' to '.Rbuildignore'

License: GPL-3

* You need to set the name of the code’s copyright holder (who wrote it)
* Multiple people can be added by separating names with semi-colons



Adding Function Documentation

Use the roxygen?2 package to add and edit documentation

Adds both text documentation and additional metadata

Documentation is added to the source files as comments
above each function

Rstudio can generate a template for each function



Adding Function Documentation

#' Title

#'

#' @param sequence
#' Qparam sd

#' @param noise

#' @param degrade
#'

#' Q@return

#' Qexport

#'

#' Qexamples
simulate sanger data <- function (sequence,

sd=5,

noise=0.2,

o

Code Completion Tab
Go Ta Help F1
Go To Function Definition F2
Extract Function Ctrl+Alt+X
Extract Variable Ctrl+Alt+V
Rename in Scope Ctrl=Alt=Shift+M
Reflow Comment Ctrl+Shift+/
Comment/Uncomment Lines Ctrl+5hift+C
Insert Roxygen Skeleton Ctrl+Alt+5Shift+R
Reindent Lines Ctn Insert a roxyger
Reformat Code Ctrl+5hift| -yrrent functio

Show Diagnostics

Show Diagnostics (Project)  Ctrl+Alt+Shift+D

Profile Selected Line(s) Ctrl+Alt+Shift+P

degrade=0.8) {

comment for th



Adding Function Documentation

#' Simulate sanger chromatogram density data

# 1

#' (Qparam
#' Qparam
#' Qparam
#' Qparam

# '

sequence A string of nucleotides to use (GATC)

sd The standard deviation of the peak width

noise What proportion of the signal to make from random noise
degrade What proportion of the signal should be lost by the end

#' @Qreturn A tibble with positions (20 per base) and G/A/T/C signal

#' Qexport

# '

#' Qexamples
#' simulate sanger data ("GAATTC")
simulate sanger data <- function (sequence, sd=5, noise=0.2, degrade=0.38)

{



Using data in examples

* You can add data files to your package
— Data designed to be accessed directly
— Example data to show how to parse for example

* R Example data should go in a folder called ‘inst’
— Can access using system.file ("good.fq", package = "fastgR")

e Data should be put into a folder called ‘data’ in Rda format



Checking Function Documentation

* Update documentation using Simulate sanger chromatogram density data
the document ( ) functlon Description

Simulate sanger chromatogram density data

Usage

zimulate sanger data(sequence, 3d = 5, noise = 0.2, degrade = 0.8)

* Read the compiled version Arguments

sequence A string of nucleotides to use (GATC)

U S i n g ? f u n C t j_ O n_n ame =d The standard deviation of the peak width

noise What proportion of the signal to make from random noise

degrade  What proportion of the signal should be lost by the end
Value
A tibble with positions (20 per base) and G/IA/T/C =ignal

Examples



Documenting the package as a whole

It can be useful to add package level documentation rather than
just documenting functions

Still use roxygen2 to do this, but you have to document NULL which
then flags this as package level documentation

Can read with package?sangr (doesn’t work from devtools though)

Probably best to put this into a fresh R file



Documenting the package as a whole

#' sangr: A package for simulating sanger sequencing chromatograms
#l

#' The sangr package provides three main functions which you might
#' want to use.

#l

#' @section sangr functions:

#' simulate sanger data

#'
#' draw chromatogram
#'
#' merge sanger data
#'

#' QdocType package
#' @name sangr
NULL



Writing Vignettes

* Longer form documentation — not just function documents,
but a description of how to use the package

* Created similarly to R notebooks using Markdown.

usethis::use vignette ("sangr usage")
Adding 'knitr' to Suggests field in DESCRIPTION

Setting VignetteBuilder field in DESCRIPTION to 'knitr'
Adding 'inst/doc' to '.gitignore'

Creating 'vignettes/'

Adding '*.html', '*.R' to 'vignettes/.gitignore'

Adding 'rmarkdown' to Suggests field in DESCRIPTION
Writing 'vignettes/sangr usage.Rmd'

Modify 'vignettes/sangr usage.Rmd'

X 2L 2 2 2 2 2 2V



Writing Vignettes

title: "sangr usage"

output: rmarkdown::html vignette

vignette: >
$\VignetteIndexEntry{sangr usage}
$\VignetteEngine{knitr: :rmarkdown}
$\VignetteEncoding{UTF-8}

" "{r, include = FALSE}

knitr::opts chunk$set (
collapse = TRUE,
comment = "#>"

" {r setup}
library (sangr)



Exercise 4: Licensing and Documentation



Testing and Installation



Writing a Test Suite

* R packages can integrate with the testthat package to
create a test suite for your code

* The test suite is automatically run whenever someone builds
your package to check that the code is working on their
machine

* You can also use the test suite to check that any changes you
make don’t break the code



Creating a Test Suite

* Runuse testthat () tocreate the basicstructure

use testthat()

Adding 'testthat' to Suggests field in DESCRIPTION
Creating 'tests/testthat/'

Writing 'tests/testthat.R'

Call "use test() to 1nitialize a basic test file
and open 1t for editing.

x 2 2 2V



Adding tests

* Good idea to group tests by either function or type
(parameters, errors etc)

* Running use test("simulate sanger data")
creales test-simulate sanger data.R
in the testthat directory

* Write tests in the newly created file



Test Code Structure

library (sangr)

test that ("Simulation Parameters", ({
good sequence <- "GATC"
expect equal (ncol (simulate sanger data(good sequence)),d)
expect equal (nrow(simulate sanger data (good sequence)), 120)
expect equal (nrow(simulate sanger data(good sequence,sd = 10) 0)
expect equal (nrow(simulate sanger data (good sequence,degrade 1)
( ( ( )

), 12

= 0.1)),120)
expect equal (nrow(simulate sanger data (good sequence,noise = 0.5)),120)
')

test that("Invalid Parameters", {
expect_error(Simulate_sanger_data("gatc"))
expect error (simulate sanger data("jeyc"))
expect error (simulate sanger data(l1234))
expect error (simulate sanger data ("GATC",sd=-1))
expect error (simulate sanger data ("GATC",degrade=2))
expect error (simulate sanger data ("GATC",noise=-1))



expect equal (10,10.0)
expect gt (20,10)
expect 1t (10,20)
expect true ()

expect false ()

expect match ("GGATCC"

14

Expectations

"GATC" )

expect output (print ("Hi world"))
expect output (print ("Hi world"),

expect 1s(1:10,"integer")

expect 1s(variants,"tbl")

expect error ()

expect warning ()

"WOI")



Running tests

* Explicitly with test ()
e Automatically as part of check ()

> test()
Loading sangr
Testing sangr

V| OKFWS | Context
Vo 6 | simulate sanger data [0.3 s]

Duration: 0.3 s

[ FAIL O | WARN O | SKIP O | PASS 6 |



Fixing tests

expect error (simulate sanger data ("GATC",sd=-1))

Warning (test-simulate sanger data.R:22:3): Invalid Parameters
NAs produced
Backtrace:
1. testthat::expect error(simulate sanger data("GATC", sd = -1)) test-simulate sanger data.R:22:2
22. stats::runif (nrow(data), min = 0, max = biggest signal * noise)
== Results =====================================s===s====s===s==ss==s=s===s===========

Duration: 0.4 s

[ FATL 0 | WARN 10 | SKIP O | PASS 10 ]



Fixing tests

expect error (simulate sanger data ("GATC",sd=-1))

simulate sanger data <- function(sequence, sd=5, noise=0.1, degrade=0.8) {

if (sd<=0) {
stop("SD must be more than zero")

}

> test ()
Loading sangr
Testing sangr

V| OK F WS | Context
N | 10 | simulate sanger data [0.3 s]
== Results =========================

Duration: 0.3 s

[ FATL. O | WARN O | SKIP O | PASS 10 ]



Installing the Package

* From github
library(devtools)
install github ("s-andrews/sangr", build vignettes=TRUE)

* From source
— R CMD build sangr
— R CMD 1install sangr 0O.l.tar.gz



> install github ("s-andrews/sangr", build vignettes = TRUE)

Downloading GitHub repo s-andrews/sangr@HEAD

v/ checking for file ‘/tmp/RtmpDsGoRv/remotesac27cl6al36/s-andrews-sangr-62£3fb3/DESCRIPTION’
— preparing ‘sangr’:

v/ checking DESCRIPTION meta-information

— 1nstalling the package to build vignettes

creating vignettes (9.7s)

— checking for LF line-endings 1in source and make files and shell scripts

— checking for empty or unneeded directories

— building ‘sangr 0.0.0.9000.tar.gz’

&

Installing package into ‘/home/student/R/x86 64-pc-linux-gnu-library/4.0’
(as ‘1lib’ 1is unspecified)
* installing *source* package ‘sangr’
** yusing staged installation
**R
** inst
** pbyte-compile and prepare package for lazy loading
** help
*** installing help indices
converting help for package ‘sangr’

finding HTML links ... done

draw chromatogram html
merge sanger data html
sangr html
simulate sanger data html

** building package indices

** installing vignettes

** testing if installed package can be loaded from temporary location

** testing if installed package can be loaded from final location

** testing if installed package keeps a record of temporary installation path
* DONE (sangr)



Exercise 5: Testing and Installation



