

Exercises:
Introduction to R

(With Tidyverse)

Version 2024-03

 Exercises: Introduction to R

2

Licence
This manual is © 2019-2024, Laura Biggins and Simon Andrews.

This manual is distributed under the creative commons Attribution-Non-Commercial-Share Alike 2.0 licence.
This means that you are free:

 to copy, distribute, display, and perform the work

 to make derivative works

Under the following conditions:

 Attribution. You must give the original author credit.

 Non-Commercial. You may not use this work for commercial purposes.

 Share Alike. If you alter, transform, or build upon this work, you may distribute the resulting work only
under a licence identical to this one.

Please note that:

 For any reuse or distribution, you must make clear to others the licence terms of this work.

 Any of these conditions can be waived if you get permission from the copyright holder.

 Nothing in this license impairs or restricts the author's moral rights.

Full details of this licence can be found at
http://creativecommons.org/licenses/by-nc-sa/2.0/uk/legalcode

 Exercises: Introduction to R

3

Exercise 1: Simple Calculations

 Use R to calculate the following:
o 31 * 78
o 697 / 41

 Assign the value of 39 to x

 Assign the value of 22 to y

 Make z the value of x / y

 Display the value of z in the console

 Calculate the square root of 2345, and perform a log2 transformation on the result.

 Put your name into a variable called my_name

 Use the nchar() function to find out how many characters are in your name

 Use the substr() function to extract the first character of your name

Exercise 2: Working with Vectors

Making vectors and doing vectorised maths

 Create a vector called some_numbers containing the numbers 2,5,8,12 and 16

 Use the colon operator to make a vector called number_range containing the numbers 5 to 9

 Subtract (using the - operator like any other subtraction) number_range from some_numbers and look at

the result

Vector creating functions
 Use seq() to make a vector of 100 values starting at 2 and increasing by 3 each time and store it in a new

variable called number_series

 Multiply every value in number_series by 1000 and overwrite the original variable

 Use rep() to make a vector of 100 values containing 25 each of WT, KO1, KO2 and KO3

Statistical functions to create and test vectors
 Use the rnorm() function to generate a set of 20 numbers randomly sampled from a normal distribution

with mean=0 and sd=1 (the default values) save these into a variable called normal_numbers

 Pass normal numbers to the t.test() function to see whether they differ significantly from having a mean

of 0 (look for a p-value of less than 0.05)

 Replace normal_numbers with a new set of 20 numbers from a distribution with a mean of 1. Test this

with t.test() and see if the result is now significant.

If you have time:
 Median centre the values in number_series. Calculate the median of all of the values and then subtract

this from the individual values. What is the mean and standard deviation (sd()) of this modified dataset?

 Create two vectors of values, one drawn from a normal distribution with mean=10 and sd=2 and the other

from a normal distribution of mean=10.1 and sd=2. How many values do you need to put in each vector

before you can reliably tell that the two means are not equal using a t.test?

 Exercises: Introduction to R

4

Exercise 3: Reading Data from Files

Make sure that the tidyverse packages are installed on your machine. If they’re not then install them using:

install.packages("tidyverse")

Set your working directory to where the course data files are stored using

RStudio Session > Set Working Directory > Choose Directory

Make sure that you have tidyverse loaded into your session by running:

library(tidyverse)

Reading a small file
 Read the file ‘small_file.txt’ into a new data structure. This is a tab delimited file so you should use

read_delim() to load it.

 When entering the file name – make sure you use the Tab key to list the files in the working directory
and select the correct one rather than typing out the whole file name.

 Remember that read_delim() will load the file but it won’t save it for you. You need to use the arrow

operator to save it to an R variable so that you can work with it afterwards, the same way you did with all
of the other variables you have created.

 View the data set to check that it has imported correctly. Check that the guessed column types are
correct.

 Find the median of the log2() transformed lengths from this file.

 You will need to use the $ notation to extract a single column to a vector

 You will need to use the log2() function to transform the values and then take the result of this into

the median() function

Reading a larger file
 Read the file ‘Child_Variants.csv’ into a new data structure. This is a comma separated file but you

should still use read_delim(). Again, remember to assign a name to the data when you import it.

 Display the new data into the console and see what it looks like. Try clicking on the data in the
Environment tab to run View() to open it in the viewer pane.

 Calculate the mean() and sd() of the column named MutantReadPercent.

 Exercises: Introduction to R

5

Exercise 4: Filtering
Use the tidyverse selection and filtering tools to achieve the following selections in your data. You don’t need to
save each of the results below but you should be able to look at them to show that the filtering has worked
correctly.

In the small file data:
Each of the lines below is a separate selection, you don’t need to combine them at this stage.

 Extract all of the rows where the Category is "A"

 Extract the data for samples with a Length of more than 80

 Remove the Sample column to just leave just Length and Category

In the child variants data:
Again, each of the lines below is a separate selection; you don’t need to combine them.

 Extract the rows where the chromosome is mitochrondrion ("MT")

 Extract the variants which have a MutantReadPercent of >= 70

 Extract the variants with a quality of exactly 200 (look at the file to see the correct column name)

 Extract all variants in the IGFN1 gene

 Remove the ENST and dbSNP columns

If you have time:
Load the file broken_selects.R from your data folder using File > Open File in RStudio. This is a small script

which replicates some of the exercise you’ve just done, but in which there are numerous errors. Work your way
through the script fixing the errors. Make sure that you’ve sanity checked the results from every line, before
moving on to the next one.

 Exercises: Introduction to R

6

Exercise 5: Multi-Stage filtering and Selection
All of these selections should be made on the child variants data. As before, you don’t need to save the results
of any of them.

Quality filtering
Extract variants where all of the conditions below are true:

 Quality is 200

 Coverage is more than 50

 Mutant Read Percent is more than 70

Positional Filtering
 Remove all variants on the X, Y and MT chromosomes

Annotation filtering
 Show only the chromosome and position for variants which have a valid dbSNP ID

Transformation filtering (if you have time)
In some more advanced filtering you might want to manipulate the data when you filter it to be able to do
something more clever than you can do with standard tests. Below we’re going to give you some examples
where you can see how this would work.

Earlier you used the nchar() function which calculates the number of characters in each element of a character

vector. Use this on the REF column in a filter() statement to select variants where there is a deletion, ie

where the number of characters in the reference is more than 1.

We saw the substr() function at the start of the day. It allows us to extract parts of a string of characters. Use

the substr() function in a filter() statement to find all variants in genes whose name starts with Q.

 Exercises: Introduction to R

7

Exercise 6: Your first ggplot plot
Load the data from the brain_bodyweight.txt file using read_delim().

This file contains the details of the brainweight and the bodyweight for different animal species.

 Draw a scatterplot (using geom_point()) of the log brainweight (log.brain) vs the log bodyweight

(log.body). When defining your aesthetics the brain will be the x and body will be the y.

 Make all of the points filled with blue2, and give them a size of 3.

 Change the point colouring from a fixed value of blue to an aesthetic mapping where the points are

coloured by Category. For the aesthetic mapping to have any effect you’ll need to remove the fixed

aesthetic. What do you see about the extinct animals?

If you have time:
 Re-plot your last graph but remove the extinct species from the plot. Use your previous filtering skills to

remove them from the data and then pipe the filtered data straight into ggplot().

Exercise 7: More plotting
 Plot out a barplot of the lengths of each sample from category A in the small file data you loaded

previously.
o Start by filtering the data to keep only Category A samples
o Pass this filtered tibble to ggplot()
o Your x aesthetic will be Sample and your y will be Length

o Since you are explicitly providing bar heights you need to use geom_col() as your geometry

 Plot out the distribution of MutantReadPercent values in your child variants data. You can try both

geom_histogram() and geom_density(). Try changing the colour and fill parameters to make the

plot look prettier. In geom_histogram() try changing the binwidth parameter to alter the resolution

of the distribution.

 Plot a barplot of the frequency with which different bases are mutated. To do this you will need to take
the following steps

o Filter child variants to keep only positions with a single letter REF (use nchar() in the filter) –

note that this is different to the REF filter you did before

o Pass the filtered data to ggplot() and set REF as the x aesthetic, and set geom_bar() as the

geometry. Since there isn’t a bar height in the aesthetic, ggplot will count the number of
occurrences of the different refs and plot those.

 Exercises: Introduction to R

8

If you have time…

Improved aesthetics
Go back to the plots you have created and add appropriate titles using ggtitle() and axis labels using

xlab() and ylab()

Change some fixed aesthetic values to the geometry calls to change the appearance of your plots. Look at the
help page for the geometry you are using to see which aesthetic values you can change.

For example:

 Change the colour of plotted points (try using colour and fill and see the difference)

 Change the size of the plotted points / lines

Multiple layers
Try adding text labels to your brain bodyweight plot. To do this you’ll need to add a new geom_text()

geometry level, and you will need to define an aesthetic mapping for label (you already have the x and y

aesthetics defined). You can add the new mapping either in the original ggplot aes call, or in a new aes() call

inside geom_text().

Once you have the text labels showing you can use the hjust parameter in geom_text() to move them from

being directly over the corresponding points.

Statistical testing
You can see a relationship between log.brain and log.body but we can also test whether this is statistically

significant and we can work out exactly how strong the relationship is.

You are going to use two different statistical functions to assess this. Although they are running similar analyses
on the same data, the way they are called is quite different – this illustrates the importance of reading the
documentation for functions before running them.

The cor.test function takes in two vectors of values (which must be the same length) as arguments and

performs a Pearson correction test on the linkage between the values. It will give you a summary of the
relationship, including a p-value. Run this on your log.brain and log.body columns. Look back to exercise

3 if you can’t remember how to extract one column from a tibble into a vector. Note down what the p-value from
the test is so you can add it to the title of your graph.

The lm function performs a linear model on your data. In our case we’re going to use this to fit a line of best fit

through the log.brain and log.body data. From the model it generates we can extract the slope and

intercept values. We can then put these into a call to the geom_abline() geometry to draw the line of best fit

onto our plot.

The documentation for lm() tells us that the only required parameters are:

lm(formula, data)

 Exercises: Introduction to R

9

The data is easy, since that’s our brain bodyweight tibble (with whatever name you gave it). The formula is a
little different. This is a structure which defines the relationship we want to test based on the column names in
the data. In our case we want to see how well log.body is predicted by log.brain. The formula is therefore:

log.body ~ log.brain

Details of building statistical models in R are beyond the scope of this introductory course, but we have a
separate course on statistical analysis in R which you can attend if you want to build up your knowledge about
this side of R.

Once you have successfully run lm, note the slope and intercept values and then include these in a call to
geom_abline() which you can then add as a new layer in your brain bodyweight plot.

