

Exercises: R Notebooks

Version 2020-11

Licence

This manual is © 2020, Simon Andrews.

This manual is distributed under the creative commons Attribution-Non-Commercial-Share Alike 2.0 licence. This means that you are free:

- to copy, distribute, display, and perform the work
- to make derivative works

Under the following conditions:

- Attribution. You must give the original author credit.
- Non-Commercial. You may not use this work for commercial purposes.
- Share Alike. If you alter, transform, or build upon this work, you may distribute the resulting work only under a licence identical to this one.

Please note that:

- For any reuse or distribution, you must make clear to others the licence terms of this work.
- Any of these conditions can be waived if you get permission from the copyright holder.
- Nothing in this license impairs or restricts the author's moral rights.

Full details of this licence can be found at <u>http://creativecommons.org/licenses/by-nc-sa/2.0/uk/legalcode</u>

Exercise 1: Setting up a notebook

- Start a new RStudio project in the Notebook_data folder
- Create a new R Notebook and save it under the name "Plant_uptake.Rmd"
- Edit the default template so that you have
 - o A title (set in the header) of "Plant CO2 uptake"
 - o A small introductory piece of text saying what you're going to do
 - o A code block which loads the tidyverse package
 - A code block which reads in the plant_co2.csv file, saves it to a variable and then displays it
 - A piece of text saying you're going to modify the **Treatment** variable
 - A block where you use mutate and factor to change the Treatment column to be a factor where "nonchilled" comes before "chilled"
 - o A piece of text saying you're going to draw a graph
 - o A scatterplot of conc vs uptake coloured by Treatment
- Knit the document to an HTML file and see how it looks.

If you have time

- In the graph modify the point shape by Type
- Add a geom_line layer and add and aesthetic mapping for group=Plant so that the lines join points from the same plant
- Modify the colours to use the colourbrewer Set 1 palette using scale colour brewer

Exercise 2: Using Markdown

- Add Level 1 titles saying "Introduction", "Data Preparation" and "Visualisation" at appropriate points in your document
- In the introduction say that this experiment was performed on grass plants of the *Echinochloa crus-galli* species. Make sure the latin name is written in italics.
- In the introduction add some text which describes the experimental factors in the design, these should be presented in a bulleted list. The name of the factor should be in bold. The factors are:
 - Plant: The physical plant from which measurements were made
 - Type: The species of the plant
 - o Treatment: Whether the plant was chilled or not
- Also add a separate list for the measures. These are:
 - o conc: The CO2 concentration
 - o uptake: The amount of carbon taken up
- Recompile the document to see the changes in the final version

- Add a new graph. This should take only the data where conc is 250 or more and plot a strip chart of the uptake for nonchilled and chilled. You should use a facet to separate the data for the two plant Types (Mississippi and Quebec)
- Write some text saying what you conclude from the data presented in the stripchart

If you have time

Try adding the details of the experimental factors as a table instead of a list.

Use stat summary to add a mean line to the stripchart

Exercise 3: Code Blocks

- Split up any existing code blocks which generate more than one piece of output
- Give all of your code blocks a name and check that you can see both the code block name and the document titles in the navigation section at the bottom of the document
- When printing your tibble use the head function to only show the first 10 lines so that your output file doesn't get too big.
- Remove any unwanted messages (eg tidyverse loading or read_csv structure information)
- Change the first graph to be printed in SVG (dev="svg") format and have a height of 4 and a width of 9
- Keep the second graph in PNG format, but center it in the document (remember this won't affect the interactive notebook, only the compiled document)
- Add a legend to the figures
- Recompile the document to see the effect of the changes

If you have time

Use summarise to calculate the mean and sd of the uptake for the different types and treatments for concentrations over 250. Print these results both as a table and a barchart. Suppress any unwanted warnings.

Exercise 4: Document appearance

- Add a table of contents to the document and recompile to see how it works
- Change the theme used for both the main text and the syntax highlighting
- After recompiling the document find the HTML file created and open it directly in a browser

• Try compiling to other formats (Word or PDF) and see how they look. [Note: PDF creation currently fails for me if graphs use SVG format. This looks like a bug so it might be fixed when you try it, but if not then just change the graph type back to PNG and try again]

If you have time

Try changing the appearance of the tibbles within the document and see what effect this has.

Try creating a parameter for the day the document was rendered and add that to the output.

Make a parameter for the file to process and then change this at runtime to automatically render the document.