Analysis of Quantitative data One-Way + Two-Way ANOVA

Anne Segonds-Pichon
v2020-08

Comparison between more than $\mathbf{2}$ groups
 One factor = One predictor One-Way ANOVA

Signal-to-noise ratio

Signal = statistical significance Noise
$\underline{\text { Signal }}=$ no statistical significance
Noise

Analysis of variance: how does it work?

$\underline{\text { Signal }}=\underline{\text { Difference between the means }}$
Noise \quad Variability in the groups
$=F$ ratio

One-Way Analysis of variance

Step 1: Omnibus test

- It tells us if there is a difference between the means but not which means are significantly different from which other ones.

Step 2: Post-hoc tests

- They tell us if there are differences between the means pairwise.

Analysis of variance: how does it work?

Source of variation	Sum of Squares	df	Mean Square	F	p-value
Between Groups	18.1	4	4.5	6.32	0.0002
Within Groups	51.8	73	0.71		
Total	69.9				

Analysis of variance: how does it work?

Analysis of variance: how does it work?

5 differences: $\sum_{1}^{5}\left(\text { mean }_{n}-\text { grand mean }\right)^{2}$
$=$
Sum of squared errors
Between the groups

Source of variation	Sum of Squares	df	Mean Square	F	p-value
Between Groups	18.1				
Within Groups					
Total	69.9				

Analysis of variance: how does it work?

Source of variation	Sum of Squares	df	Mean Squares	F	p-value
Between Groups	18.1				
Within Groups	51.8				
Total	69.9				

Analysis of variance: how does it work?

	Source of variation	Sum of Squares	df	Mean Squares	F ratio	p-value
Signal	Between Groups	18.1	k-1			
Noise	Within Groups	51.8	n-k			
	Total	69.9				

$d f$: degree of freedom with $d f=n-1$
$n=$ number of values, $k=n u m b e r$ of groups
Between groups: df = $4(k-1)$
Within groups: $d f=73\left(n-k=n_{1}-1+\ldots+n_{5}-1\right)$

Analysis of variance: how does it work?

Source of variation	Sum of Squares	df	Mean Squares	F ratio	p-value	
	Between Groups	18.1	4	4.5		
	Within Groups	51.8	73	0.71		
	Total	69.9				

df: degree of freedom with $\mathrm{df}=\mathrm{n}-1$

$$
18.2 / 4=4.5 \quad 51.8 / 73=0.71
$$

Mean squares = Sum of Squares / n-1 = Variance!

Analysis of variance: how does it work?

Source of variation	Sum of Squares	df	Mean Squares	F ratio	p-value
Between Groups	18.1	4	4.5	6.34	0.0002
Within Groups	51.8	73	0.71		
Total	69.9				

Mean squares $=$ Sum of Squares $/ \mathbf{n - 1}=$ Variance
F ratio $=\frac{\text { Variance between the groups }}{\text { Variance within the groups (individual variability) }}=\frac{4.5}{0.71}=6.34$

Comparison of more than 2 means

- Running multiple tests on the same data increases the familywise error rate.
- What is the familywise error rate?
- The error rate across tests conducted on the same experimental data.
- One of the basic rules ('laws') of probability:
- The Multiplicative Rule: The probability of the joint occurrence of 2 or more independent events is the product of the individual probabilities.

$$
P(A, B)=P(A) \times P(B)
$$

For example:

$$
P(2 \text { Heads })=P(\text { head }) \times P(\text { head })=0.5 \times 0.5=0.25
$$

Familywise error rate

- Example: All pairwise comparisons between 3 groups A, B and C :
- A-B, A-C and B-C
- Probability of making the Type I Error: 5\%
- The probability of not making the Type I Error is $95 \%(=1-0.05)$
- Multiplicative Rule:
- Overall probability of no Type I errors is: 0.95 * 0.95 * $0.95=0.857$
- So the probability of making at least one Type I Error is $1-0.857=0.143$ or $\mathbf{1 4 . 3 \%}$
- The probability has increased from 5% to 14.3%
- Comparisons between 5 groups instead of 3 , the familywise error rate is $\mathbf{4 0 \%}\left(=1-(0.95)^{\mathrm{n}}\right)$

Familywise error rate

- Solution to the increase of familywise error rate: correction for multiple comparisons
- Post-hoc tests
- Many different ways to correct for multiple comparisons:
- Different statisticians have designed corrections addressing different issues
- e.g. unbalanced design, heterogeneity of variance, liberal vs conservative
- However, they all have one thing in common:
- the more tests, the higher the familywise error rate: the more stringent the correction
- Tukey, Bonferroni, Sidak, Benjamini-Hochberg ...
- Two ways to address the multiple testing problem
- Familywise Error Rate (FWER) vs. False Discovery Rate (FDR)

Multiple testing problem

- FWER: Bonferroni: $\alpha_{\text {adjust }}=0.05 / \mathrm{n}$ comparisons e.g. 3 comparisons: $0.05 / 3=0.016$
- Problem: very conservative leading to loss of power (lots of false negative)
- 10 comparisons: threshold for significance: 0.05/10: 0.005
- Pairwise comparisons across 20.000 genes $)$
- FDR: Benjamini-Hochberg: the procedure controls the expected proportion of "discoveries" (significant tests) that are false (false positive).
- Less stringent control of Type I Error than FWER procedures which control the probability of at least one Type I Error
- More power at the cost of increased numbers of Type I Errors.
- Difference between FWER and FDR:
- a p-value of 0.05 implies that 5% of all tests will result in false positives.
- a FDR adjusted p-value (or q-value) of 0.05 implies that 5% of significant tests will result in false positives.

One-Way Analysis of variance

Step 1: Omnibus test

- It tells us if there is (or not) a difference between the means but not which means are significantly different from which other ones.

Step 2: Post-hoc tests

- They tell us if there are (or not) differences between the means pairwise.
- A correction for multiple comparisons will be applied on the p-values.
- These post hoc tests should only be used when the ANOVA finds a significant effect.

Exercise: One-way ANOVA protein expression.xlsx

- Question: is there a difference in protein expression between the 5 cell lines?
- 1 Plot the data
- 2 Check the assumptions for parametric test

Parametric tests assumptions

4						
1	Test for normal distribution					
2	Anderson-Darling test					
3	A2*	0.3797	0.3141	1.166	1.439	0.2011
4	P value	0.3446	0.5029	0.0035	0.0007	0.8590
5	Passed normality test (alpha=0.05)?	Yes	Yes	No	No	Yes
6	P value summary	ns	ns	**	***	ns
7						
8	D'Agostino \& Pearson test					
9	K2	0.1236	0.7508	9.375	22.59	1.280
10	P value	0.9401	0.6870	0.0092	<0.0001	0.5274
11	Passed normality test (alpha=0.05)?	Yes	Yes	No	No	Yes
12	P value summary	ns	ns	**	****	ns
13						
14	Shapiro-Wilk test					
15	W	0.9295	0.9535	0.8197	0.7531	0.9671
16	P value	0.3752	0.6888	0.0029	0.0004	0.7411
17	Passed normality test (alpha=0.05)?	Yes	Yes	No	No	Yes
18	P value summary	ns	ns	**	***	ns
19						
20	Kolmogorov-Smirnov test					
21	KS distance	0.1485	0.1704	0.1980	0.2058	0.1035
22	P value	>0.1000	>0.1000	0.0603	0.0424	>0.1000
23	Passed normality test (alpha=0.05)?	Yes	Yes	Yes	No	Yes
24	P value summary	ns	ns	ns		ns
2					-	
26	Number of values	12	12	18	18	18
--						

Transform of Protein expression

Parametric tests assumptions

4						
1	Test for normal distribution					
2	Anderson-Darling test					
3	A2*	0.7849	0.3412	0.2086	0.1524	0.4727
4	P value	0.0295	0.4303	0.8386	0.9495	0.2138
5	Passed normality test (alpha=0.05)? No		Yes	Yes	Yes	Yes
6	P value summary	*	ns	ns	ns	ns
7						
8	D'Agostino \& Pearson test					
9	K2	2.037	0.6827	0.5884	0.8869	2.902
10	P value	0.3611	0.7108	0.7451	0.6418	0.2344
11	Passed normality test (alpha=0.05)?	Yes	Yes	Yes	Yes	Yes
12	P value summary	ns	ns	ns	ns	ns
13						
14	Shapiro-Wilk test					
15	W	0.8553	0.9458	0.9657	0.9868	0.9313
16	P value	0.0427	0.5773	0.7142	0.9935	0.2050
17	Passed normality test (alpha=0.05)? No		Yes	Yes	Yes	Yes
18	P value summary	*	ns	ns	ns	ns
19						
20	Kolmogorov-Smirnov test					
21	KS distance	0.2278	0.2049	0.1373	0.1016	0.1646
22	P value	0.0857	>0.1000	>0.1000	>0.1000	>0.1000
23	Passed normality test (alpha=0.05)?	Yes	Yes	Yes	Yes	Yes
24	P value summary	ns	ns	ns		ns
25						
26	Number of values	12	12	18	18	18

One-Way ANOVA in Prism 8

Analysis of variance: results

Exercise: Repeated measures ANOVA neutrophils.xlsx

- A researcher is looking at the difference between 4 cell groups. He has run the experiment 5 times. Within each experiment, he has neutrophils from a WT (control), a KO, a KO+Treatment 1 and a KO+Treatment2.
- Question: Is there a difference between KO with/without treatment and WT?

Exercise: Repeated measures ANOVA

 neutrophils.xlsx

Answer: There is a significant difference from WT for the first and third groups.

Comparison between more than $\mathbf{2}$ groups Two factors = Two predictors Two-Way ANOVA

Two-way Analysis of Variance (Factorial ANOVA)

Source of variation	Sum of Squares	Df	Mean Square	F	p-value
Variable A (Between Groups)	2.665	4	0.6663	8.42	<0.0001
Within Groups (Residual)	5.775	73	0.0791		
Total	8.44	77			

One-way ANOVA=1 predictor variable

Source of variation	Sum of Squares	Df	Mean Square	F	p-value
Variable A * Variable B	1978	2	989.1	$F(2,42)=11.91$	$P<0.0001$
Variable B (Between groups)	3332	2	1666	$F(2,42)=20.07$	$P<0.0001$
Variable A (Between groups)	168.8	1	168.8	$F(1,42)=2.032$	$P=0.1614$
Residuals	3488	42	83.04		

Two-way Analysis of Variance

- Interaction plots: Examples

- Fake dataset:
- 2 factors: Genotype (2 levels) and Condition (2 levels)

Genotype	Condition	Value
Genotype 1	Condition 1	74.8
Genotype 1	Condition 1	65
Genotype 1	Condition 1	74.8
Genotype 1	Condition 2	75.2
Genotype 1	Condition 2	75
Genotype 1	Condition 2	75.2
Genotype 2	Condition 1	87.8
Genotype 2	Condition 1	65
Genotype 2	Condition 1	74.8
Genotype 2	Condition 2	88.2
Genotype 2	Condition 2	75
Genotype 2	Condition 2	75.2

Two-way Analysis of Variance

- Interaction plots: Examples
- $\underline{2 \text { factors: Genotype (2 levels) and Condition (2 levels) }}$

Single Effect

Two-way Analysis of Variance

- Interaction plots: Examples
- $\underline{2 \text { factors: Genotype (2 levels) and Condition (2 levels) }}$

Zero or Both Effect

Zero Effect

Both Effect

Two-way Analysis of Variance

- Interaction plots: Examples
- 2 factors: Genotype (2 levels) and Condition (2 levels)

Interaction

Two-way Analysis of Variance

Example: goggles.xlsx

- The 'beer-goggle' effect

Alcohol	None			2 Pints		4 Pints	
Gender	Female	Male	Female	Male	Female	Male	
65	50	70	55	45	30		
70	55	65	65	60	30		
60	80	60	70	85	30		
60	65	70	55	65	55		
60	70	65	55	70	35		
	75	75	60	60	70	20	
	60	75	60	50	80	45	
	65	65	50	50	60	40	

- The term refers to finding people more attractive after you've had a few beers. Drinking beer provides a warm, friendly sensation, lowers your inhibitions, and helps you relax.
- Study: effects of alcohol on mate selection in night-clubs.
- Pool of independent judges scored the levels of attractiveness of the person that the participant was chatting up at the end of the evening.
- Question: is subjective perception of physical attractiveness affected by alcohol consumption?
- Attractiveness on a scale from 0 to 100

Two-way Analysis of Variance

Two-way Analysis of Variance

With significant interaction (real data)

ANOVA table	SS DF		MS	$F(D F n, ~ D F d)$	P value
Interaction	1978	2989.1	$F(2,42)=11.91$	<0.0001	
Alcohol Consumption	3332	21666	$F(2,42)=20.07$	<0.0001	
Gender	168.8	1168.8	$F(1,42)=2.032$	0.1614	
Residual	3488	4283.04			

Without significant interaction (fake data)

ANOVA table	SS DF	MS	$F(D F n, D F d)$	P value
Interaction	7.292	23.646	$F(2,42)=0.06872$	0.9337
Alcohol Consumption	5026	22513	$F(2,42)=47.37$	<0.0001
Gender	438.0	1438.0	$F(1,42)=8.257$	0.0063
Residual	2228	4253.05		

Two-way Analysis of Variance

Analyze Data

Built-in analysis
\boxminus Transform, Normalize. Transform
Transform concentrations (x)
Normalize
Prune rows
Remove baseline and column math
Transpose X and Y
Fraction of total

© XY analyses

© Column analyses
\boxminus Grouped analyses
TWO-Way ANOVA (or mixed model)
Three-way ANOVA (or mixed model)
Row means with SD or SEM
Multiple t tests - one per row (1) Contingency table analyses \boxplus Survival analyses
© Parts of whole analyses
© Multiple variable analyses
\boxplus Nested analyses
© Generate curve
\boxplus Simulate data

Parameters: Two-Way ANOVA (or Mixed Model) \times
RM Design RM Analysis Factor names Multiple Comparisons Options Residuals Multiple comparisons test
O Correct for multiple comparisons using statistical hypothesis testing. Recommended. Iest: Slidak (more power, recommended)
O Correct for multiple comparisons by controlling the Ealse Discovery Rate.
Test: Two-stage step-up method of Berjiamini, Krieger and Yelutieli (recommended)
O Don't correct for multiple comparisons. Each comparison stands alone.
Multiple comparisons options
\square swnap direction of comparisons ($^{(A-B)}$ vs. ($(B-A)$.
\square Report multiplicty adiusted P value for each comparison.
Each P value is adjusted to account for multiple comparisons.
Family-wise significance and conffience level: 0.05 (95% confidence interval) \vee
Graphing options Graphing options
\square Graph confidence intervals.
Additional results
\square Narrative results.
\square Narrative Eesults.
\square Show cell/row/column/grand means.
Report goodness of fit.
Output
Show this many significant digits (for everything except P values): $\quad 4 \mid-$
P yalue style: GP: $0.1234(\mathrm{~ns}), 0.0332\left({ }^{(}\right), 0.0021(*), 0 . c \vee \mathbb{N}=6 \div$
\square Make options on this tab be the defaul for future Two-Way ANOVAs.

Have a go!

Two-way Analysis of Variance

