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Outline of the course

• Power analysis with G*Power

• Basic structure of a GraphPad Prism project

• Analysis of qualitative data:
• Chi-square test

• Analysis of quantitative data:
• Student’s t-test, One-way ANOVA, correlation and curve fitting



• Definition of power: probability that a statistical test will reject a false null hypothesis (H0).
• Translation: the probability of detecting an effect, given that the effect is really there.

• In a nutshell: the bigger the experiment (big sample size), the bigger the power (more likely 
to pick up a difference).

• Main output of a power analysis:
• Estimation of an appropriate sample size

• Too big: waste of resources,

• Too small: may miss the effect (p>0.05)+ waste of resources,

• Grants: justification of sample size,

• Publications: reviewers ask for power calculation evidence,

• Home office: the 3 Rs: Replacement, Reduction and Refinement.

Power analysis



Experimental design

Think stats!!

• Translate the hypothesis into statistical questions:

• What type of data?

• What statistical test ?

• What sample size?

• Very important: Difference between technical and biological replicates.

Biological

n=3

Technical

n=1



A power analysis depends on the relationship between 6 variables:

• the difference of biological interest

• the variability in the data (standard deviation)

• the significance level (5%)

• the desired power of the experiment (80%)

• the sample size

• the alternative hypothesis (ie one or two-sided test)

Effect size

Power analysis



1 The difference of biological interest

• This is to be determined scientifically, not statistically.

• minimum meaningful effect of biological relevance 

• the larger the effect size, the smaller the experiment will need to be to detect it.

• How to determine it?
• Substantive knowledge, previous research, pilot study …

2 The Standard Deviation (SD)
• Variability of the data 

• How to determine it?
• Substantive knowledge, previous research, pilot study …

• In ‘power context’: effect size: combination of both:

• e.g.: Cohen’s d = (Mean 1 – Mean 2)/Pooled SD



3 The significance level

• usually 5% (p<0.05), probability of the Type I error α

• p-value is the probability that a difference as big as the one observed could be found even
if there is no effect.

• Probability that an effect occurs by chance alone 

• Don’t throw away a p-value=0.051 !



• α : the threshold value that we measure p-values against.
• For results with 95% level of confidence: α = 0.05
• = probability of type I error

• p-value: probability that the observed statistic occurred by chance alone

• Statistical significance: comparison between α and the p-value
• p-value < 0.05: reject H0 and p-value > 0.05: fail to reject H0

The significance level, critical value, α and β



• In hypothesis testing, a critical value is a point on the test distribution that is 
compared to the test statistic to determine whether to reject the null hypothesis
• Example of test statistic: t-value

• If the absolute value of your test statistic is greater than the critical value, you can 
declare statistical significance and reject the null hypothesis
• Example: t-value > critical t-value

Example: 2-tailed t-test with n=15 (df=14)

T Distribution

0.95
0.025 0.025

t=-2.1448 t=2.1448

t(14)

The critical value



• Type II error (β) is the failure to reject a false H0

• Direct relationship between Power and type II error: 
• if β = 0.2 and Power = 1 – β = 0.8 (80%)

• Hence a true difference will be missed 20% of the time

• General convention: 80% but could be more or less

• Cohen (1988): 
• For most researchers: Type I errors are four times 
more serious than Type II errors: 0.05 * 4 = 0.2

• Compromise: 2 groups comparisons: 90% = +30% sample size, 95% = +60%

4 The desired power: 80%



5 The sample size: the bigger the better?

• What if the tiny difference is meaningless?
• Beware of overpower
• Nothing wrong with the stats: it is all about 

interpretation of the results of the test.

• Remember the important first step of power analysis
• What is the effect size of biological interest?

• It takes huge samples to detect tiny differences but tiny samples to detect huge differences. 



• One-tailed or 2-tailed test? One-sided or 2-sided tests?

• Is the question:
• Is the there a difference?
• Is it bigger than or smaller than?

• Can rarely justify the use of a one-tailed test
• Two times easier to reach significance with a one-tailed than a two-tailed

• Suspicious reviewer!

6 The alternative hypothesis



To recapitulate:

• The null hypothesis (H0): H0 = no effect 

• The aim of a statistical test is to reject or not H0.

• Traditionally, a test or a difference are said to be “significant” if the probability of type I 
error is: α =< 0.05

• High specificity = low False Positives = low Type I error

• High sensitivity = low False Negatives = low Type II error

Statistical decision True state of H0

H0 True (no effect) H0 False (effect)

Reject H0 Type I error α

False Positive

Correct

True Positive

Do not reject H0 Correct

True Negative

Type II error β

False Negative



Hypothesis

Experimental design
Choice of a Statistical test

Power analysis: Sample size

Experiment(s)

Data exploration

Statistical analysis of the results



• Fix any five of the variables and a mathematical relationship can be used
to estimate the sixth.

e.g. What sample size do I need to have a 80% probability (power) to detect this particular
effect (difference and standard deviation) at a 5% significance level using a 2-sided test?



• Good news:
there are packages that can do the power analysis for you ... providing you have some prior
knowledge of the key parameters!

difference + standard deviation = effect size

• Free packages:
• R

• G*Power and InVivoStat

• Russ Lenth's power and sample-size page:
• http://www.divms.uiowa.edu/~rlenth/Power/

• Cheap package: StatMate (~ $95)

• Not so cheap package: MedCalc (~ $495)

http://www.divms.uiowa.edu/~rlenth/Power/


+ Noise +

Statistical inference

Difference Meaningful? Real?

Statistical test

Statistic
e.g. t, F …

Big enough?

Difference

Sample Population

Sample

=

Yes



Qualitative data



Qualitative data

• = not numerical

• = values taken = usually names (also nominal)
• e.g. causes of death in hospital

• Values can be numbers but not numerical
• e.g. group number = numerical label but not unit of measurement

• Qualitative variable with intrinsic order in their categories = ordinal

• Particular case: qualitative variable with 2 categories: binary or dichotomous
• e.g. alive/dead or presence/absence



Example: cats and dogs.xlsx

• Cats and dogs trained to line dance
• 2 different rewards: food or affection
• Question: Is there a difference between the rewards?

• Is there a significant relationship between the 2 variables?

– does the reward significantly affect the likelihood of dancing?

• To answer this type of question:

– Contingency table

– Fisher’s exact or Chi2 tests

Fisher’s exact and Chi2

Food Affection

Dance ? ?

No dance ? ?

But first: how many cats do we need?



G*Power

Step1: choice of Test family

Power analysis with G*Power = 4 steps

Example case:
Preliminary results from a pilot study on cats: 25% line-
danced after having received affection as a reward vs. 
70% after having received food.

A priori Power Analysis



Step 2 : choice of Statistical test

Fisher’s exact test or Chi-square for 2x2 tables

G*Power



Step 3: Type of power analysis

G*Power



Step 4: Choice of Parameters
Tricky bit: need information on the size of the 
difference and the variability.

G*Power



Output: 
If the values from the pilot study are good predictors and if you use a sample 
of n=23 for each group, you will achieve a power of 83%.

G*Power



Chi-square and Fisher’s tests
• Chi2 test very easy to calculate by hand but Fisher’s very hard

• Many software will not perform a Fisher’s test on tables > 2x2

• Fisher’s test more accurate than Chi2 test on small samples
• Chi2 test more accurate than Fisher’s test on large samples

• Chi2 test assumptions:
• 2x2 table: no expected count <5
• Bigger tables: all expected > 1 and no more than 20% < 5

• Yates’s continuity correction
• All statistical tests work well when their assumptions are met
• When not: probability Type 1 error increases
• Solution: corrections that increase p-values

• Corrections are dangerous: no magic
• Probably best to avoid them



• In a chi-square test, the observed frequencies for two or more groups are compared with
expected frequencies by chance.

• With observed frequency = collected data

• Example with ‘cats and dogs’

Chi-square test



Did they dance? * Type of Training * Animal Crosstabulation

26 6 32

81.3% 18.8% 100.0%

6 30 36

16.7% 83.3% 100.0%

32 36 68

47.1% 52.9% 100.0%

23 24 47

48.9% 51.1% 100.0%

9 10 19

47.4% 52.6% 100.0%

32 34 66

48.5% 51.5% 100.0%

Count

% within Did they  dance?

Count

% within Did they  dance?

Count

% within Did they  dance?

Count

% within Did they  dance?

Count

% within Did they  dance?

Count

% within Did they  dance?

Yes

No

Did they

dance?

Total

Yes

No

Did they

dance?

Total

Animal

Cat

Dog

Food as

Reward

Af fect ion as

Reward

Type of  Training

Total

Example: expected frequency of cats line dancing after having
received food as a reward:

Direct counts approach:

Expected frequency=(row total)*(column total)/grand total
= 32*32/68 = 15.1

Probability approach:

Probability of line dancing: 32/68
Probability of receiving food: 32/68

Expected frequency:(32/68)*(32/68)=0.22: 22% of 68 = 15.1

Did they dance? * Type of Training * Animal Crosstabulation

26 6 32

15.1 16.9 32.0

6 30 36

16.9 19.1 36.0

32 36 68

32.0 36.0 68.0

23 24 47

22.8 24.2 47.0

9 10 19

9.2 9.8 19.0

32 34 66

32.0 34.0 66.0

Count

Expected Count

Count

Expected Count

Count

Expected Count

Count

Expected Count

Count

Expected Count

Count

Expected Count

Yes

No

Did they

dance?

Total

Yes

No

Did they

dance?

Total

Animal

Cat

Dog

Food as

Reward

Af fect ion as

Reward

Type of  Training

Total

For the cats:

Chi2 = (26-15.1)2/15.1 + (6-16.9)2/16.9 + (6-16.9)2 /16.9 + (30-19.1)2/19.1 = 28.4

Is 28.4 big enough for the test to be significant?

Chi-square test



Results



Fisher’s exact test: results

• In our example: 
cats are more likely to line dance if they are given food as 
reward than affection (p<0.0001) whereas dogs don’t mind 
(p>0.99).
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Quantitative data



Quantitative data

• They take numerical values (units of measurement)

• Discrete: obtained by counting
• Example: number of students in a class

• values vary by finite specific steps

• or continuous: obtained by measuring
• Example: height of students in a class

• any values

• They can be described by a series of parameters:

• Mean, variance, standard deviation, standard error and confidence interval



Measures of central tendency
Mode and Median

• Mode: most commonly occurring value in a distribution

• Median: value exactly in the middle of an ordered set of numbers



• Definition: average of all values in a column

• It can be considered as a model because it summaries the data

• Example: a group of 5 lecturers: number of friends of each members of the group: 1, 
2, 3, 3 and 4
• Mean: (1+2+3+3+4)/5 = 2.6 friends per person

• Clearly an hypothetical value

• How can we know that it is an accurate model?

• Difference between the real data and the model created

Measures of central tendency
Mean



• Calculate the magnitude of the differences between each data and the mean:

• Total error = sum of differences

= 0 = Σ(𝑥𝑖 − 𝑥) = (-1.6)+(-0.6)+(0.4)+(1.4) = 0

No errors ! 

• Positive and negative: they cancel each other out.

From Field, 2000

Measures of dispersion



Sum of Squared errors (SS)

• To avoid the problem of the direction of the errors: we square them
• Instead of sum of errors: sum of squared errors (SS): 

𝑆𝑆 = Σ 𝑥𝑖 − 𝑥 𝑥𝑖 − 𝑥

= (1.6) 2 + (-0.6)2 + (0.4)2 +(0.4)2 + (1.4)2

= 2.56 + 0.36 + 0.16 + 0.16 +1.96

= 5.20

• SS gives a good measure of the accuracy of the model
• But: dependent upon the amount of data: the more data, the higher the SS.

• Solution: to divide the SS by the number of observations (N)
• As we are interested in measuring the error in the sample to estimate the one in the population  we 

divide the SS by N-1 instead of N and we get the variance (S2) = SS/N-1



Variance and standard deviation

• 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑠2 =
𝑆𝑆

𝑁−1
=

Σ 𝑥𝑖− 𝑥 2

𝑁−1
=

5.20

4
= 1.3

• Problem with variance: measure in squared units

• For more convenience, the square root of the variance is taken to obtain a measure in 
the same unit as the original measure: 
• the standard deviation

• S.D. = √(SS/N-1) = √(s2) = s = 1.3 = 1.14

• The standard deviation is a measure of how well the mean represents the data.



Standard deviation

Small S.D.: 
data close to the mean: 
mean is a good fit of the data

Large S.D.: 
data distant from the mean: 
mean is not an accurate representation



SD and SEM  (SEM = SD/√N) 

• What are they about?

• The SD quantifies how much the values vary from one another: scatter or spread 
• The SD does not change predictably as you acquire more data. 

• The SEM quantifies how accurately you know the true mean of the population. 
• Why? Because it takes into account: SD + sample size

• The SEM gets smaller as your sample gets larger 

• Why? Because the mean of a large sample is likely to be closer to the true mean than is the 
mean of a small sample. 



The SEM and the sample size

A population



Small samples (n=3)

Big samples (n=30)

‘Infinite’ number of samples
Samples means = 
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The SEM and the sample size



SD and SEM

The SD quantifies the scatter of the data. The SEM quantifies the distribution 
of the sample means.



SD or SEM ?

• If the scatter is caused by biological variability, it is important to show the 
variation. 
• Report the SD rather than the SEM. 

• Better even: show a graph of all data points.

• If you are using an in vitro system with no biological variability, the scatter is 
about experimental imprecision (no biological meaning). 
• Report the SEM to show how well you have determined the mean.



Confidence interval 

• Range of values that we can be 95% confident contains the true mean of the population.

- So limits of 95% CI: [Mean - 1.96 SEM; Mean + 1.96 SEM] (SEM = SD/√N)

Error bars Type Description

Standard deviation Descriptive Typical or average difference

between the data points and their

mean.

Standard error Inferential A measure of how variable the

mean will be, if you repeat the

whole study many times.

Confidence interval

usually 95% CI

Inferential A range of values you can be 95%

confident contains the true mean.



Analysis of Quantitative Data

• Choose the correct statistical test to answer your question:

• They are 2 types of statistical tests:

• Parametric tests with 4 assumptions to be met by the data,

• Non-parametric tests with no or few assumptions (e.g. Mann-Whitney test) 
and/or for qualitative data (e.g. Fisher’s exact  and χ2 tests). 



• All parametric tests have 4 basic assumptions that must be met for the 
test to be accurate.

1) Normally distributed data

• Normal shape, bell shape, Gaussian shape

• Transformations can be made to make data suitable for parametric analysis.

Assumptions of Parametric Data



• Frequent departures from normality:
• Skewness: lack of symmetry of a distribution

• Kurtosis: measure of the degree of ‘peakedness’ in the distribution
• The two distributions below have the same variance approximately 

the same skew, but differ markedly in kurtosis.

Flatter distribution: kurtosis < 0More peaked distribution: kurtosis > 0

Skewness > 0Skewness < 0 Skewness = 0

Assumptions of Parametric Data



2) Homogeneity in variance

• The variance should not change systematically throughout the data

3) Interval data (linearity)

• The distance between points of the scale should be equal at all parts along the scale.

4) Independence

• Data from different subjects are independent
• Values corresponding to one subject do not influence the values corresponding to another subject.

• Important in repeated measures experiments

Assumptions of Parametric Data



• Is there a difference between my groups regarding the variable I am measuring?
• e.g. are the mice in the group A heavier than those in group B?

• Tests with 2 groups:

• Parametric: Student’s t-test
• Non parametric: Mann-Whitney/Wilcoxon rank sum test

• Tests with more than 2 groups: 

• Parametric: Analysis of variance (one-way ANOVA)
• Non parametric: Kruskal Wallis

• Is there a relationship between my 2 (continuous) variables?
• e.g. is there a relationship between the daily intake in calories and an increase in body weight?

• Test: Correlation (parametric) and curve fitting

Analysis of Quantitative Data



+ Noise +

Statistical inference

Difference Meaningful? Real?

Statistical test

Statistic
e.g. t, F …

Big enough?

Difference

Sample Population

Sample

=

Yes



• Stats are all about understanding and controlling variation.

signal

noise

signal

noise

If the noise is low then the signal is detectable …
= statistical significance 

… but if the noise (i.e. interindividual variation) is large
then the same signal will not be detected 
= no statistical significance

• In a statistical test, the ratio of signal to noise determines the significance.

+ NoiseDifference

Difference

Noise

Signal-to-noise ratio 



• Basic idea: 
• When we are looking at the differences between scores for 2 groups, we have to judge 

the difference between their means relative to the spread or variability of their scores.
• Eg: comparison of 2 groups: control and treatment

Comparison between 2 groups: 
Student’s t-test 



Student’s t-test 



Student’s t-test 



SE gap ~ 2 n=3

A B
8

9

10

11

12

13

D
e
p

e
n

d
e
n

t 
v
a
ri

a
b

le

SE gap ~ 4.5 n=3

A B
9

10

11

12

13

14

15

16

D
e
p

e
n

d
e
n

t 
v
a
ri

a
b

le

SE gap ~ 1 n>=10

A B
9.5

10.0

10.5

11.0

11.5

D
e
p

e
n

d
e
n

t 
v
a
ri

a
b

le

SE gap ~ 2 n>=10

A B
9.5

10.0

10.5

11.0

11.5

12.0

D
e
p

e
n

d
e
n

t 
v
a
ri

a
b

le

~ 2 x SE: p~0.05

~ 1 x SE: p~0.05 ~ 2 x SE: p~0.01

~ 4.5 x SE: p~0.01



CI overlap ~ 1 n=3
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• 3 types:

• Independent t-test
• compares means for two independent groups of cases. 

• Paired t-test
• looks at the difference between two variables for a single group:

• the second ‘sample’ of values comes from the same subjects (mouse, petri dish …).

• One-Sample t-test 
• tests whether the mean of a single variable differs from a specified constant (often 0) 

Student’s t-test 



Example: coyotes.xlsx

• Question: do male and female coyotes differ in size?

• Sample size 

• Data exploration

• Check the assumptions for parametric test

• Statistical analysis: Independent t-test



• Example case:

No data from a pilot study but we have found some information in the
literature.

In a study run in similar conditions as in the one we intend to run, male coyotes
were found to measure: 92cm+/- 7cm (SD).

We expect a 5% difference between genders.
• smallest biologically meaningful difference

Power analysis



G*Power

Independent t-test

A priori Power analysis

Example case:

You don’t have data from a pilot study but you
have found some information in the literature.

In a study run in similar conditions to the one you
intend to run, male coyotes were found to
measure:
92cm+/- 7cm (SD)

You expect a 5% difference between genders with
a similar variability in the female sample.

You need a sample size of  n=76 (2*38)



Power Analysis



Power Analysis

H0 H1



For a range of sample sizes:

Power Analysis



Data exploration ≠ plotting data
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http://upload.wikimedia.org/wikipedia/commons/8/89/Boxplot_vs_PDF.png


Assumptions for parametric tests

Normality 

Histogram of Coyote (Bin size 2)
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Coyotes
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Independent t-test: results

Males tend to be longer than females
but not significantly so (p=0.1045)

Homogeneity in variance 

What about the power of the analysis?



Power analysis
You would need a sample 3 times bigger to reach the accepted power of 80%.

But is a 2.3 cm difference between genders biologically relevant (<3%) ?



The sample size: the bigger the better?

• What if the tiny difference is meaningless?

• Beware of overpower

• Nothing wrong with the stats: it is all about 

interpretation of the results of the test.

• Remember the important first step of power 

analysis

• What is the effect size of biological interest?

• It takes huge samples to detect tiny differences but tiny samples to detect huge 

differences. 



working memory.xlsx

Another example of t-test:

A group of rhesus monkeys (n=15) performs a task involving memory after having received 
a placebo. Their performance is graded on a scale from 0 to 100. They are then asked to 
perform the same task after having received a dopamine depleting agent. 

Is there an effect of treatment on the monkeys' performance?



working memory.xlsx

Another example of t-test:

Normality 



working memory.xlsx

Another example of t-test:



Paired t-test: Results
working memory.xlsx
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Comparison of more than 2 means

• Running multiple tests on the same data increases the familywise error rate.

• What is the familywise error rate?

– The error rate across tests conducted on the same experimental data.

• One of the basic rules (‘laws’) of probability:

– The Multiplicative Rule: The probability of the joint occurrence of 2 or more 
independent events is the product of the individual probabilities.



Familywise error rate

• Example: All pairwise comparisons between 3 groups A, B and C: 
– A-B, A-C and B-C

• Probability of making the Type I Error: 5%
– The probability of not making the Type I Error is 95% (=1 – 0.05)

• Multiplicative Rule:
– Overall probability of no Type I errors is: 0.95 * 0.95 * 0.95 = 0.857

• So the probability of making at least one Type I Error is 1-0.857 = 0.143 or 14.3%
• The probability has increased from 5% to 14.3%

• Comparisons between 5 groups instead of 3, the familywise error rate is 40% (=1-(0.95)n)



• Solution to the increase of familywise error rate: correction for multiple comparisons
– Post-hoc tests

• Many different ways to correct for multiple comparisons:
– Different statisticians have designed corrections  addressing different issues

• e.g. unbalanced design, heterogeneity of variance, liberal vs conservative

• However, they all have one thing in common: 
– the more tests, the higher the familywise error rate: the more stringent the correction

• Tukey, Bonferroni, Sidak, Benjamini-Hochberg …
– Two ways to address the multiple testing problem

• Familywise Error Rate (FWER) vs. False Discovery Rate (FDR)

Familywise error rate



• FWER: Bonferroni: αadjust  = 0.05/n comparisons e.g. 3 comparisons: 0.05/3=0.016
– Problem: very conservative leading to loss of power (lots of false negative)
– 10 comparisons: threshold for significance: 0.05/10: 0.005
– Pairwise comparisons across 20.000 genes 

• FDR: Benjamini-Hochberg: the procedure controls the expected proportion of 
“discoveries” (significant tests) that are false (false positive).
– Less stringent control of Type I Error than FWER procedures which control the probability of at least 

one Type I Error
– More power at the cost of increased numbers of Type I Errors.

• Difference between FWER and FDR: 
– a p-value of 0.05 implies that 5% of all tests will result in false positives. 

– a FDR adjusted p-value (or q-value) of 0.05 implies that 5% of significant tests will result in false 
positives. 

Multiple testing problem



• Extension of the 2 groups comparison of a t-test but with a slightly different logic:

• t-test = mean1 – mean2

Pooled SEM

• ANOVA =variance between means

Pooled SEM                                                     

• ANOVA compares variances: 
– If variance between the several  means > variance within the groups (random error) then the means 

must be more spread out than it would have been by chance.

Analysis of variance

Pooled SEM

Pooled SEM



• The statistic for ANOVA is the F ratio.

• F =

• F =

• If the variance amongst sample means is greater than the error/random variance, then 
F>1
– In an ANOVA, we test whether F is significantly higher than 1 or not.

Variance between the groups

Variance within the groups (individual variability)

Variation explained by the model (= systematic)

Variation explained by unsystematic factors (= random variation)

Analysis of variance



• Variance (=  SS / N-1) is the mean square

– df: degree of freedom with df = N-1

Total sum of squares

Between groups variability

Source of variation Sum of Squares df Mean Square F p-value

Between Groups 2.665 4 0.6663 8.423 <0.0001

Within Groups 5.775 73 0.0791

Total 8.44 77

Within groups variability

In Power Analysis: 

Pooled SD=√MS(Residual)

Analysis of variance



Example: protein.expression.csv

• Question: is there a difference in protein expression between 
the 5 cell lines?

• 1 Plot the data

• 2 Check the assumptions for parametric test

• 3 Statistical analysis: ANOVA
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Parametric tests assumptions
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Parametric tests assumptions



Analysis of variance: Post hoc tests

• The ANOVA is an “omnibus” test: it tells you that there is (or not) a difference 
between your means but not exactly which means are significantly different 
from which other ones.

– To find out, you need to apply post hoc tests.

– These post hoc tests should only be used when the ANOVA finds a 
significant effect.



Analysis of variancec



Analysis of variance: results
Homogeneity of variance 

F=0.6727/0.08278=8.13



• A correlation coefficient is an index number that measures:

– The magnitude and the direction of the relation between 2 variables

– It is designed to range in value between -1 and +1

Correlation



Correlation
• Most widely-used correlation coefficient:

– Pearson product-moment correlation coefficient “r”

• The 2 variables do not have to be measured in the same units but they have to be proportional 
(meaning linearly related)

– Coefficient of determination:

• r is the correlation between X and Y

• r2 is the coefficient of determination: 

– It gives you the proportion of variance in Y that can be explained by X, in 
percentage.



• Is there a relationship between parasite burden  and body mass in roe deer?
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Correlation
Example: roe deer.xlsx



Correlation
Example: roe deer.xlsx

There is a negative correlation between parasite load
and fitness but this relationship is only significant for the
males(p=0.0049 vs. females: p=0.2940).



Curve fitting
• Dose-response curves

– Nonlinear regression

– Dose-response experiments typically use around 5-10 doses of agonist, equally spaced on a 
logarithmic scale 

– Y values are responses

• The aim is often to determine the IC50 or the EC50

– IC50 (I=Inhibition): concentration of an agonist that provokes a response half way between the 
maximal (Top) response and the maximally inhibited (Bottom) response.

– EC50 (E=Effective): concentration that gives half-maximal response

Stimulation: 

Y=Bottom + (Top-Bottom)/(1+10^((LogEC50-X)*HillSlope))

Inhibition: 

Y=Bottom + (Top-Bottom)/(1+10^((X-LogIC50)))



Step by step analysis and considerations:

1- Choose a Model:
not necessary to normalise
should choose it when values defining 0 and 100 are precise
variable slope better if plenty of data points (variable slope or 4 parameters)

2- Choose a Method: outliers, fitting method, weighting method and replicates

3- Compare different conditions:

4- Constrain:
depends on your experiment
depends if your data don’t define the top or the bottom of the curve

Diff in parameters

Constraint vs no constraint
Diff between conditions for one or more parameters

Diff between conditions for one or more parameters
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Curve fitting
Example: Inhibition data.xlsx



Step by step analysis and considerations:

5- Initial values:
defaults usually OK unless the fit looks funny

6- Range:
defaults usually OK unless you are not interested in the x-variable full range (ie time)

7- Output:
summary table presents same results in a  … summarized way.

8 – Confidence: calculate and plot confidence intervals

9- Diagnostics:
check for normality (weights) and outliers (but keep them in the analysis) 
check Replicates test
residual plots
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Curve fitting
Example: Inhibition data.xlsx
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Replicates test for lack of fit

SD replicates 22.71 25.52

SD lack of fit 41.84 32.38

Discrepancy (F) 3.393 1.610

P value 0.0247 0.1989

Evidence of inadequate model? Yes No

Replicates test for lack of fit

SD replicates 22.71 25.52

SD lack of fit 39.22 30.61

Discrepancy (F) 2.982 1.438

P value 0.0334 0.2478

Evidence of inadequate model? Yes No

Replicates test for lack of fit

SD replicates 5.755 7.100

SD lack of fit 11.00 8.379

Discrepancy (F) 3.656 1.393

P value 0.0125 0.2618

Evidence of inadequate model? Yes No

Replicates test for lack of fit

SD replicates 5.755 7.100

SD lack of fit 12.28 9.649

Discrepancy (F) 4.553 1.847

P value 0.0036 0.1246

Evidence of inadequate model? Yes No
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Example: Inhibition data.xlsx



My email address if you need some help with GraphPad:

anne.segonds-pichon@babraham.ac.uk




