Analysing Single-Cell RNA-Seq with R

v2024-02

Simon Andrews simon.andrews@babraham.ac.uk

Major scRNA Package Systems

https://satijalab.org/seurat/

scater

Single-Cell Analysis Toolkit for Gene Expression Data in R

https://bioconductor.org/packages/release/bioc/html/scater.html

https://cole-trapnell-lab.github.io/monocle3/

What do they provide?

- Data Structure for modelling scRNA-Seq
 - Counts
 - Normalisations
 - Metadata
 - Clusters
- Convenience methods
 - Data parsing
 - Data access
 - Simple transformations

What do they provide?

- Implementations of common methods
 - Data Normalisation
 - Dimensionality reduction
 - PCA
 - tSNE
 - UMAP
- Plotting
 - Projections
 - -QC
 - Standard graphs (scatterplots, violin plots, stripcharts)

What do they provide?

- Statistics
 - Enriched genes
 - Differential expression
- Novel functionality
 - Seurat
 - Feature anchors to match datasets
 - Monocle
 - Trajectory mapping

Seurat

- Probably the most popular choice
 - Well supported and frequently updated
- Easy data model to work with
 - Documentation is good too
- Lots of built in functionality
 - Easy to extend to build your own
- Lots of nice examples on their web pages

Seurat Data Structure

- Single object holds all data
 - Build from text table or 10X output (feature matrix h5 or raw matrix)

Seurat Metadata

Cell.Barcode <chr></chr>	orig.ident <fctr></fctr>	nCount_RNA «dbl»	nFeature_RNA <int></int>	percent.MT «dbl»	percent.Ribosomal «dbl»
AAACCTGAGAAACCAT-1	course	4410	1176	3.1519274	47.346939
AAACCTGAGATAGCAT-1	course	4470	1482	4.8098434	27.494407
AAACCTGAGCGTGAAC-1	course	2298	870	3.1331593	35.161010
AAACCTGCAACGCACC-1	course	4307	1433	4.2953332	26.259577
AAACCTGCACACCGAC-1	course	2001	669	2.6486757	42.528736
AAACCTGCATCGATTG-1	course	3310	918	3.7764350	48.791541
AAACCTGTCCAGATCA-1	course	3005	1032	2.9284526	38.735441
AAACGGGAGCGCTTAT-1	course	6932	1906	5.5972302	35.776111
AAACGGGAGCTACCTA-1	course	3714	1363	4.2003231	22.240172
AAACGCGAGTGATCGG-1	course	8020	2113	4.3266833	34.501247

- QC
- Conditions
- Clusters

```
data[[]]
data$nCount_RNA
new data -> data$new_metric
```

Seurat Quantitative Data

> GetAssayData(data, layer="counts")

Gene <chr></chr>	AACTCAGAGATGTAAC-1 <dbl></dbl>	AACTCAGAGTCCAGGA-1 <dbl></dbl>	AACTCAGCAAGTAATG-1 > a href="https://doi.org/10.25/14.15">> a href="https://
AL627309.1	0	0	0
AL627309.5	0	0	0
LINC01409	0	0	0
LINC01128	0	1	0
LINC00115	0	0	0
FAM41C	0	0	0
NOC2L	1	0	0

> GetAssayData(data, layer="data")

Gene <chr></chr>	AACTCTTAGCCGGTAA-1 <dbl></dbl>	AACTCTTCACTGTTAG-1 <dbl></dbl>	AACTCTTCATGCCTAA-1 <dbl></dbl>
AL627309.1	0.000000	0.000000	0
AL627309.5	0.000000	0.000000	0
LINC01409	0.000000	0.000000	0
LINC01128	0.000000	0.000000	0
LINC00115	0.000000	0.000000	0
FAM41C	0.000000	0.000000	0
NOC2L	1.228141	1.567888	0

Seurat Dimensionality Reductions

> Embeddings(data,reduction = "pca")

	PC_1	PC_2	PC_3
GAGAAACCAT-1	-4.135099	-8.7585629	0.004920869
GAGATAGCAT-1	10.279728	0.8451562	0.287589575
GAGCGTGAAC-1	-6.002598	4.9504875	-3.022266598
GCAACGCACC-1	10.610838	0.4030928	0.165408128
GCATCGATTG-1	-5.581052	-0.4542359	5.166186308

> Loadings(data, reduction="pca")

	PC_1	PC_2	PC_3
IGLC3	-0.01326925	-0.07255036	-0.017863727
IGLC1	-0.01039493	-0.05451957	-0.008700478
IGLC2	-0.01569606	-0.08276587	-0.021715297
IGKC	-0.02226017	-0.12668741	-0.038651318
S100A9	0.11325462	0.01836318	0.013403732

> Embeddings(data,reduction = "tsne")

	tSNE_1	tSNE_2
AAACCTGAGAGTGAGA-1	14.182877	-12.592458
AAACCTGAGCGAAGGG-1	-24.612876	5.739248
AAACCTGAGCGTCTAT-1	21.212219	4.717356
AAACCTGAGCTACCTA-1	5.228508	21.568443
AAACCTGAGCTCCCAG-1	18.923168	6.299075

Variable Gene Information

> HVFInfo(data)

Gene <chr></chr>	mean <dbl></dbl>	variance «dbl»	variance.expected <dbl></dbl>	variance.standardized <dbl></dbl>
AL627309.1	5.077431e-04	5.076141e-04	5.099960e-04	0.9953296
AL627309.5	2.792587e-03	2.785496e-03	2.907594e-03	0.9580070
LINC01409	2.564103e-02	2.498991e-02	2.679890e-02	0.9324974
LINC01128	1.624778e-02	1.801934e-02	1.712920e-02	1.0519658
LINC00115	5.077431e-03	5.560805e-03	5.344264e-03	1.0405185
FAM41C	9.647119e-03	9.556478e-03	1.016386e-02	0.9402406
NOC2L	1.381061e-01	1.342992e-01	1.519011e-01	0.8841229
KLHL17	2.792587e-03	2.785496e-03	2.907594e-03	0.9580070
PLEKHN1	4.061945e-03	4.554345e-03	4.262279e-03	1.0685233
HES4	1.345519e-02	1.987986e-02	1.419635e-02	1.4003494

Seurat Methods

Data Parsing

- Read10X
- Read10X h5*
- CreateSeuratObject

Data Normalisation

- NormalizeData
- ScaleData

Graphics

- Violin Plot metadata or expression (VlnPlot)
- Feature plot (FeatureScatter)
- Projection Plot (DimPlot, DimHeatmap)

Dimension reduction

- RunPCA
- RunTSNE
- RunUMAP

Statistics

- Select Variable Genes FindVariableFeatures
- Build nearest neighbour graph
 FindNeighbors
- Build graph based cell clusters
 FindClusters
- Find genes to classify clusters (multiple tests)
 FindMarkers

Example 10X Seurat Workflow

Example Seurat Workflow

Reading Data

```
Read10x_h5("filtered_feature_bc_matrix.h5") -> data
CreateSeuratObject(
      counts=data,
      project="course",
) -> data
> data
An object of class Seurat
17136 features across 3939 samples within 1 assay
Active assay: RNA (17136 features, 500 variable
features)
 3 layers present: counts, data, scale.data
 2 dimensional reductions calculated: pca, tsne
```

QC – What problems are likely?

- Lysed cells
- Dead or dying cells
- Empty GEMs
- Double (or more) occupied GEMs
- Cells in different cell cycle stages

Lysed Cells

- Outer membrane is ruptured cytoplasmic RNAs leak out
 - Loss of mature RNA, increase in pre-mRNA
 - Higher proportion mapping to introns
 - Loss of 3' sequencing bias
 - Increase in nuclear RNAs
 - MALAT1 is an easy marker to use
 - Increase in Membrane associated transcripts
 - MS4A family
 - IL7R
 - Complement C3

Dead or Dying Cells

- Cells undergoing apoptosis have very different transcriptomes
 - Lower total RNA production
 - Huge upregulation of mitochondrial transcription
 - Upregulation of caspases

Empty GEMs

- GEMs containing no cell will still produce some sequence
 - Background RNA in the flow medium
 - Will be worse with higher numbers of lysed cells

- Total amount of signal will be greatly reduced
- Will often look similar to each other (will cluster together)

Double occupied GEMs

Will get a mixed signal from two different cells

- Not as obvious a signal as empty GEMs
 - Greater diversity
 - More UMIs per cell
 - Intermediate clustering

Cell Cycle Variation

- Cells in different stages of the cell cycle have quite different expression profiles
 - Use genes which classify different phases to classify cells in different phases

Exclude unusual cells

 Attempt to include cell cycle as a factor during quantitation / differential expression

QC and Cell Filtering

- Standard QC Measures
 - Number of observed genes per cell
 - Number of reads per cell
 - Relationship between the two
- Calculated QC Measures
 - Amount of mitochondrial reads
 - Amount of ribosomal reads
 - Marker genes (eg MALAT1)
 - Cell cycle

Custom QC Metrics

```
PercentageFeatureSet(
     data,
     pattern="^MT-"
) -> data$percent.MT
apply(
  GetAssayData(data, layer="counts"),
  function(x)(100*max(x))/sum(x)
) -> data$Percent.Largest.Gene
```

QC and Cell Filtering

```
VlnPlot(
      data,
      features=c("nCount_RNA", "percent.MT"),
       log=TRUE
FeatureScatter(
      data,
      feature1 = "nCount_RNA",
      feature2 = "Percent.Largest.Gene"
```


Applying Filters

```
subset(
  data,
  nFeature_RNA>750 &
  nFeature_RNA < 2000 &
  percent.MT < 10 &
  Percent.Largest.Gene < 20
) -> data
```

Count Normalisation and Scaling

- Raw counts are biased by total reads per cell
- Counts are more stable on a log scale
- Standard normalisation is just log reads per 10,000 reads

- For PCA counts scale each gene's expression to a z-score
 - Can also use this step to try to regress out unwanted effects

Count Normalisation and Scaling

```
NormalizeData(
    data,
    normalization.method = "lognormalize"
) -> data
ScaleData(
    data,
    features=rownames(data)
  -> data
```

Variable Feature Selection

- Selects a subset of genes to use for downstream analysis
- Identify genes with an unusual amount of variability
- Link the variability with the expression level to find variation which is high in the context of the expression level
- Keep only the most variable genes

```
FindVariableFeatures(
   data,
   selection.method = "vst",
   nfeatures=500
) -> data
```


Dimensionality Reduction

- Start with PCA on the normalised, filtered (both cells and genes), scaled data
- Scree / Elbow plot to decide how many PCs are informative
- Pass only the interesting PCs to subsequent tSNE or UMAP reduction to get down to 2 dimensions

Dimensionality Reduction

```
RunPCA(
     data,
     features=VariableFeatures(data)
  -> data
RunTSNE(
  data,
  dims=1:15,
  seed.use = saved.seed,
  perplexity=30
  -> data
```


Defining clusters

- Construct nearest neighbour graph
 - Constructed from PCA
 - Same dimensions as tSNE/UMAP
- Find clusters
 - All cells are classified
 - Graph Based (Louvain) Clustering
 - Resolution (0.01 5) defines granularity

Comparing Properties of Clusters

VlnPlot(data, features="nFeature_RNA")

- We want to know that clusters are occurring because of biological changes, not technical differences
- We plot QC metrics for clusters
 - Read/Gene counts
 - Mitochondrion
 - MALAT1
- Can remove suspect clusters

Statistical Analysis

- Cluster 1 vs Clusters [2,3,4]
- Cluster 1 vs Cluster 3

Cluster A1 vs Cluster B1

Statistical analysis of differences between clusters

- Non-parametric
 - Wilcox rank sum test
- Parametric
 - T-test
 - Negative binomial (eg DESeq)

- Classification
 - ROC analysis
- Specialised
 - MAST


```
FindMarkers(
    data,
    ident.1 = 2,
    ident.2 = 6,
    test.use = "roc",
    only.pos = TRUE
)
```

BMC Bioinformatics

RESEARCH ARTICLE

Open Access

Tianyu Wang¹, Boyang Li², Craig E. Nelson³ and Sheida Nabavi^{4*}

Conclusions: In general, agreement among the tools in calling DE genes is not high. There is a trade-off between true-positive rates and the precision of calling DE genes. Methods with higher true positive rates tend to show low precision due to their introducing false positives, whereas methods with high precision show low true positive rates due to identifying few DE genes. We observed that current methods designed for scRNAseq data do not tend to show better performance compared to methods designed for bulk RNAseq

Automated Cell Assignment

- Can automatically assign cell identities to clusters
- Need a source of marker genes
 - Result of a previous run/experiment
 - Publicly available data
 - Biggest hurdle
- Many packages to do this
 - We use SCINA in the exercise

Abdelaal *et al. Genome Biology* (2019) 20:19 https://doi.org/10.1186/s13059-019-1795-z

Genome Biology

RESEARCH

Open Access

A comparison of automatic cell identification methods for single-cell RNA sequencing data

Tamim Abdelaal^{1,2†}, Lieke Michielsen^{1,2†}, Davy Cats³, Dylan Hoogduin³, Hailiang Mei³, Marcel J. T. Reinders^{1,2} and Ahmed Mahfouz^{1,2*}

Integrating Multiple Runs

 When multiple runs are combined (eg Unstim and Stim), the batch differences between the runs can overwhelm the biological differences

 Raw comparisons can therefore miss changes between what are actually matched subgroups

Raw merged runs

Two PBMC populations run at different times

 tSNE spread coloured by library

Little to no overlap between cell populations

Anchoring Runs

Method to try to re-align different runs

Uses mutual nearest neighbour searches between runs to pair up cells

Uses pairs to align the dimension reduction plots

Anchoring Runs

Raw

Anchored

Over-Anchoring

Exercise – Using Seurat to analyse 10X data

Which factors matter?


```
run.seurat.analysis <- function (</pre>
 data,
 number.of.genes.min = 200,
 number.of.genes.max = 2500,
 percent.mito = 100,
 percent.ribo = 100,
 normalise.method = "LogNormalize",
 number.variable.features = 2000,
 apply.scaling = TRUE,
 pcs.to.keep = 10,
 cluster.resolution = 0.5,
  remove.mito = FALSE,
  remove.ribo = FALSE) {
```

Cluster Properties - Cluster Sizes

Cluster Properties – Reads per cell

Cluster Properties – Genes per cell

Cluster Properties – Amount of MT

Cluster Properties – Amount of Ribosomal

Varying Parameters – Min Genes per Cell (200)

Varying Parameters – Max Genes per Cell (2500)

Varying Parameters – Ribo Removal (100)

Varying Parameters – Variable Features (2000)

Varying Parameters – Normalisation (Log Norm)

Varying Parameters – Apply Scaling (TRUE)

Varying Parameters – PCs to keep (10)

Varying Parameters – Cluster Resolution (0.5)

